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Overview

The precise meaning of phase depends on the class of physical systems being studied, e.g. ther-
modynamic, classical/quantum mechanical, symmetry-constrained,. . . ., but there are some
general features. There are typically some parameters specifying a physical state, e.g. tem-
perature, pressure, . . . , and the parameter space (phase/moduli space) divides up into various
connected pieces (phases) separated by phase transitions.

In many instances, the relevant phase space is a rich topological space, and the topological
phases are labelled by topological invariants familiar from mathematics — winding numbers,
homotopy/homology groups, characteristic classes, topological/analytic indices, K-theory.
Physicists have been quite creative both in producing models for actual phenomena which
realise such invariants, and in identifying general physical principles which allow even math-
ematically exotic invariants to be relevant. At least three Nobel Prizes have been awarded in
direct relation to the idea of topological phases: 2016 (Thouless–Kosterlitz–Haldane), 1985
(von Klitzing), 1998 (Laughlin–Störmer–Tsui).

I will focus on the general principle of quantum mechanical symmetries, and how it leads
to complex/real/twisted K-theory invariants labelling the topological phases1.

1 Quantum mechanical symmetries

Pure states in quantum mechanics (QM) are elements of the projective Hilbert space PH,
usually represented by a normalised vector |ψ〉. QM symmetries are a bit unusual in that they

1In many-body physics, one studies strongly interacting particle systems whose description requires tech-
niques from quantum field theory, and which exhibit what is sometimes called topological order. These systems
are less well-understood, and we will not say anything further about them.
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only need to preserve transition probabilities between any pair of states, i.e. the symmetric
function

p : ([ψ1], [ψ2]) 7→ |〈ψ1|ψ2〉|2 ∈ [0, 1].

I have used Dirac’s bra-ket notation for the inner product 〈·|·〉. A classical theorem of Wigner
(see [13] for a modern geometric proof) says that any automorphism of (PH, p) is implemented
by a unitary or antiunitary2 operator on H. Modifying the (anti)unitary implementing op-
erator U by an overall phase does not change the automorphism of (PH, p), so the target
group of “QM automorphisms” is the projective unitary-antiunitary (PUA) group of H, and
it is “PUA-representation theory” which is needed. This is in contrast to ordinary unitary
representation theory (e.g. of locally compact second countable topological groups), for which
the target group is the group of unitary operators U(H).

Example: Complex conjugation κ is the simplest example of an antiunitary operator.
A more interesting example of an antiunitary operator is fermionic time-reversal T, which

squares to −1 instead of +1, and is often represented as the operator

(
0 1
−1 0

)
◦ κ on the

Hilbert space C2 of internal/spinor degrees of freedom. A more invariant description of T
is as a quaternionic structure on C2 which identifies the latter as H. Recall that Sp(1) ∼=
SU(2) ∼= Spin(3) is a double cover of SO(3), which as groups/manifolds is

{±1} ∼= Z2 ↪→ S3 ∼= SU(2) � RP3 ∼= SO(3).

The failure of SO(3) to lift into SU(2) means that the latter is a projective representation3 of
SO(3). In QM, rotational symmetries are allowed to have such projective spinor representa-
tions. As a general rule, fermions (e.g. electrons) behave as spinors, in that they acquire a −1
phase upon a 2π rotation in physical 3D space, since the latter is represented projectively on
C2 by −1 rather than simply the identity operator. In relativistic QM, the irreducible PUA
representations of the inhomogeneous indefinite group R4 oSO(1, 3) (inhomogeneous Lorentz
group, whose identity component is also called the Poincaré group) correspond to distinct
particle species, and spinor bundles also come into play.

1.1 Time evolution and dynamical symmetries

Time evolution in QM is a strongly-continuous 1-parameter group of unitaries R 3 t 7→ Ut =
e−iHt on a complex Hilbert space H. The self-adjoint generator H, given by Stone’s theorem,
is called a Hamiltonian.

We are interested in dynamical symmetries (for Ut), which roughly means a representation
of a group G as QM automorphisms compatible with Ut. More precisely, we need the elements
g ∈ G to be projectively represented by operators g on H which are unitary or antiunitary
according to a continuous homomorphism φ : G → {±1}. Furthermore, gUtg

−1 = Uτ(g)t,
where another continuous homomorphism τ : G → {±1} encodes whether g preserves or
reverses the arrow of time. In terms of the Hamiltonian, this means that

g(iH)g−1 = τ(g)(iH) ⇒ g(H)g−1 = φ · τ(g)H =: c(g)H.

