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[1] Evolutionary algorithms (EAs) have been applied successfully to many water resource
problems, such as system design, management decision formulation, and model
calibration. The performance of an EA with respect to a particular problem type is
dependent on how effectively its internal operators balance the exploitation/exploration
trade-off to iteratively find solutions of an increasing quality. For a given problem,
different algorithms are observed to produce a variety of different final performances, but
there have been surprisingly few investigations into characterizing how the different
internal mechanisms alter the algorithm’s searching behavior, in both the objective and
decision space, to arrive at this final performance. This paper presents metrics for analyzing
the searching behavior of ant colony optimization algorithms, a particular type of EA, for
the optimal water distribution system design problem, which is a classical NP-hard
problem in civil engineering. Using the proposed metrics, behavior is characterized in
terms of three different attributes: (1) the effectiveness of the search in improving its
solution quality and entering into optimal or near-optimal regions of the search space,
(2) the extent to which the algorithm explores as it converges to solutions, and (3) the
searching behavior with respect to the feasible and infeasible regions. A range of case
studies is considered, where a number of ant colony optimization variants are applied to a
selection of water distribution system optimization problems. The results demonstrate
the utility of the proposed metrics to give greater insight into how the internal operators
affect each algorithm’s searching behavior.
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1. Introduction

[2] Water resources optimization problems can be
extremely difficult to solve as they often possess: highly
nonlinear objective functions; nonlinear constraints; non-
convex objective surfaces; high problem dimensionality;
discrete-valued variables; multimodal objective surfaces;
and multiple objectives. They also typically involve the
execution of computationally expensive deterministic and/or
stochastic system simulators. Given these complexities,
traditional deterministic optimization methods are often
unsatisfactory [Nicklow et al., 2010]. Within the last
20 years, stochastic heuristic optimization approaches, par-
ticularly evolutionary algorithms (EAs), have experienced
growing popularity, and are now an established component
within water resources research. Indeed, EAs, or more

broadly population based metaheuristics, have been applied
successfully to a wide range of water resources problems,
where applications can be categorized into the following
three areas: (1) engineering design problems, for example,
water distribution system design [Simpson and Goldberg,
1994; Simpson et al., 1994; Dandy et al., 1996]; design of
groundwater remediation systems [Bayer and Finkel, 2007];
design of urban drainage and sewer networks [Cembrowicz,
1994]; design of disinfection stations for potable water
[Prasad et al., 2004]; and design of funnel-and-gate systems
for groundwater treatment [Bürger et al., 2007]; (2) the
development of management strategies, for example, man-
agement of ecosystems [Bekele and Nicklow, 2005]; shared
aquifer management [Siegfried and Kinzelbach, 2006]; mit-
igation of drought risk [Kasprzyk et al., 2009]; multipurpose
reservoir operation [Baltar and Fontane, 2008]; and design
of watershed management processes [Arabi et al., 2006];
and (3) the calibration of models, for example, rainfall-
runoff models [Tolson and Shoemaker, 2007; de Vos and
Rientjes, 2008]; runoff and erosion models [Laloy and
Bielders, 2009]; river water quality models [Wang, 1991];
groundwater models [Zheng, 1997]; and friction factor esti-
mation in distribution systems [Lingireddy and Ormsbee,
1999].
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[3] The appeal of EAs for water resources problems is
multifacited. First, they are global optimizers, able to deal
with constrained, nonconvex, multimodal, multiobjective,
and high dimensional problems [Deb, 2001]. Second, EAs
can be applied to optimization problems with relative ease as
they do not require gradient or Hessian information about the
objective [Maier et al., 2003]. Third, they can be applied to
discrete, or continuous problems [AlRashidi and El-Hawary,
2009]. Finally, the population nature of EAs means that
they lend themselves conveniently to parallel computing
[Karpouzos et al., 2001], and problems involving stochastic
objectives [Smalley et al., 2000].
[4] Many different EAs have been applied to water

resources problems, prominent examples of which are
genetic algorithms [Holland, 1975], simulated annealing
[Kirkpatrick et al., 1983], ant colony optimization (ACO)
[Dorigo, 1996], particle swarm optimization [Kennedy and
Eberhart, 1995], shuffled complex evolution [Duan et al.,
1993], shuffled frog leaping algorithms [Eusuff et al.,
2006], differential evolution [Storn and Price, 1997], and
genetic programming [Banzhaf et al., 1998]. These algo-
rithms all differ from each other in terms of the conceptual
basis and mathematical form of the internal mechanisms
they employ to manage the exploration-exploitation trade-
off, where exploration refers to an algorithm’s ability to
broadly search the decision space in order to avoid prema-
ture convergence, and exploitation refers to an algorithm’s
ability to focus on intensive searching in good regions
within the search space (note, the terms search space and
decision space are used interchangeably within this paper).
[5] Studies on EAs in water resources typically focus on

(1) parameter calibration of an algorithm to yield the best
performance for a certain problem type [e.g., Duan et al.,
1994; Ng and Perera, 2003; Zecchin et al., 2005; Gibbs
et al., 2008], (2) the development of additional exploration
or exploitation encouraging mechanisms to improve an
algorithm’s performance [e.g., Dandy et al., 1996; Afshar,
2006; Jiang et al., 2007; Kollat et al., 2008; Montalvo
et al., 2008], or (3) comparative performance of different
EA types or EA variants [e.g., Cheung et al., 2003; Elbeltagi
et al., 2005; Farmani et al., 2005; Kollat and Reed, 2006;
Tang et al., 2006; Zecchin et al., 2007]. Such analyses are
typically based only on overall performance indicators using
statistics derived from the best objective value found within
an optimization run, or the search time required to find the
best solution. Such a framework is adopted within virtually
all of the papers cited above, a prominent example of which
is the highly cited work of Elbeltagi et al. [2005], who
compared GAs, MAs, PSO, ACO, and SFLA applied to a
range of continuous and discrete optimization problems.
Despite the governing importance of the overall perfor-
mance statistics, this framework of comparison is somewhat
limited, as it fails to give any insight into how an algorithm
navigates its way through the decision space in an attempt to
find the optimum solution. In other words, it answers the
question of which algorithm variant is best for a particular
problem type, but it does not answer the question of what it
is that drives particular algorithm instances to perform
better than others (for a particular problem). It should be
noted that theoretical studies on algorithm convergence and
behavior [e.g., Michalewicz, 1996; Clerc and Kennedy,
2002; van den Bergh and Engelbrecht, 2006] have been

excluded from this review, as they usually rely on assump-
tions that are rarely satisfied in practice.
[6] Understanding why particular algorithm instances

perform better than others, for particular problem types, is
critical for meaningful future development and application
of EAs, as this understanding will serve to inform the
development of algorithm operators, and provide guidance
for specific algorithm applications. Consequently, there is a
need to develop alternative performance metrics that go
beyond the measurement of solution quality, i.e., as indi-
cated only by the objective function value.
[7] For both single and multiobjective problems, there has

been much work in characterizing an algorithm’s perfor-
mance in a broader sense by considering evolutionary
dynamics as manifest by measures based on objective space
properties. Notable examples of this work include Hansen
et al. [2003], Bayer and Finkel [2004, 2007], and Vrugt
et al. [2009] for the optimization of single objective
problems, where the best value of the objective function
during the evolution, or some related measures (e.g., its sta-
tistics in multiple runs, the number of function evaluations
required to reach a threshold value, and the algorithm success
rate) are used, and Tang et al. [2006], Kollat and Reed [2006,
2007], Vrugt and Robinson [2007], and Kollat et al. [2008]
for multiobjective problems, where algorithms are com-
pared using metrics (like convergence, diversity, � indicator
and hypervolume) that still consider only the mapping of the
solutions in the objective space. However, there has been
limited work in characterizing an algorithm’s performance
using measures based on the algorithm’s behavior within the
decision space. Examples are Chu et al. [2011], who studied
population degeneration for specific types of algorithms;Deb
and Beyer [2001], who used the Euclidean distance between
the best and optimal solutions and the standard deviation of
the population; and Kang et al. [2008], who used a measure
of the hypervolume covered by the decision variables in the
population and the distance of particles from the average
position of the swarm to study a variant of PSO. However,
in these last two cases, measures were tested only on math-
ematical functions and it is not clear if the effect of the
stochastic search was considered. In addition, the measures
used by Kang et al. [2008] can be interpreted with difficulty,
making the analysis of algorithm behavior more complicated.
[8] A first step toward addressing the shortcomings of