2Recall that an antiunitary operator on H is a complex-antilinear bijection U such that 〈Uψ1|Uψ2〉 =
〈ψ2|ψ1〉 for all |ψ1〉, |ψ2〉 ∈ H.

3Projective representations are closely related to central extensions by U(1), and the latter is the point of
view taken in [15].
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Often, dynamical symmetries are defined to commute with H (so c ≡ 1, or equivalently,
φ = τ), but this is not always the case, and we will not assume a priori that φ = τ . The
letter c is meant to suggest “charge-conjugation”, or “particle-hole” symmetry: notice that if
c(g) = −1, then g reflects the spectrum of H about 0. By definition, φ · c · τ ≡ 1, and any two
of these three homomorphisms are independent; we will choose to specify φ, c as part of the
symmetry data, alongside G and σ.

For simplicity, let us take c ≡ 1 first. Given (G,φ), we define a PUA-rep on H to be a
map4 θ : g 7→ θg such that θg is unitary (resp. antiunitary) if φ(g) = +1 (resp. φ(g) = −1),
and such that for all x, y ∈ G, θxθy differs from θxy only by a phase σ(x, y). Associativity of
composition means that σ : G×G→ U(1) is a (generalised) 2-cocycle satisfying

σ(x, y)σ(xy, z) = σ(y, z)φ(x)σ(x, yz). (1)

The superscript φ(x) in Eq. (1) is a slight modification to the usual 2-cocycle δσ = 1 condition
in the sense of group cohomology. Modifying each operator θx 7→ λxθx, where λ : x 7→ λx
is a phase function on G, corresponds to multiplying σ by a 2-coboundary δλ : (x, y) 7→
λxλ

φ(x)
y /λxy. Such phase modifications do not matter physically, so only the cocycle class of

σ matters.
An interesting class of QM dynamics is that generated by gapped Hamiltonians, and we

will shift H by a constant so that 0 lies in a some spectral gap (which is usually distinguished
by some physical considerations). Then Γ := sgn(H) gives a Z2-grading of H and there is
a homotopy from H to Γ through gapped self-adjoint operators (at least for bounded H,
otherwise a truncation is assumed to make this homotopy precise). Given the full symmetry
data (G, c, φ, σ), and interpreting c as a Z2-grading on G, we are interested in Z2-graded PUA-
reps, i.e. PUA-reps on a Z2-graded Hilbert space (H,Γ) (“super-Hilbert space”), in which G
graded commutes with Γ. We call these sPUA-reps, with the letter ‘s’ standing for ‘super’.

For a “topological” classification, we will not distinguish gapped H which are homotopic,
so the grading operator in a sPUA-rep for (G, c, φ, σ) is interpreted as a representative of a
“topological class” of symmetry-compatible gapped Hamiltonian. There are several inequiv-
alent ways to state the precise equivalence relation (which at least contains the previous
homotopy equivalence) that defines the “moduli” of symmetry-compatible Hamiltonians. We
will describe one which leads eventually to a K-theory classification, an idea that originated
in [26] and made precise in [15, 42].

2 Clifford algebras and a tenfold way

As an example of fundamental importance in physics, let G be the “CT -group” {1, C} ×
{1, T}, so-called because C, T are respectively the Charge-conjugation and Time-reversal
symmetries. The diagonal element CT = TC is denoted S, for Sublattice, as explained later.
By convention, τ, c are defined to be

τ(C) = +1, c(C) = −1, τ(T ) = −1, c(T ) = +1. (2)

Note that φ(C) = −1 = φ(T ), so the representatives C,T are antiunitary, whereas the diagonal
element S is represented by a unitary S.

4For infinite topological groups, we would technically need θ and the subsequent 2-cocycle σ to be a Borel
map, e.g. [34]. For σ ≡ 1, θ is a homomorphism which is automatically continuous, e.g. [27].
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In general, only some subgroup of A ⊂ G is present for a given physical system. Also,
even though C2 = 1 = T 2, the operators C,T only need to be involutions up to a phase, and
they also commute only up to a phase — these phase ambiguities are encoded in a 2-cocycle
σ satisfying Eq. (1). The symmetry data is (A, σ), with φ, c : A → {±1} implicitly given by
(2).

Q: What are all the possibilities for C,T (“CT -symmetry classes”), i.e. the possible (A, σ)?

A: There are exactly ten classes, corresponding to the 8 + 2 Morita classes of real +
complex (graded) Clifford algebras / super-Brauer group over R and C / ten superdivision
algebras over R. They are labelled by the squares of C and T (where present).