existing EA performance measures outlined above is the
development of metrics that can be used to characterize an
EA’s population dynamics. In this paper, such metrics are
developed for ACO algorithms applied to the optimization
of the water distribution system problem (WDSP) and it is
demonstrated how they serve to provide insight into the
manner in which algorithms explore the solution space as
they progress in their search.
[9] The WDSP involves determining a feasible, least cost

design of a water distribution system subject to hydraulic
performance constraints (section 2). The WDSP has been
chosen because it is a classical nondeterministic polynomial-
time (NP)-hard optimization problem in water resources
engineering, and because it has many characteristics in
common with other engineering problems (i.e., it is discrete,
multimodal, constrained and highly dimensional). As the
selected WDSPs are characterized by different properties,
the behavioral metrics’ ability to highlight the differences in
algorithm response is tested.
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[10] The paper focuses on four ACO variants: ant system
(AS), elitist ant system (ASelite), elitist-rank ant system
(ASrank), and max-min ant system (MMAS) (section 3). As
the main evolving principle for the ACO variants is the
same, and identical values for the common parameters are
employed, a systematic comparison of the algorithms’
behaviors as a result of their different operators has been
possible.
[11] The proposed metrics measure three types of behav-

ioral characteristics, including (1) the effectiveness of the
search in terms of entering into optimal or near optimal
regions of the search space and finding solutions of
increasing quality, (2) the extent to which the algorithm
explores the search space as it converges to solutions, and
(3) the amount of the search effort spent in the feasible and
infeasible regions of the search space (section 4).
[12] Section 5 describes the case studies to which the

proposed behavioral metrics are applied. Section 6 shows
and discusses the computational results obtained. Conclu-
sions are given in section 7.

2. Optimal Design of Water Distribution Systems

[13] The optimal design of WDSs is an NP-hard combi-
natorial problem that is nonconvex, typically high dimen-
sional, multimodal and nonlinearly constrained. A WDS is a
network of components (e.g., pipes, pumps, valves, tanks)
that delivers water from a source to consumers. The opti-
mization of WDSs may be defined as the selection of the
lowest cost combination of appropriate component sizes and
component settings such that the criteria of demands and
other design constraints are satisfied. In practice, the opti-
mization of WDSs can take many forms as WDSs are
composed of a number of different components and also
have many different performance criteria. Traditionally in
the literature, the optimization of WDSs has dealt with a
relatively simple and idealized problem, called the water
distribution system problem (WDSP) [e.g., Simpson et al.,
1994; Dandy et al., 1996; Savic and Walters, 1997; Maier
et al., 2003; Montalvo et al., 2008].
[14] The decision variables for the WDSP are often the

pipe diameters within the system, where more specifically,
the decision options are typically the selection of (1) a
diameter for a new pipe, or (2) a diameter for a duplicate
pipe. The design constraints on the system are the require-
ment of minimum allowable pressures at each of the nodes.
In addition to the design constraints, the hydraulic equations
governing fluid flow through a network (e.g., equations of
mass and energy conservation for every node and pipe,
respectively, of the network) S* = [s1* � � � sn*], where

S∗ ¼ arg min
S2S

Xn
i¼1

CiðsiÞ ð1Þ

h S∗ð Þ ≥ 0; ð2Þ

where the decision variable space S (2 N in the following)
defines the set of discrete design options for pipe i, Ci is the
cost function for pipe i associated with the choice of the
decision variable si, h represents the design performance
constraints (e.g., the design pressure being above the mini-
mum allowable pressure), which are determined from a

hydraulic simulation of the network [Zecchin et al., 2007].
In this work, the hydraulic solver used to satisfy the
hydraulic equality constraints and to compute the network
pressures is EPANET2 [Rossman, 2000]. It is important to
note that, as EAs are unable to deal directly with constraints,
a slightly modified problem (for which the original S* is
preserved) is typically considered, namely,

S∗ ¼ arg min
S2S

Xn
i¼1

CiðsiÞ þ p h Sð Þð Þ; ð3Þ

where p is a penalty function [Coello Coello, 2002], that is
only nonzero when the pressure constraints in (2) are not
satisfied. Within this work, p was based on the maximum
pressure violation below the required minimum design
pressure (for more details, the interested reader is referred to
Zecchin et al. [2007]).

3. Ant Colony Optimization

[15] ACO is an evolutionary algorithmic optimization
process based on the analogy of a colony of foraging ants
determining the shortest path between a food source and its
nest (see Dorigo et al. [1996] for examples). The colony is
able to optimize the excursions of its ants through the pro-
cess of stigmergy [Dorigo et al., 2000]. Stigmergy refers to
the indirect form of communication between the ants that
arises from their deposition of pheromone trails. These trails
act as sign posts encouraging ants to follow. Gradually,
increasingly shorter pheromone trails will be reinforced with
greater amounts of pheromone, encouraging more ants to
follow them and leaving the longer, and less frequently used,
trails to evaporate into nonexistence.
[16] Within the framework of a combinatorial optimiza-

tion problem, ACOA can be seen as an iterative optimization
process where, within each iteration, new information about
the search space of the problem is gained and utilized to
guide the search in subsequent iterations. It should be noted
that the term iteration has a meaning equivalent to the term
generation in genetic algorithms, but it is here preferred
because it is consistent with the terminology used by Maier
et al. [2003], who introduced the application of ACOAs to
the WDS problem. The solution generation that occurs
within an iteration (i.e., the searching of the ants) is a sto-
chastic process governed by a set of probability functions.
The mechanism of ACO is to use its gained information to
manipulate these functions to increase the probability of the
algorithm generating increasingly better, and ultimately
optimal (or near-optimal) solutions.
[17] The manipulation of the probability functions is the

ACO analogy to the colony of foraging ants modifying their
search behavior in response to changes in the detected
pheromone trails. ACO deals with a combinatorial optimi-
zation problem organized as a graph GðN ;LÞ, where N is
the set of nodes (decision variables), and L is the set of edges
linking the nodes (the possible values for each variable).
Therefore, a solution to the problem is a feasible tour
through GðN ;LÞ. A tour is constructed by an ant by starting
at some node, and incrementally selecting edges to follow
based on the set of edges that are available to it given its
semiconstructed tour. This process is continued until the
ant completes its tour. Given a semiconstructed tour ˜S, the
probability that an ant at node i will select edge (i, j), i.e.,
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that the value j is selected for the decision variable i, is
given by the probability function

pi; jðtÞ ¼
ti; j tð Þahi; jbX

i;lÞ2Wið˜Sð Þ
ti;l tð Þahi;lb

; ð4Þ

whereWið˜SÞ is the set of edges available from node i given the
ant’s semiconstructed tour ˜S , ti, j (t) is the pheromone value
on edge (i, j) in iteration t, hi, j is the visibility factor, which
indicates local desirability of the edges (e.g., inverse of dis-
tance or cost; seeMaier et al. [2003] and Zecchin et al. [2006]
for more detail), and a and b are the relative weighting
exponents of pheromone and visibility values, respectively.
[18] The alteration of the pheromone values between

iterations is at the heart of ACO learning, as it is by the
relative values of these pheromone intensities that the algo-
rithm retains information about good solutions that it has
found in its searching history, i.e., learning is achieved
through the reinforcement of the pheromone intensities of
the edges from good solutions. Between iterations, all
pheromone values on each edge decay (evaporate) by a
factor of 1� r, where 0 < r < 1, and selected edges receive a
pheromone addition of Dti, j(t), that is,

ti; jðt þ 1Þ ¼ rti; jðtÞ þDti; jðtÞ: ð5Þ

[19] The pheromone decay occurs to increase the influ-
ence of more recent pheromone additions on the actual
pheromone intensity of an edge. On an algorithmic level, the
decaying mechanism allows for more recent, and better,
information to have a greater influence on the probability
functions. The pheromone addition is the mechanism
whereby the edges of good paths are reinforced with greater
amounts of pheromone.
[20] In the main, the mechanism of pheromone addition is

the sole attribute that differentiates ACO algorithms from
each other. Typically, an ant adds pheromone only to the
edges it has traversed, where the value of pheromone is
inversely proportional to the “cost” of the solution (for
minimization problems). In this way the edges of better
solutions receive greater amounts of pheromone. The different
formulations of Dti, j(t), along with a list of each algorithm’s

parameters, are given in Table 1. With reference to Table 1, a
summary of Dti, j(t) for each algorithm is as follows:
[21] 1. For AS [Dorigo et al., 1996], the most simple form

of ACO, all ants add pheromone to the paths that they have
selected. Exploitation is encouraged through the stronger
reinforcement of edges associated with good solutions, and
exploration is encouraged by all ants updating their paths.
[22] 2. ASelite [Bullnheimer et al., 1997, 1999] incorporates

both updating schemes from AS with the exception that the
pheromone additions only reinforce the path of the global-
best solution, Sg�b (t), after every iteration. The pheromone
addition is scaled up by the additional parameter s to further
encourage elitism, resulting in a more exploitative algorithm.
[23] 3. ASrank [Bullnheimer et al., 1997, 1999] has a sim-

ilar updating scheme to ASelite except that in addition to the
elitist solution, only the path elements of the top s � 1
ranked solutions receive a pheromone addition, rather than
the solutions from the entire colony. The pheromone addi-
tions from the ranked solutions are also scaled up by a factor
ranging from 1 to s � 1, depending on their rank (i.e., the
kth ranked solution S(k)(t) has a scaling factor of s � k). The
use of the ranked ants, in addition to the elitist ants, provides
a mechanism that encourages exploitation through elitism,
but also encourages a degree of exploration through the
reinforcement from the ranked ants.
[24] 4. For MMAS, [Stützle and Hoos, 2000] the Sg�b(t)

solution is updated every Tg�b iterations and only the itera-
tion best solution S(1)(t) receives a pheromone addition every
iteration. Moreover, MMAS contains two additional mechan-
isms: (1) pheromone bounding (PB), as a part of which the
pheromone values are bounded by [tmin(t), tmax(t)] after all
edges have been updated and (2) pheromone trail smoothing
(PST), which is a global operation aimed at reducing the
relative difference between all pheromone trails. Exploration
is encouraged by the use of the pheromone bounds (i.e.,
a smaller Pbest (higher tmin (t)) increases the probability of
selection for all edges), as does a large d in the PST process,
but this is balanced byMMAS’s purely elitist updating policy
that encourages exploitation.
[25] Despite the generality of the above framework for

representing ACO algorithms, it is important to note that
there are variants of ACO that contain mechanisms outside

Table 1. Summary of Pheromone Update Operations

Algorithm Parametersa Expression for Pheromone Addition Dti, j(t)

AS a, b, r, Q, t0, m Dti; jðtÞ ¼
Xm

k¼1
ISk ðtÞ i; jð Þf g Q

f SkðtÞð Þ
ASelite a, b, r, s, Q, t0, m Dti; jðtÞ ¼ ISg�bðtÞ i; jð Þf gs Q

f Sg�bðtÞð Þ þ
Xm

k¼1
ISk ðtÞ i; jð Þf g Q

f Sk ðtÞð Þ

ASrank a, b, r, s, Q, t0, m Dti; jðtÞ ¼ ISg�bðtÞ i; jð Þf gs Q
f Sg�bðtÞð Þ þ

Xs�1

k¼1
IS kð ÞðtÞ i; jð Þf gk Q

f S kð ÞðtÞð Þ
MMASb a, b, r, Pbest, d, Tg�b, Q, t0, m Dti; jðtÞ ¼ IS 1ð ÞðtÞ i; jð Þf g Q

f S 1ð ÞðtÞ
� �

aParameters are as follows: a = pheromone weighting factor; b = visibility weighting factor; r = pheromone decay factor; Q = pheromone update
coefficient; t0 = initial pheromone; m = number of ants; s = number of elitist ants; Pbest = coefficient for determining pheromone bounds ∈ (0, 1); d =
pheromone trail smoothing coefficient ∈ [0, 1]; and Tg�b = period of global best pheromone update. IAðaÞ is the indicator function given by 1 if a 2 A
and 0 otherwise.

bAn addition, forMMAS, (1) the pheromone on the edges is bounded by [tmax(t), tmin(t)], where tmax(t) =
Q

1�r f
�1(Sg�b(t)) and tmin(t) = tmax(t)

ð1� n ffiffiffiffiffiffiffiPbest
p Þ

NOavg�1ð Þ n ffiffiffiffiffiffiffiPbest
p ,

where n is the number of decision points and NOavg is the average number of edges available from each decision point, and (2) each edge undergoes pheromone
trail smoothing, which is described by the operation ti, j (t) ← ti, j (t) + d(tmax(t) � ti, j (t)). For more discussion on these mechanisms the reader is referred to
Stützle and Hoos [2000].
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of its scope, such as ant colony system [Dorigo and
Gambardella, 1997].

4. ACO Behavioral Metrics for the Water
Distribution System Problem

[26] When studying ACOAs, algorithm operators (e.g.,
elitism strategies) are often qualitatively described as explo-
ration or exploitation encouraging [Colorni et al., 1996],
implying a certain kind of impact on the searching behavior
of an algorithm. However, as discussed in the introduction,
quantitative descriptions of behavior are lacking as most
studies focus on the objective space characteristics only.
Consequently, it is difficult to gain insight as to the actual
influence of an operator on an algorithm’s searching behav-
ior, largely owing to the lack of definition of the term
behavior.
[27] Within this paper, the adopted definition of behavior

is based on the following two characteristics: (1) an ACOA
attempts to optimize an objective by iteratively generating
populations of solutions; and (2) ACOAs use information
gained from past solutions to influence the nature in which
future solutions are generated (in an attempt to increase the
probability of finding better solutions, and hence better
information with which to continue the generation of
improved solutions). It is the nature of ACOAs as systems
utilizing experience to guide solution generation that enables
them to be viewed as explorative processes, from which a
searching behavior is manifest.
[28] The entire information of an ACOA’s search is

contained within the sequence of sets of the population’s
solutions generated within each iteration for the entire
run time, symbolized by the sequence SðtÞf gImax

t¼1 where
S(t) = {Sk(t) : k = 1,…, m} is the set of the population’s
solutions in iteration t, Sk(t) is the kth solution at iteration t,
m is the number of solutions in the population and Imax is the
maximum number of iterations. It is the analysis of this
sequence of sets that forms the basis of the behavioral
analysis presented in this paper. The set of solutions S(t)
describes the regions of the search space (variable space)
that the ACOA is searching, how broad or how narrow the
search is, and the quality of the solutions found. If the series
of these solution sets are considered in time (iteration num-
ber), then the overall dynamic searching behavior of the
ACOA can be observed. Therefore, the proposed metrics
differ from those used in previous studies on evolutionary
algorithms, as they focus on population dynamics and not on
objective function values.
[29] In order to be able to interpret the information

contained in these sequences, the proposed metrics charac-
terize the following three behavioral attributes: (1) effec-
tiveness, (2) convergence, and (3) percentage of search in
the feasible and infeasible regions. The metrics fall into
two categories, topological (attributes 1 and 2) and non-
topological (attributes 1 and 3). This section describes the
metrics in the case of single objective problems. Extensions
to multiobjective problems exist but are outside the scope
of this paper.