Sketch of proof: Note that T2 = λ for some λ ∈ U(1), so λT = T3 = Tλ = λT,
and λ ∈ {±1}. Thus T2 = ±1, and similarly C2 = ±1. Note that this sign is invariant
under T 7→ µT. Next, we use the phase freedom in defining C,T,S to “standardize” them;
specifically, we can arrange for TC = CT and S2 = +1. Therefore we just need to assign, for
each of the five possible subgroups A ⊂ G:

{1}, {1, S}, {1, T}, {1, C}, {1, C, T, S},

a ±1 sign to C,T (where present) — there are ten possibilities in total, see Table 2.2.
Remark: We can identify A with the image of (φ, c). More generally, A arises as a

quotient of the full symmetry group G by the kernel G0 of (φ, c), i.e.

1→ G0 → G
φ,c−−→ A→ 1,

and there is a 2-cocycle σ̃ on G×G which projects onto σ on A×A.

2.1 Clifford algebras

In connection with geometry, it is usual to define the (real) Clifford algebra for a vector space V
with a quadratic form Q to be the free (tensor) algebra (over R) subject to v2 = Q(v), v ∈ V .
This is a “quantization” of the exterior algebra (Q ≡ 0), i.e. the same underlying vector
space but modified multiplication law. Complexification (·)⊗R C yields the complex Clifford
algebra. Detailed proofs of statements in this section may be found in [28, 24, 37, 42].

We will proceed more concretely (corresponding to taking a standard form for Q, using
Sylvester’s law of inertia), defining the complex Clifford algebra Cln to be the complex unital
algebra generated by anticommuting elements fi, i = 1, . . . , n that square to +1. For example,

Cl0 ∼= C, Cl1 ∼= C[ 1+f12 ]⊕ C[ 1−f12 ], and Cl2 ∼= M2(C) with f1 =

(
0 1
1 0

)
, f2 =

(
0 −i
i 0

)
.

Similarly, the real Clifford algebra Clr,s is generated (over R) by anticommuting elements
ei, fj , i = 1, . . . , r, j = 1, . . . , s such that e2i = −1, f2j = +1. For example, Cl0,0 ∼= R, Cl1,0 ∼=

C, Cl0,1 ∼= R ⊕ R and Cl1,1 ∼= M2(R) with f1 =

(
0 1
1 0

)
, e1 =

(
0 −1
1 0

)
. We also have

Cl2,0 ∼= H and Cl0,2 ∼= M2(R). When we complexify, iei squares to +1, so Clr,s⊗RC ∼= Clr+s
as complex algebras. For example, the complexifications of Cl1,0 amd Cl0,1 are both C⊕C ∼=
Cl1, and the complexifications of Cl2,0, Cl1,1, Cl0,2 are all M2(C) ∼= Cl2.

One can also show that Cl0,8 ∼= M16(R) ∼= Cl8,0.
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It turns out that there are (algebraic) Bott periodicity identities

Clr+1,s+1
∼= Clr,s ⊗R Cl1,1

Clr+8,0
∼= Clr,0 ⊗R Cl8,0

Cl0,s+8
∼= Cl0,s ⊗R Cl0,8

Cln+2
∼= Cln ⊗C Cl2

and since Cl1,1, Cl8,0, Cl0,8,Cl2 are each matrix algebras, the Morita class (representation
theory) of Cln only depends on n (mod 2) while that of Clr,s only depends on r − s (mod
8). In total, there are 8+2=10 Morita classes of real/complex Clifford algebras, and each is
a matrix algebra over R/C/H or a direct sum of two matrix algebras (of the same dimension
over the same (skew)-field).

It is mathematically and physically convenient to regard the Clifford algebras as Z2-
graded real/complex C∗-algebras, by requiring ei, fj to be odd, ei to be skew-adjoint, fj to
be self-adjoint, and taking the (unique) C∗-norm e.g. from their matrix realisations. Then we

can define M̂r,s and M̂ C
n to be the free abelian groups generated by the distinct irreducible

unitary5 Z2-graded representations of Clr,s and Cln respectively. We can regard the grading
as an extra Clifford generator fs+1 in the ungraded sense, so the ungraded versions Mr,s and

M C
n are related to the graded ones via M̂r,s

∼= Mr,s+1 and M̂ C
n
∼= M C

n+1. Furthermore,
the Z2-graded tensor product gives an isomorphism Clr1,s1⊗̂Clr2,s2 ∼= Clr1+r2,s1+s2 , and

the Z2-graded tensor product W ⊗̂V of modules W ∈ M̂r1,s2 , V ∈ M̂r2,s2 is canonically a

Clr1+r2,s1+s2 -module. Thus there are natural pairings M̂r1,s1 ⊗Z M̂r2,s2 → M̂r1+r2,s1+s2

which give ⊕r,s≥0M̂r,s the structure of a bigraded ring ; similarly for the complex case.

2.2 Tenfold way

It is now an exercise to get a one-to-one correspondence between the ten C,T possibilities
and the Clifford algebras. For example, if A = {1, C, T, S} and C2 = −1,T2 = +1, then
{C, iC, iCT} are odd Clifford generators. From their squares, we see that we have a graded

representation of Cl2,1, in which e1 = C, e2 = iC, f1 = iCT. In other words, an element of M̂r,s

or M̂ C
n is nothing but a sPUA-rep for the corresponding (A, σ); or physically, a realisation of

a CT -symmetry class in which the grading is a compatible gapped Hamiltonian.

Remark: The two A = {1, T} cases are a bit tricky: T gives the graded Hilbert space H
a real or quaternionic structure depending on T2 = ±1. We can think of H = H+ ⊕ H− as
a formal difference of two ungraded real/quaternionic spaces [H+] − [H−] (ungraded PUA-
reps of (A, σ)). Take {i,T, iTΓ} as generators of the ungraded Clifford algebra Cl1,2 when

T2 = +1 and Cl3,0 when T2 = −1. The sPUA-reps are classified by M1,2
∼= M̂1,1

∼= M̂0,0 or

M3,0
∼= M4,1

∼= M̂4,0.
Remark: There is another point of view in which there are 10=3+7 superdivision algebras

over R, with the trivially graded ones R,C,H being the usual division algebras over R and the
other seven being non-trivially graded; each graded Clifford algebra is graded Morita equiv-
alent to one of these superdivision algebras [15]. The three trivially graded cases correspond

5This means orthogonal in the real case.
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Symmetry C2 T2 Clifford algebra Graded Morita class
T +1 Cl1,2 Cl0,0
C, T −1 +1 Cl2,2 Cl1,0
C −1 Cl2,1 Cl2,0
C, T −1 −1 Cl3,1 Cl3,0
T −1 Cl3,0 Cl4,0
C, T +1 −1 Cl0,4 Cl5,0
C +1 Cl0,3 Cl6,0
C, T +1 +1 Cl1,3 Cl7,0

N/A N/A Cl1 Cl0
S S2 = +1 Cl2 Cl1

Table 1: A version of the Tenfold way.

to an old “Threefold way” of Dyson [12], in which another (inequivalent) “Tenfold way” was
introduced.

2.3 A glimpse of K-theory

An interesting construction of Atiyah–Bott–Shapiro expresses the K-theory rings of a point
to Clifford modules [4]:

Kn(?) ∼= M̂ C
n /ι
∗M̂ C

n+1, KOr−s(?) ∼= M̂r,s/ι
∗M̂r,s+1

where ι∗ is the forgetful map which forgets the action of the extra Clifford generator. Let
us sketch this construction, which first requires one particular definition of relative K-theory
groups of a compact pair Y ⊂ X.

First, the (absolute) complex K-theory groups K0(X) of a compact Hausdorff space is
the Grothendieck completion of the monoid (w.r.t. Whitney sum) of isomorphism classes of
complex vector bundles over X. For a compact pair Y ⊂ X, the relative K-theory groups
can be defined via triples (Ei,Fi, αi), i = 1, 2, where Ei,Fi are complex bundles over X and
αi : Ei|Y → Fi|Y are bundle isomorphisms on the restrictions to Y . We say that (E1,F1, α1)
is equivalent to (E2,F2, α2) if there are isomorphisms f : E1 → E2 and g : F1 → F2, such that
α2 ◦ f |Y = g|Y ◦ α1. An elementary triple is a triple (E,E, α) such that α is homotopic to
idE in the set of bundle isomorphisms. We can form the direct sum of triples in the natural
way, and we say that two triples are stably isomorphic if they are isomorphic upon adding
elementary triples. The relative K-theory group K0(X,Y ) is then defined to be the group
of stable isomorphism classes of triples [E ,F , α], and the absolute groups are recovered by
taking Y = ∅. The real K-theory groups KO0(X),KO0(X,Y ) are similarly defined but with
real vector bundles.