4.1. Topology of the Search Space

[30] Fundamental to the assessment of the searching
behavior of ACOAs is the ability to measure the distance of
the spread between solutions in a population (e.g., whether

the solution space is being searched widely or whether there
is convergence) and is a feature of two of the behavioral
metrics used within this paper. A measure of distance for all
elements within the set S is equivalent to defining a metric d
associated with S that defines the distance between any two
elements S; eS 2 S . A metric is defined by the map dist :
S � S→ℝþ, and satisfies the following properties [Cohen,
2003]:
[31] 1. dist ðS;eSÞ ¼ 0 if and only if S ¼ eS, for all S; eS 2 S
[32] 2. dist ðS; eSÞ ¼ dist ðeS; SÞ for all S; eS 2 S
[33] 3. dist ðS; eSÞ ≤ dist S; Zð Þ þ dist ðZ; eSÞ; for all S;eS;

Z 2 S.
[34] For a given decision space S, there are generally

multiple valid distance measures (e.g., Euclidian, p norm or
Hamming), where the choice of which measure to use
depends on the needs of the user.
[35] As the WDSP is a combinatorial problem, a simple

definition of distance is adopted based on that used by Boese
et al. [1994] and Stützle and Hoos [2000] for the traveling
salesperson problem (TSP). Within this definition, the dis-
tance between S and eS is taken as the Hamming distance,
which basically measures the number of positions at which
the corresponding variables of two solutions are different.
This is a lucid concept of distance as it indicates the number
of decisions that would need to be changed in a solution to
make it equal to another solution. Mathematically, the dis-
tance between S = [s1 � � � sn] and Ś = [ś1 � � � śn], by this
definition, is described by

dist S; Ś
� � ¼ Xn

i¼n

IC si; śif g; ð6Þ

where I C {a, b} is a complementary indicator function, equal
to 1 if a ≠ b and 0 if a = b. For example, the solution [5 3 7 8]
has a distance equal to two from the solution [5 2 7 6] because
they differ in the second and the fourth variable.

4.2. Searching Effectiveness Metrics

[36] An effective search is one where the algorithm is able
to find optimal or near optimal solutions. In order to quantify
this effectiveness, two metrics are proposed, one describing
the closeness of the searching to the optimal or known
optimal solution S*, and the other describing the quality of
the solutions generated in terms of their objective function
values.
4.2.1. Objective Function Based
[37] The quality of solutions generated in an iteration is

given by the set of objective function values of the solutions
found within that iteration, i.e., { f (S1(t)),…, f (Sm(t))}. For
single objective optimization problems, the aim of the iter-
atively generated set of solutions is simply to find better
solutions (as opposed to generating an entire population of
higher quality solutions). Therefore, a justified metric of
searching quality is the minimum value of the objective
function found within each iteration, that is,

fminðtÞ ¼ min
S2SðtÞ

f ðSÞf g: ð7Þ

This measure is commonly used by researchers [Savic and
Walters, 1997; Deb and Beyer, 2001; Hansen et al., 2003].
It should be noted that measures of effectiveness in the
objective function space have also been defined and applied
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for multiobjective problems [Tang et al., 2006; Kollat et al.,
2008].
4.2.2. Topologically Based
[38] Fundamental to ACOAs is the generation of solutions

that are increasingly close to the optimum. The closeness of
an ACOA’s searching to the global optimum S* can be
given as the distance from S* to the closest point of the
algorithm’s searching region, that is, the distance from S* to
the closest solution within S(t). This property, symbolized
by distmin, is given as

distmin ¼ min
S2SðtÞ

dist S; S∗ð Þf g ð8Þ

The variation of distmin with iteration number illustrates the
behavior of the algorithm as solutions approach the region
that contains the optimum solution, and consequently pro-
vides an indication of the effectiveness of an algorithm’s
searching behavior. For many applications, the global opti-
mum S* is not known and so the known least cost solution
can be used.

4.3. Convergence Metrics

[39] The term convergence within an ACOA can be used
with reference to the objective function space or to the
decision variable space. For the first case, it means that the
algorithm has reached a phase where objective function
improvements are not likely. In the second case, an ACOA
has converged when it has a high probability of continually
regenerating the same solution. Clearly, convergence in the
variable space implies convergence in the objective space.
[40] In this paper, convergence behavior is taken to

describe how the spread of solutions evolves up until the
point of convergence (assuming that this point has been
reached).
[41] The population of solutions generated by an ACOA

within an iteration is spread, in some manner, over the
topology of the decision variable space. This spread of
solutions gives an indication of how widely, or how tightly,
the algorithm is searching (or to use the terminology of
Colorni et al. [1996], whether the algorithm is exploring
broadly through the search space or exploiting smaller
regions of the search space). In order to quantify this spread,
the mean of the distances between each of the solutions has
been used within this research. This metric is referred to as
the mean population searching distance distmean. Mathe-
matically, this is given as the summation of the distances of
each unique pair of solutions divided by the total number of
pairs, and is expressed as

distmean ¼ 2

mðm� 1Þ
Xm
k¼1

Xm
l¼kþ1

dist SkðtÞ; SlðtÞð Þ; ð9Þ

where m(m � 1)/2 is the number of unique pairs that exist in
a population of size m and Sk(t) 2 S(t) is the kth solution
generated in iteration t. The usefulness of distmean as a
behavioral analysis measure is fully realized when consid-
ering its variation as the search progresses. For example,
periods of high exploration (i.e., when solutions are spread
more evenly throughout the search space) are seen as periods
where distmean is large, the period during which the algo-
rithm converges is characterized by a series of decreasing
distmean values, and the algorithm has converged by iteration

T if distmean = 0 for all t ≥ T (as this indicates that all solu-
tions in S(t) are equal). As such, distmean provides a direct
measure of an ACOA’s convergence behavior.

4.4. Feasible/Infeasible Region Searching Metric

[42] Many water resource optimization problems are in
fact constrained optimization problems. EAs can directly
take into account constraints bounding of individual deci-
sion variables, however engineering problems have usually
additional constraints specifying the design or performance
criteria. These are of the form

h Sð Þ ≥ 0; ð10Þ

where h is a vector that usually requires the resolution of
nonlinear functions (typically evaluated using a simulation
model). The region of feasible solutions is defined as the set
of S 2 S that satisfies (10).
[43] As the optimum solution for constrained problems

often lies on the boundary between the feasible and infea-
sible regions [Simpson and Goldberg, 1994], EAs that are
able to search within both of these regions will generally
perform better, as they are able to use more information
about the area surrounding the optimum than those that are
only able to search from within the feasible region [Coello
Coello, 2002]. Consequently, a way to observe an algo-
rithm’s searching behavior is to consider the proportion of
the search that an algorithm dedicates to each region and
how this varies throughout the algorithm’s total searching
time.
[44] In this paper, the metric used to assess searching

behavior with respect to feasible and infeasible regions is the
percentage of feasible solutions generated within an itera-
tion, F%.

5. Case Studies

[45] Four different instances of the WDSP problem were
optimized using the four different variants of ACO as con-
sidered, including ant system(AS), elitist ant system (ASelite),
elitist-rank ant system (ASrank), and max-min ant system
(MMAS). This enabled a detailed study on the influence of
algorithm operators on resultant algorithm behavior, because
each variants adopts different operators to manage the
exploitation/exploration trade-off.