We can extend the definition ofK0(X) to locally compact X by takingK0(X) := K0(X+, {∞}),
where X+ is the one-point compactification of X. If X is already compact, then X+ is X
with a disjoint point {∞} added. This is “K-theory with compact supports”, c.f. I.9 of [28].
Higher K-theory groups are defined by suspending, K−n(X,Y ) := K0((X \ Y )×Rn), and in
particular, this gives the higher (absolute) K-theory groups of X as K−n(X) = K0(X ×Rn).
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For a point X = ?, we therefore have

K−n(?) = K0(Rn) = K0(Bn, Sn−1),

where Bn, Sn−1 is the unit ball and unit sphere in Rn. In fact, ⊕n≥0K−n(X) is a graded ring,
and furthermore, a graded module over ⊕n≥0K−n(?) through tensor product constructions
[28].

Everything works similarly in ordinary real KO-theory, but an interesting and useful gen-
eralisation is the Real KR-theory of Atiyah [3] in which there are two ways of suspending, and
correspondingly a bi-graded theory KRr,s(·), defined on spaces X equipped with involutary
self-homeomorphism ς. For this theory, we need to use Rr,s, which is Rr+s but with the last
s coordinates having the involution xj 7→ −xj , as well as the corresponding unit ball and
sphere Br,s, Sr,s.

Let W = W0 ⊕ W1 be a graded Cln-module, and let Ei be the trivial vector bundles
Bn × Wi for i = 1, 2 over the unit n-ball Bn in Rn. We can associate to W the relative
K-group element

φn(W ) = [E0, E1, α] ∈ K0(Bn, Sn−1),

where α is the isomorphism over Sn−1 given by

α(x,w) = (x, x · w), x ∈ Sn−1, w ∈W0.

One checks that φn is well-defined on isomorphism classes and is additive, so that there is an
induced homomorphism

φn : M̂ C
n → K0(Bn, Sn−1) ∼= K−n(?).

Now suppose that W extends to a graded Cln+1-module. Let fn+1 denote the extra Clifford
generator, also regarded as a unit vector of Rn+1 orthogonal to Rn. Then we can extend the
isomorphism α to the whole of Bn by setting

α(x,w) =
(
x, (x+

√
1− ||x||2fn+1) · w

)
, x ∈ Bn, w ∈W0.

In this case, E0 and E1 are isomorphic, so φn(W ) is equivalent to the zero element in
K0(Bn, Sn−1) = K−n(?). The homomorphism φn thus descends to a homomorphism

φn : M̂ C
n /ι
∗M̂ C

n+1 → K−n(?).

That ⊕n≥0φn is actually a graded ring isomorphism onto ⊕n≥0K−n(?) is one of the main
results in [4] (which requires a priori knowledge of K•(?) using Bott periodicity). Similarly,

in the real case we have isomorphisms φr,s : M̂r,s/ι
∗M̂r,s+1 → KRs,r(?) ∼= KOr−s(?), c.f.

[28] which has some differing sign conventions.

Remark: One physical interpretation for quotienting out Cln+1 is: a Cln-module (sPUA-
rep for some CT -class) which admits a Cln+1-module structure should really be considered
sPUA-reps for some other CT -class. Another interpretation involves arguing that taking Γ
to −Γ should be akin to taking an inverse. When an extra Clifford generator is available, it
becomes possible to homotope Γ to −Γ through compatible grading operators, exhibiting the
“triviality” of Γ [24, 42].
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3 K-theory and topological insulators

We know that the real/complex K-theory of a point acts on that of a topological space X,
and that K0(X) provides a classification of vector bundles over X. We have already given
a physical/representation-theoretic meaning to K∗(?), using Clifford modules as sPUA-reps
for the CT -subgroups. Is there a similar representation-theoretic origin for X (preferably
non-discrete), as well as bundles over X, so that all the groups K∗(X) can be given similar
physical interpretations as “symmetry protected topological phases”?

It turns out interesting X do appear, e.g. in topological insulators6, due again to a
symmetry principle — they are the Pontryagin dual to some non-compact abelian subgroup
N ⊂ G of symmetries (or the noncommutative analogue).

3.1 Bloch Hamiltonians

Here is a concrete setting. The Hamiltonian H of an electron moving around in a crystalline
material in d dimensions has (at least) the symmetry of the lattice translations N = Zd. It
may also have some finite point group symmetries P (or even a compact group of “internal”
symmetries), as well as some CT -symmetries.

A typical Hilbert space for the electron is l2(Zd) ⊗ Cm with Cm a finite-dimensional
Hilbert space of internal degrees of freedom, such as spin, orbital angular momentum etc. For
simplicity, set m = 2. Recall that the dual group (character space) of Zd is Td, called the
Brillouin torus of quasimomenta in physics. Explicitly, for each k ∈ Td ∼= ([0, 2π]/0∼2π)d, the
corresponding character is χk : n 7→ ein·k. The Fourier transform diagonalises Zd invariant
operators on l2(Zd) ⊗ C2 into multiplication operators on L2(Td × C2) ∼= L2(Td) ⊗ C2. For
example, translation by n ∈ Zd turns into multiplication by ein·k.