5.1. WDSP Case Studies

[46] Problem characteristics, as well as the algorithm
parameter settings, influence an algorithm’s searching per-
formance and behavior [Hansen et al., 2003; Tang et al.,
2006; Vrugt and Robinson, 2007; Vrugt et al., 2009; Gibbs
et al., 2011]. Therefore, four well-known WDSP instances
with different properties are considered to test the applica-
bility and benefit of the behavioral framework: the Two-
Reservoir Problem (TRP8) [Simpson et al., 1994]; the New
York Tunnels Problem (NYTP21) [Dandy et al., 1996]; the
Hanoi Problem (HP34) [Savic and Walters, 1997]; and the
Doubled New York Tunnels Problem (2-NYTP42) [Zecchin
et al., 2005] (note that the subscript in the problem name
refers to the number of decision variables).
[47] The TRP8 involves a rehabilitation and extension

design for a 14-pipe network fed by two reservoirs. Three
pipes are to be potentially rehabilitated (involving a do
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nothing option, a cleaning option, or replacement with a pipe
with one of six diameter options) and five pipes are to be
designed (selection of a diameter from six options), creating
a total solution space of 3.981 � 106 designs. The NYTP21
involves the design of a system upgrade for a 21 pipe
network fed by a single reservoir. For each pipe, there are
16 design options (the do nothing option, or the selection of
a parallel pipe with one of 15 diameter options) creating a
solution space of 1.934 � 1025 designs. The HP34 involves
the design of a new 34-pipe network fed by a single reser-
voir. For each pipe there are six diameter options, creating a
total search space of 2.865 � 1026 designs. The 2-NYTP42,
is essentially a combination of two NYTP21, problems
connected via the single reservoir. The search space for the
2-NYTP42 has 3.741 � 1050 designs.
[48] As mentioned above, an algorithm’s behavior for a

certain problem instance is influenced by not only the
algorithm’s internal mechanisms, but also the search space
properties. Important properties for constrained problems are
[after Gibbs et al., 2011]: problem size (the size of the search
space); the relative size of the feasible space; variable epis-
tasis (an indicator of the nonlinear interaction between
decision variables); variable salience (an indicator of the
relative influence of decision variables on the objective); and
problem structure (an indicator of how structured a problem
is in terms of the number of local optima, and the size of the
regions of attraction for these optima). In realistic problems,
assessment of these properties is complicated by the size of
the search space and the resulting difficulty in obtaining
representative results, and by the presence of constraints.
As the quantification of these properties is still largely an
open question [Gibbs et al., 2011], a qualitative description
is given in Table 2. The justification for the rankings pro-
vided in Table 2 is given below.
[49] Size of feasible space. An estimate of the size of the

feasible space was made by computing the number of feasi-
ble solutions from a random sample, leading to the ranking
given in Table 2. The HP34 is notoriously difficult in terms of
finding the feasible region [Savic and Walters, 1997; Zecchin
et al., 2007], which was confirmed by the fact that no feasible
solutions were generally found by random sampling.
[50] Epistasis. In WDSP problems, the objective function

is composed of two terms: the pipe cost and the penalty cost
for infeasible solutions. As the pipe cost is a linear function
of the pipe cost per unit of length and the pipe length, the
variables (diameter sizes) are separable and the cost of
C(s1 + s2, s1 + s2) = C(s1, s2) + C(s2, s1), where C() is the cost
of a solution with two variables and s1 and s2 are two
diameter sizes. However, the objective function contains
also the penalty for infeasible solutions. This penalty is
related to the diameter sizes by the hydraulic equations. If
the hydraulic solution is infeasible, the objective function
will no longer have linear properties, e.g., S(s1 + s2, s1 + s2)

can be a feasible solution, while S(s1, s2) and/or S(s2, s1) can
be infeasible with a much larger objective function value S().
Loops in the network configuration decrease the separability
of the variables, meaning that there is a high coupling
between the variables and their influence on the objective
function for infeasible solutions. Epistasis is, therefore,
related to the size of the feasible space and the network
configuration. Consequently, as can be seen in Table 2, the
HP34 problem has high epistatic variable interaction because
of its small feasible space and large number of loops, while,
in comparison, the NYTP21 is a low epistasis problem.
[51] Variable salience. If only the pipe cost is considered

in the objective function, the salience is defined by the
homogeneity of pipe lengths: if there are pipes that are much
longer than others, they will have a larger influence on the
total cost of the network and therefore a larger salience.
Hence, for feasible solutions, salience depends only on pipe
length. However, for infeasible solutions, it depends also on
the network configuration (through the nonzero penalty
cost). For example, for networks with only one reservoir and
one feeder pipe (as in HP34), the salience of that pipe will be
greater than in the case of numerous feeder pipes (as in
NYTP21 and 2-NYTP42). For problems with multiple reser-
voirs (as in TRP8), the variable salience is expected to be
more homogeneous, as the alternate flow paths in the net-
work mean that no single pipe will dominate hydraulic
behavior. As feasibility has a large impact on the objective
function value, salience is strongly related to the hydraulic
importance of the pipe: the wrong size of the only feeder
pipe to the water system can compromise the network fea-
sibility, regardless of the other pipe diameters, while in the
case of more feeder pipes, this effect is mitigated.
[52] Structure. Given the linear dependence on the vari-

ables for feasible solutions, the smoothness of the search
space is clearly related to the size of the feasible space and
the distribution of the feasible solutions in the space. The
infeasible space can contribute to the degree of isolation of
the optima, and can therefore affect algorithm performance
[Vassilev et al., 2000]. Given this, HP34 is considered to be
the hardest instance among the WDSPs analyzed as, for
many pipe variables, a slight change in one variable can
make a feasible solution infeasible. In contrast, the TRP8 is
considered the problem with the most structure, as the
hydraulic characteristics, i.e., network configuration, node
demands, and diameters, allow a greater flexibility in the
diameter setting.

5.2. Outline of Computational Experiments

[53] The behavioral metrics (7)–(10) from section 4 were
used to analyze the behavior of the four ACO variants
applied to each WDSP. The parameter settings used for each
algorithm were taken from Zecchin et al. [2007]: the fun-
damental parameters a, b, r, t0 and m were obtained from
the parameter heuristics developed by Zecchin et al. [2005],
and the other parameters for the additional operators in
ASelite, ASrank, and MMAS, were determined from an exten-
sive parameter sensitivity analysis. For brevity, they are not
mentioned in their entirety here, but it should be noted that
m = 25, 90, 170 and 80 for the TRP8, NYTP21, 2-NYTP42,
and the HP34, respectively, resulting in a total of m �
Imax = 104, 4.5 � 104, 5.1 � 105 and 1.2 � 105 hydraulic
network simulations for each case study. As in Zecchin
et al. [2007], all results were averaged over 20 runs, each

Table 2. Property of the Case Study Problemsa

Problem Size Feasible Space Epistasis Salience Structure

TRP8 3.981 � 106
ppp pp p ppp

NYTP21 1.934 � 1025
ppp p pp pp

HP34 2.865 � 1026
p ppp ppp pp

2-NYTP42 3.741 � 1050
pp pp pp pp

aA larger number of ticks indicates a larger degree of the specific
characteristic.
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executed with a different random seed, with the aim of
obtaining statistically meaningful results. An analysis of the
individual runs confirmed that the variation between metrics
at each time point for different runs was small, indicating
that the averages are a good indication of the expected
behavior.
[54] Among the four behavioral metrics, only distmin

requires a priori knowledge of the optimal solution to be
computed. From a complete enumeration of the TRP8,
Simpson and Goldberg [1994] found that there were two
different optimum solutions, therefore, in this analysis, the
minimum distance was taken from the closest optimum. For
all other case studies, the optimum is not known, as com-
plete enumeration is not possible. As such, the known lowest
cost solutions are used in place of S*. Details of these
solutions are given by Zecchin et al. [2005] for the NYTP21
and the 2-NYTP42, and Zecchin et al. [2006] for the HP34.

For ease of discussion, it is assumed that these known opti-
mum solutions lie in a region close to the actual optimum.

6. Results and Discussion

[55] The results for the case studies are presented in
Figures 1, 2, 3 and 4 for the TRP8, the NYTP21, the 2-NYTP42
and the HP34, respectively, where the following are given for
each the iteration values for the metrics: the minimum objective
value function found, fmin (Figures 1a–4a); the minimum dis-
tance from the optimum, distmin (Figures 1b–4b); the mean
population distance, distmean (Figures 1c–4c); and the percent-
age of feasible solutions in the population, F% (Figures 1d–4d).
[56] The results discussed below demonstrate the descrip-

tive power of the metrics, and their ability to provide insight
into the workings of the algorithms and their interactions
with different types of water distribution system problems.
Section 6.1 highlights common behavioral trends observed

Figure 1. Behavioral metrics for AS, ASelite, ASrank, and MMAS applied to TRP8 problem: (a) fmin,
(b) distmin, (c) distmean, and (d) F%. Results are averaged over 20 runs.
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from the metrics, and section 6.2 focuses on how the different
exploitative and explorative mechanisms of the algorithms
can be understood by analyzing the metrics.

6.1. General Behavior

[57] Considering Figures 1c–4c, the convergence behav-
ior for all of the ACO variants tended to fall into three dis-
tinct phases: initially the algorithms started with a broad
search throughout the search space (i.e., high distmean
values); this was followed by a period of fast convergence
for all case studies except AS in TRP8, where the majority of
the algorithms’ convergence occurred (i.e., the main phase
of reduction in distmean); and the final phase, which was
characterized by a period of slower convergence, during
which the reduction in distmean tended to plateau, meaning
that each algorithm tended to focus its search on a smaller
region of the search space. The degree of prominence of the

presence of each of these phases is dependent on both
algorithm and problem type.
[58] These three phases of searching can also be observed

with the other metrics. Considering the effectiveness of the
search, as demonstrated through Figures 1a–4a and 1b–4b,
for all cases, the broad searching within the initial phase is
coupled with the generation of low-quality solutions (high
fmin and high distmin). However, it can be seen that the fast
convergence of the second phase was generally indicative
of effective searching (except for AS applied to the HP34),
as this convergence corresponded to a decreased distance
from the optimum region for most instances (as seen by
the decreasing series of distmin), implying convergence to the
near-optimal regions of the search space. As expected, the
descent into regions closer to the optimum was accompanied
by an increase in solution quality (as seen by the decreasing
series of fmin in Figures 1a–4a), because for the WDSP
problem, local optimal solutions generally contain a subset

Figure 2. Behavioral metrics for AS, ASelite, ASrank, and MMAS applied to NYTP21 problem: (a) fmin,
(b) distmin, (c) distmean, and (d) F%. Results are averaged over 20 runs.
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of the globally optimal solution. It should be noted that
ACOAs depend on this correlation for successful searching
behavior [Stützle and Hoos, 2000]. In the third phase, the
algorithms tended to all behave differently, with some var-
iants deviating on some problem types (AS and ASelite applied
to the larger three case studies) and others descending closer
to the optimum. However, for all algorithms, the rate of
change of distmin in the third phase was much reduced from
that exhibited during the earlier phases. The same behavior
can be seen in the convergence metric, distmean.
[59] For all algorithms, the percentage of the search spent

in the feasible region, F%, can also be considered to have
three distinct phases. However, the transition point of these
phases tended to lag that of the other metrics for the larger
case studies. Within its initial phase, F% tended to start very
low (0% for the HP34, and less than 20% for the other case
studies). For the algorithms applied to the three larger case
studies (NYTP21, HP34, and 2-NYTP42), F% did not increase

dramatically (i.e., the second phase for F%) until the point at
which the algorithms had concluded their rapid convergence
phase (see distmean in Figures 2c–4c). In the final phase of
F%, the searching intensified in the feasible region, tending
to reach an equilibrium ratio of feasible to infeasible solu-
tions. The fact that F% increased dramatically only after the
rapid convergence phase has the following interesting
implication: the algorithms were able to find the near-optimal
region based on the few feasible solutions they initially
found, and upon finding the feasible region, the algorithms
converged, and increased their searching in the feasible
region around the optimal solution. For the two largest case
studies (HP3, and 2-NYTP42), MMAS, and to a lesser extent
ASrank, kept a reasonable percentage of their search in the
infeasible region. Due to the low value of distmean, it can be
deduced that these algorithms were searching close to the
boundaries between the feasible and infeasible regions. As
shown by distmin, the effectiveness of this searching resulted

Figure 3. Behavioral metrics for AS, ASelite, ASrank, and MMAS applied to 2-NYTP42 problem: (a) fmin,
(b) distmin, (c) distmean, and (d) F%. Results are averaged over 20 runs.
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in these algorithms descending closer to the known optimum
than the other algorithms.
[60] In comparing the properties of the problems from

Table 2 with the behavioral measures in Figures 1–4, some
common observations can be made. Most notably, as the
problem difficulty increased (greater problem size, smaller
feasible space and less structure), so did the algorithms’ time
spent in the first broad searching convergence phase (sus-
tained high distmean, distmin and fmin). This is particularly
clear for ASrank and ASelite applied to the HP34. This obser-
vation of the behavioral measures can be understood to
result from the increased searching time required by the
algorithms to find solutions of a quality that is sufficiently
high to cause the search to converge.
[61] Also, for the problems of increased difficulty, the

algorithms’ effectiveness decreased. The metric fmin shows
that only for the TRP8 problem did all the algorithms reach
the optimal solution (Figure 1a), while, for the other case

studies, they reached different average results. This is par-
ticularly clear for HP34 (Figure 4), where the AS results are
not plotted for fmin and F%, as the algorithm was unable to
locate feasible solutions for any of the runs. Similarly, the
distmin metric gives some insight into the influence of the
increased problem size and the contemporaneous decrease in
problem structure for the WDSP instances. For example, AS
diverged slightly for NYTP21 and markedly for 2-NYTP42
and HP34; ASelite diverged slightly only for the larger two
problems. However, the solution quality for these algorithms
continued to increase (except AS applied to HP34).
[62] The implications of the behavior outlined in the pre-

ceding paragraph, coupled with the continued convergence
shown by the distmean metric, are that these algorithms were
converging to suboptimal solutions. A hypothesis based on
these observations is outlined as follows. There exists a big
valley structure in the fitness landscape (which is the space
formed by mapping all the possible values of the objective

Figure 4. Behavioral metrics for AS, ASelite, ASrank, and MMAS applied to HP34, problem: (a) fmin,
(b) distmin, (c) distmean, and (d) F%. Results are averaged over 20 runs.
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function in (3)), as demonstrated by the fact that, during the
rapid descent phase, the behavior of distmin was well corre-
lated with that of fmin. The ACO algorithms were able to
effectively converge to good regions of the solution space
during this phase, as displayed by decreasing distmean being
matched by a decreasing series of distmin. However, the
landscape was observed to possess a much more compli-
cated microstructure in the near-optimal regions, as demon-
strated by distmin, indicating a deviation from the optimum
(for some algorithms) but fmin continuing to decrease. Some
algorithms were less successful within this region, as observed
by the continued convergence where distmean was not mat-
ched by a decreasing series of distmin. Therefore, the behav-
ioral metrics can give insight into the problem characteristics,
although in a qualitative way. In particular, one of the
advantages of the proposed metrics is that they can relate
the peculiarities of the problem to those of the algorithm.
As the problem difficulty is also a function of the algorithm
used, the metrics can be usefully applied to improve the
algorithm’s search.