The Hamiltonian becomes a fibered family of Bloch Hamiltonians k 7→ H(k), k ∈ Td, each
with some eigenvalues. If the Hamiltonian describes a band insulator, the spectra assemble
into continuous bands over Td, with a gap at a particular energy called the Fermi energy
(which we set to zero), see Fig. 1. Therefore, the bundle E = Td×C2 is graded by the gapped
Hamiltonian into a positive energy sub-eigenbundle and a negative energy sub-eigenbundle
EF . The latter is the line bundle of valence states, and when d ≥ 2, it can be topologically
non-trivial! When m > 2, EF is generally a higher rank vector subbundle. When we add
further CT -symmetries, E has more structure including a natural Z2 action on the base (see
later), and further point group symmetries P turn E and EF into a twisted P -equivariant
bundle [15].

Remark: A more realistic model involves a Bloch–Floquet transform [39] of L2(Rd) into
the sections of some infinite-dimensional Hilbert bundle over Td. The fibre at k ∈ Td is the
Hilbert space of k-quasiperiodic Bloch wavefunctions, i.e. functions fk : Rd → C which satisfy
fk(x + n) = ein·kfk(x) for all n ∈ Zd. Such functions are of course not square-integrable,
but we could think of them as sections of a line bundle Lk → Rd/Zd with flat connection ik,
then the fk are square-integrable. In this sense, Td can be thought of as the moduli space of
flat connections, parameterising quasiperiodic boundary conditions. For each k, finding the
spectrum of the Bloch Hamiltonian H(k) corresponds to solving the Schrödinger equation for
H with k-quasiperiodic boundary conditions. By the compactness of Rd/Zd, we expect H(k)

6See [20] for a physics oriented review.
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Figure 1: Schematic energy band structures. Horizontal axis labels points k in the Brillouin
torus Td. Vertical axis labels energy eigenvalues for the Bloch Hamiltonian H(k). Green line
represents a conduction energy band. Red line(s) represent valence energy bands, which have
an associated subbundle of valence states.

to typically have discrete spectrum, and over k ∈ Td, these are assumed to form continuous
bands labelled by a discrete set (H itself of course need not have discrete spectrum).

There are many energy bands, and for the low energy physics, only the ones lying near
the Fermi energy matter. Each band’s sub-eigenbundle can be inverse-transformed (but in
a gauge-dependent way) into a subspace of wavefunctions spanned by Wannier functions
centered at lattice sites. There is an interesting relationship between the topological triviality
of a band of Bloch eigenstates, and the localisability of such a basis of Wannier functions [33].

3.2 Class A “Chern topological insulator” in 2D

Suppose G = N = Z2 so there are no CT -symmetries. We seek a classification of topological
band insulators in this symmetry class, i.e. classes of complex vector bundles EF → T2 —
these are classified by the (first) Chern class c1(EF ) = c1(det EF ).

It suffices to look at line bundles, or principal U(1) bundles, which are classified by
[T2, BU(1)] = CP∞ = K(Z, 2) = H2(T2;Z), see eg. [8] for a treatment of classifying spaces
and Eilenberg–Maclane spaces in homotopy/cohomology. Because T2 has low dimension, it
suffices to look at maps T2 → CP1 ⊂ CP∞. Let σ = (σ1, σ2, σ3) be the Pauli matrices. Then
the homeomorphism S2 ∼= CP1 is the correspondence

unit vector h←→ (−1)eigenspace of h · σ.

Physicists usually write 2× 2 Bloch Hamiltonians as H(k) = h(k) · σ for some vector field
h : T2 → S2, with σ(k) = σ taken7 to be constant over T2 with respect to some trivialisation
of E = T2 × C2. It is easy to see that spec(H(k)) = ±|h(k)|, so that the Hamiltonian is
gapped iff h has no zeroes. It also follows that the valence line bundle EF is nothing but the
pullback of the tautological bundle over CP1, and that its Chern class is the homotopy class

7Unfortunately, σ is also standard notation for 2-cocycles, so its meaning in these notes needs to be inferred
from the context.
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of h (i.e. Brouwer degree). A Hamiltonian specified by a h with nonzero degree gives rise to
a Chern insulator phase — this has been discovered [23].