6.2. Exploitative and Explorative Mechanisms
and Algorithm Behavior

[63] The results obtained also illustrate the usefulness of
the proposed behavioral metrics in highlighting the differ-
ences in the way the investigated ACO variants manage the
exploitation/exploration trade-off through operators encour-
aging elitism (exploitation) or population diversity (explo-
ration). For example, the results obtained highlight the value
of the proposed metrics in terms of gaining an insight into
the reasons behind the relatively poor performance of AS.
While fmin is able to indicate that AS performs poorly, only
the proposed metric of convergence, distmean, provides an
insight into why this might be the case. As can be seen from
Figures 1–4, the distmean metric for AS is typically larger
than that for the other algorithms within the final phase of
the search, indicating that the algorithm was unable to
exploit good information to achieve a tighter and more
focused search within the near optimal region, which was a
characteristic of the other algorithms. Therefore, the addi-
tional exploitative mechanisms of ASelite, ASrank, and MMAS
improved their performance for all case studies, particularly
the HP34, where exploitation appeared to play a crucial role
in locating the feasible region.
[64] The results obtained indicate that the effectiveness

metrics, fmin and distmin, are able to show the superiority of
the quasi-elitist strategy employed by ASrank compared to the
elitist strategy employed by ASelite, as ASrank was, on aver-
age, able to find solutions closer to the optimum than ASelite
for every case study considered (Figures 2a–4a and 2b–4b).
In considering the convergence behavior of these algo-
rithms, it is interesting to note that, although ASrank tended to
converge faster than ASelite within the second search phase,
ASelite converged to a smaller region in the search space than
ASrank in the final phase.
[65] On an operator level, the difference between ASelite

and ASrank is that ASrank reinforces information of a number
of the top unique solutions found within an iteration, whereas
ASelite reinforces information from all solutions, in addition
to that from the elite solution. The quasi-elitist strategy
employed by ASrank was observed to exploit good informa-
tion from the range of top solutions in the early stages of the
search, while allowing for sufficient exploration in the later

stages of the search when it had converged to a near optimal
region. This behavior can be observed for two of the larger
problems in Figures 2c and 3c, where ASrank has a smaller
distmean, also associated with a smaller distmin (plot (b)), than
ASelite for the first part of the evolution, and has a larger
distmean toward the end. In contrast, the strategy employed by
ASelite tended to slow convergence in the initial stages (due to
the reinforcing of information from all solutions), and resul-
ted in too much of an emphasis on exploitation in the later
stages (due to the elitism), which led to the divergence of the
search away from the optimum region for some of the case
studies. This is clearly shown in Figure 4c after the 600th
iteration. Note also that, in this case study, the initial phase
of smaller distmean for ASrank is absent. This is likely caused
by the difficulty in finding feasible solutions. It is clear from
this discussion that the topological metrics have enabled a
more detailed characterization of the effects of the different
algorithm operators than would otherwise be possible.
[66] The two metrics of effectiveness, fmin and distmin,

show that MMAS was able to find equal or better solutions
for every case study. The distmean and F% metrics highlight
that MMAS is a highly explorative algorithm, but still
maintains the ability to exploit the good information it finds.
The explorative nature of MMAS is evidenced by the longer
exploration phase in the initial part of the search (for all case
studies except HP34), as demonstrated by the larger distmean
in Figures 1, 2 and 3 and the broader exploration in the final
convergence phase. The theoretical proof of the longer
exploration phase of MMAS is given in Appendix A.
[67] MMAS’s ability to effectively exploit good informa-

tion is evident from distmin, as despite its slower descent to
the optimum region, it was able to find solutions closer to
the optimum than all other algorithms, for all case studies
but TRP8, where ASelite and ASrank also reached the optimal
solution.MMAS also maintained a relatively high percentage
of its search within the infeasible region (Figures 1, 3 and 4).
This, combined with the fact that it maintained a confined
exploration in the latter stages, demonstrates thatMMAS was
searching closely on the boundary between the feasible and
infeasible regions, which is where the optimum lies for the
WDSP [Simpson et al., 1994]. As evidenced from the results
obtained, this ability to maintain a relatively compact
exploration (through the exploration encouraging pheromone
bounding mechanism), combined with an elitist mechanism
to guide the search (through the elitist update strategy), pro-
vides an extremely effective overall strategy.
[68] The superiority of MMAS’s performance for the

notoriously difficult HP34 is worth some further analysis.
All other algorithms struggled to find the feasible region
(if at all), and upon finding this region, they tended to con-
verge prematurely to some distance from the optimal region
(as demonstrated by the plateauing of distmin for ASelite and
ASrank in Figure 4b), which is a common issue for highly
constrained problems [Coello Coello, 2002]). In contrast,
MMAS was able to effectively explore through the infeasible
region to find the feasible region, and then effectively
explore within the feasible region and avoid premature
convergence. The reason behind this can be explained by
MMAS’s pheromone bounding mechanism, which provides
a continual encouragement for mild exploration, and inhibits
dominating exploitative forces.
[69] A general conclusion from this is that exploitation is

important for finding the feasible region, however, once the

ZECCHIN ET AL.: UNDERSTANDING OF SEARCHING BEHAVIOR OF ACO IN WDSP W09505W09505

12 of 16



feasible region has been found, exploitation must be balanced
with mild exploration to prevent premature convergence.

7. Conclusions

[70] The shear size and complexity of water resources
optimization problems has led to the extensive use of evo-
lutionary algorithms within the water resources research
community. The comparative analysis of different EA var-
iants has typically been limited to considering the final
performance statistics, consequently ignoring the algo-
rithms’ searching behavior. In this paper, metrics for com-
paring the searching behavior of ACOAs applied to the
water distribution design optimization problem have been
presented. ACOA searching behavior was quantified in
terms of population dynamics and, in particular, (1) the
effectiveness of the search to locate the optimal regions and
improve on solution quality, (2) convergence behavior, and
(3) searching behavior with respect to the percentage of the
search spent in the feasible and infeasible regions of the
solution space. To quantify the effectiveness of the search,
two metrics have been used. These described the quality of
the solutions generated in terms of the objective function and
the topological closeness of the search to the known optimal
solution. To consider the convergence behavior, a metric
was used that considered the topological spread of solutions
in the solution space. To relate the search to the regions of
feasible and infeasible solutions, the relative percentage of
the solutions found in either region was considered.
[71] The results of the four ACO variants applied to four

different WDSP instances indicate that the use of these metrics
serves to provide greater insight into the operational behavior
of the algorithms than has previously been achieved by only
considering the final performance statistics. In particular, the
metrics have been able to identify the different stages in an
algorithm’s search, and the roles of exploration-exploitation in
these stages. An interesting general insight provided by the
metrics was that the most effective algorithms: (1) contained
elitist operators that facilitated the identification of the feasible
region, resulting in convergence to near optimal regions rela-
tively early on in the search; and (2) contained mechanisms
that ensured that these elitist operators did not result in pre-
mature convergence, but facilitate a focused exploration later
on in the search in the near-optimal region.
[72] The proposed behavioral metrics also have the

potential for facilitating a deeper understanding of the
behavior of other population based EAs (e.g., genetic algo-
rithms, particle swarm optimization, and differential evolu-
tion) applied to a broader class of water resources problems,
and indeed, optimization problems generally, as the only
properties the metrics require are (1) an algorithm that iter-
atively generates populations of solutions; (2) an objective
function; (3) a defined topology within the variable space of
the optimization problem; and (4) a feasible region within
the variable space.