There is a parallel story in topological K-theory, with classifying space Z × BU (here U
is the inductive limit of U(n)), and a Chern character to cohomology. It is perhaps more
natural, for later generalisation, to formulate things in operator K-theory. In this picture,
the sections of EF form a finite projective module over the C∗-algebra C(T2) ∼= C∗(Z2); or
equivalently a projection in its matrix algebra, where C∗(·) is the group C∗-algebra. Explicitly,

the projection pF is pF (k) = 1
2 (1 − ĥ(k) · σ), and defines a class in K0(C∗(Z2)). Within

K0(C∗(Z2)), the equivalence of projections may be defined homotopically, and so provides
a precise meaning to the statement that homotopic pF define the same K-theory class and
therefore the same “topological phase” [42].

Noncommutative bundles and the quantum Hall effect

Even though Zd is abelian, it may actually act projectively with 2-cocycle σ. This occurs in
the integer quantum Hall effect, where electrons in a 2D sample are subject to a perpendic-
ular magnetic field. The Hamiltonian gets modified by a coupling term between the electron
charge and magnetic vector potential, and consequently commutes with magnetic transla-
tions instead of ordinary translations. The magnetic translations in each direction do not
commute. Instead, TxTy = σ(x, y)Tx+y, x, y ∈ Z2 where the cocycle σ is proportional to the
magnetic field strength. They generate a noncommutative torus C∗(Z2, σ), which is a sort of
“noncommutative” momentum space. Although there is no longer a EF in the usual sense,
pF continues to exist as a projection in (the stablised) C∗(Z2, σ) and has a integrally quan-
tized Chern number in the noncommutative sense [6]. This integer corresponds to the famous
quantized transverse Hall conductivity whose discovery in 1980 was rewarded with a Nobel
prize. For rational magnetic flux per unit cell, the noncommutative torus thus constructed
is Morita equivalent to an ordinary torus, and the commutative approach of [44] suffices in
some aspects.

3.3 Class AII: Z2 topological insulators in 2D and 3D

Suppose G = N ×A with N = Zd as before, but now A = {1, T} with T2 = −1. Then T is a
quaternionic structure on the Hilbert space l2⊗Cm. Because T is antilinear, it acts on Td (the
character space of N) by complex conjugation ς. Explicitly, this takes k 7→ −k corresponding
to χk 7→ χk = χ−k. When we Fourier-transform to L2(Td)⊗Cm, T becomes what is called a
“Quaternionic” structure — an antiunitary lift of ς which squares to −1. Thus E = Td×Cm is
a “Quaternionic” vector bundle, graded by a compatible gapped Hamiltonian, and the valence
subbundle EF that we want to classify is also a “Quaternionic” vector bundle.

Notice that the involution ς has 2d fixed points F , so T restricts over these fixed points
to an ordinary quaternionic structure. This means that EF must be even-dimensional as a
complex bundle — this is called Kramers degeneracy in physics (every state has a T partner).

How can we classify such “Quaternionic” bundles? For d = 2, 3 Physicists Fu–Kane–Mele
[14] came up with some ingenious ad-hoc constructions of Z2-valued invariants, and pre-
dicted that they are manifested on boundaries as pairs of edge states or Dirac cones (mod 2).
Remarkably, they were realised experimentally in [21] and this really kick-started the huge
interest among physicists in applying topological ideas to condensed matter physics. For
mathematicians, this Z2 invariant is a particular instance of a certain class of topological in-
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variants which had mostly been overlooked, perhaps due to the lack of an obvious geometrical
interpretation or concrete application.

Recent work of De Nittis–Gomi [10] show that there is actually a characteristic class
H2

Z2
(Td, F ;Z(1)) for such bundles which is furthermore bijective in d ≤ 3 with some mild

assumptions (that are satisfied in the physical applications). The meaning of H2
Z2

(Td, F ;Z(1))

is the Z2-equivariant cohomology of (Td, ς) with local coefficients Z(1), relative to the ς-fixed
point set F , where Z2 acts on the local coefficients by n 7→ −n. Further work of Gomi–
Thiang [17] provides an easy way to understanding these Z2 invariants of this using a duality
transform.

Let us instead proceed using K-theory. From the topological point of view, we can use

Dupont’s K̃Q
0
(Td) for the stable classification of “Quaternionic” bundles [11]. This “Quater-

nionic” K-theory is naturally isomorphic to Atiyah’s Real K-theory by a degree-4 shift, so

we can also compute K̃R
−4

(Td). If one finds the involution ς cumbersome to handle, one can
use KO-theory for C∗-algebras instead [42]. In either case, the result is that

K̃Q
0
(T2) ∼= Z2, K̃Q

0
(T3) ∼= Z2 ⊕ Z3

2

3.3.1 Noncommutative topology — real case

In the complex world, there are Gelfand–Naimark correspondences between commutative
C∗-algebras and locally compact Hausdorff spaces, as well as Serre–Swan correspondences
between vector bundles over a compact X and f.g.p modules over C(X). In the real world,
there is again a correspondence between l.c.h. Z2-spaces (X, ς) and commutative C∗-algebras
over R [1]. Specifically, the latter are all of the form

C0(X, ς) := {f ∈ C0(X) : f(ς(x)) = f(x) ∀x ∈ X}.