Appendix A: Proof of Residual Exploration
for MMAS

[73] The prolonged residual exploration of MMAS can be
explained by considering the influence of the pheromone
bounding on the decision point probability functions. For
the MMAS algorithm, under some mild assumptions, the

probability of selecting the global best path Sg�b(t) as t →
∞ is Pbest [Stützle and Hoos, 2000]. Given the multigraph
structure of the WDSP, the probability of selecting
(i, j) ∈ Sg�b(t) at decision point i is

ffiffiffiffiffiffiffiffiffi
Pbest

n
p

. Within the
MMAS formulation, as t → ∞, ti, j (t) → tmin(t) for all
(i, j) ∉ Sg�b(t). Consequently, the remaining probability is
evenly distributed among these NOi � 1 edges and the
resulting probability of selecting (i, j) ∉ Sg�b(t) is

1� ffiffiffiffiffiffiffiffiffi
Pbest

n
p

NOi � 1
;

Expressing the sample variance of the probability weights,
spi
2(t), using these probability values, the asymptotic form

of spi
2(t) for MMAS, can be expressed as

lim
t→∞

s2
pi
ðtÞ ¼ 1

NOi

NOi
ffiffiffiffiffiffiffiffiffi
Pbest

n
p �1

NOi � 1

� �2

: ðA1Þ

Assuming homogeneity in the probability distributions and
NOi = NOavg for i = 1,…,n, an estimate of the limiting
mean colony distance can be derived by substituting (A1)
into the expected value of the mean population searching
distance, E[distmean(t)].
[74] To express E[distmean(t)] in term of the variance of

the probability weights spi
2(t), the mean population distance

is rewritten by substituting equation (6) into (9):

distmean ¼ 2

mðm� 1Þ
Xm
k¼1

Xm
l¼kþ1

Xn
i¼1

I sk;iðtÞ; sl;iðtÞ
� �

; ðA2Þ

where sk,i(t) is the selection made at decision point i by ant k
in iteration t. The quantity distmean can be viewed as a ran-
dom variable as the solutions Sk(t) are random vectors of
stochastically generated decisions sk,i(t), i = 1,…, n by each
ant. For all algorithms with no local procedures that alter the
pheromone levels, for each i, the sk,i, k = 1,…,m are inde-
pendent identically distributed with the distribution

Pr sk;iðtÞ ¼ s
� � ¼ pi; jðtÞ for s ¼ j 2 Wi

0 otherwise;

	
where the subsets Wi consist of NOi possible values for the
decision variable sk,i (t).
[75] The function of the random variables I{sk,i(t), sl,i(t)}

is also a random variable but with state-space {0, 1}. To
determine the distribution of I{sk,i(t), sl,i(t)}, we first consider
Pr{I{sk,i(t), sl,i(t)} = 0}. Now, the event I{sk,i(t), sl,i(t)} = 0 is
equivalent to the event sk,i(t) = sl,i(t). Considering all the
values that sk,i(t) and sl,i(t) can take, it is seen that the two
events are also equivalent

Pr sk;iðtÞ ¼ sl;iðtÞ
� � ¼

[NOi

j¼1

sk;iðtÞ ¼ j
� �

∩ sl;iðtÞ ¼ j
� �

;

and therefore

Pr I sk;iðtÞ; sl;iðtÞ
� � ¼ 0

� � ¼ Pr
[NOi

j¼1

sk;iðtÞ ¼ j
� �

∩ sl;iðtÞ ¼ j
� �( )

:
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The events {sk,i(t) = j} ∩ {sl,i(t) = j} for j = 1,…,NOi are
disjoint, therefore, applying the law of total probability gives

Pr I sk;iðtÞ; sl;iðtÞ
� � ¼ 0

� � ¼
XNOi

j¼1

Pr sk;iðtÞ ¼ j
� �

∩ sl;iðtÞ ¼ j
� �� �

:

The events {sk,i(t) = j} and {sl,i(t) = j} are independent, each
with probability pi, j(t) and therefore

Pr I sk;iðtÞ; sl;iðtÞ
� � ¼ 0

� � ¼
XNOi

j¼1

p2i; jðtÞ:

The distribution of I{sk,i(t), sl,i(t)} is then given by

Pr I sk;iðtÞ; sl;iðtÞ
� � ¼ x

� � ¼
1�

XNOi

j¼1
p2i; jðtÞ for x ¼ 1XNOi

j¼1
p2i; jðtÞ for x ¼ 0

0 otherwise:

8>><>>:
Taking expectations of (A2) and utilizing the linear nature of
the expectation function we get

E distmean½ � ¼ 2

mðm� 1Þ
Xm
k¼1

Xm
l¼kþ1

Xn
i¼1

E I sk;iðtÞ; sl;iðtÞ
� �
 �

¼ 2

mðm� 1Þ
Xm
k¼1

Xm
l¼kþ1

Xn
i¼1

1�
XNOi

j¼1

p2i; jðtÞ
 !

¼
Xn
i¼1

1�
XNOi

j¼1

p2i; jðtÞ
 !

: ðA3Þ

Equation (A3) states that the expected mean distance
between the colony’s solutions is equal to the summation
over all decision points of the probability that two randomly
generated decisions select different options. The probability
pi, j
2 (t) is related the sample variance of the probability

weights sp,i
2 (t) by

s2
pi
ðtÞ ¼ 1

NOi � 1

XNOi

j¼1

p2i; jðtÞ �
1

NOi

 !
: ðA4Þ

[76] The values of sp,i(t) are bounded below by 0, when
all probability weights are the same, and above by 1=

ffiffiffiffiffiffiffiffi
NOi

p
,

when all probability weights are zero except for one edge
which has a probability weight of 1. Combining (A3) and
(A4) to remove the summation term the desired expression
that relates the expected average distance between a colony’s
solutions to the variance of the probability weights is
achieved:

E distmeanðtÞ½ � ¼
Xn
i¼1

NOi � 1ð Þ 1

NOi
� s2

pi
ðtÞ

� �
: ðA5Þ

If it can be assumed that the number of edges is the same for
all decision points, i.e., NOi = NOavg, i = 1,…, n (this is
generally true for WDSPs), then E[distmean](t) can be
approximated as a function of the mean of the probability
variance, �s 2

p ðtÞ. That is,

E distmeanðtÞ½ � ≈ n NOavg � 1
� � 1

NOavg
� �s 2

p ðtÞ
� �

: ðA6Þ

where n is the number of decision points and NOavg is the
average number of options per decision point. Equation (A6)
can be verified by noticing that (1) E[distmean(t)] is at a
maximum when �s 2

p ðtÞ ¼ 0 (intuitively, it would be expected
that the search is at its broadest when all options have equal
probability of being selected, which occurs when the stan-
dard deviation is zero); and (2) E[distmean(t)] = 0 when �s2

pðtÞ
is at its theoretical upper limit of 1/NOavg, which occurs only
when one option per decision point has a probability of 1 of
being selected (clearly, for this situation it would be expected
that E[distmean(t)] = 0, as only one solution would be con-
tinually selected). An interesting point about Equation (A6)
is that E[distmean(t)] is independent of the colony size m,
and that it is only dependent on the search space properties
n and NOavg and the probability distributions through their
sample variance of the probability weightings. However,
clearly, for larger m, there would be a greater density of
solutions distributed within the ball of radius E[distmean(t)].
[77] Therefore by substituting (A1) into the expected

value of the mean population searching distance (A6) the
following result is obtained:

lim
t→∞

E distmeanðtÞ½ � ¼ 1�
ffiffiffiffiffiffiffiffiffi
Pbest

n
p� 
Xn

i¼1

NOið1þ
ffiffiffiffiffiffiffiffiffi
Pbest

n
p Þ � 2

NOi � 1
:

ðA7Þ

Equation (A7) effectively shows that MMAS does not con-
verge, in the sense that E[distmean(t)]→ 0 as t→∞, therefore,
there will always be some residual exploration even as t→∞.
It is important to note that this result is not in conflict with
that of Gutjahr [2002] (who proved the convergence of an
algorithm similar to MMAS), as this paper assumed a lower
bound of pheromone that decayed to zero as t → ∞. In this
situation, Pbest would be a function of the lower bound and
would tend to unity as t → ∞, which would clearly satisfy
the convergence requirement that spi

2(t) → 1/NOi and
E[distmean(t)]→ 0 as t→ ∞. Preliminary investigations have
shown that estimates of the theoretical limits from (A1) and
(A7) are close to the actual observed values at the final iter-
ation Imax, with the differences being attributed to the varia-
tion in the options visibility values of the available options.
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