Roughly speaking, (X, ς) is the “Real spectrum” of the algebra. We can understand this
from a simple example, the real group C∗-algebra of Zd, which is C∗R(Zd) ∼= C(Td, ς). Note
that C∗R(Zd) ⊗R C ∼= C∗(Zd), and C∗R(Zd) is the real subalgebra under complex conjugation.
The spectrum of C∗R(Zd) is that of the complexification (which is Td), and the Real structure
ς on Td is induced from complex conjugation (thus it is conjugation of the characters in Td).
The fixed points are the characters that map into R (and so take Zd into {±1}).

For G = Zd × {1, T} with T2 = −1, the appropriate group algebra is a twisted crossed
product8 [34] in the sense that T acts on C (as a real algebra) by complex conjugation. So
we have

C∗(G,φ, σ) = Coφ,σ (Zd × {1, T}) ∼= (C∗R(Zd)⊗R C) o1⊗φ,1⊗σ {1, T} ∼= C∗R(Zd)⊗R H.

“Quaternionic” bundles over Td are thus equivalently (say, right) f.g.p. modules over C∗R(Zd)⊗R
H, and (their formal differences) are classified by

KO0(C∗R(Zd)⊗R H) ∼= KO0(C∗R(Zd)⊗̂Cl4,0) ∼= KO4(C∗R(Zd)),

where we have used the correspondence between Z2-graded (i.e. formal differences of) H-
modules and graded Cl4,0-modules [15].

8The real/complex group C∗-algebra of G is equivalently the crossed product of R or C by a trivial action
of G.
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Strictly speaking, I have not defined K(O)0(·) for graded C∗-algebras, and there are several
routes to do this. One way is to follow Karoubi and define K0(A) through triples (W ; Γ1,Γ2)
where W is an ungraded f.g.p. A-module and Γ1,Γ2 are compatible grading operators [24].
Such a triple can be interpreted as an obstruction to homotoping the Γi (in a stabilised sense).
Another approach is due to van Daele [45]. Yet another approach is through Kasparov’s KK-
theory, which also comes with an in-built index pairing with K-homology, and which was
used in an analysis of the bulk-boundary correspondence for the IQHE [9].

3.4 Class AIII: Chiral symmetry gapped phases in 1D

Consider G = Z × {1, S}, i.e. 1D band insulators with S symmetry. Without S, this is like
the 1D version of the Class A example, so we have E ∼= T×C2. We can choose a trivialisation

(gauge) such that S is S(k) =

(
1 0
0 −1

)
, k ∈ T. Since H anticommutes with S, it follows that

H(k) =

(
0 u(k)

u(k)∗ 0

)
, u(k) ∈ C. (3)

If H is furthermore gapped, (H(k))2 > 0 so we need u(k)u(k)∗ 6= 0, so that u(k) ∈ C∗ ∼=
GL(1). We can homotope to sgn(H), which corresponds to replacing u(k) by u(k)/|u(k))| ∈
U(1). There is an obvious topological invariant, which is the winding number of u : T→ U(1).
In terms of K-theory, the classification group is K−1(S1) ∼= Z, where we have used the fact
that K−1(·) is equivalently given by homotopy classes of maps into U [24], and for X = T it
suffices to map into U(1). Note, however, that the expression for u is gauge-dependent, and so
is the winding number, changing bym under conjugation by the “large” gauge transformation9(
eimk 0

0 1

)
[43]. Thus we should think of the phases as an affine space for K−1(S1), with

no canonical “zero/trivial phase”. A typical H with such a symmetry is the Hamiltonian of
Su–Schrieffer–Heeger used to model the polymer polyacetylene.

Let us try to understand the physical meaning of the winding number Wind(u) and the
gauge choices involved. Consider l2(Z)⊗C2, representing a degree of freedom at each site of an
infinite chain, which is split by the operator S into sublattices A and B (Fig. 2) corresponding
to the ± eigenspaces of S. When a boundary of the chain is specified, the unit cells are well-
defined starting from the boundary (each contains one A and one B site) — this corresponds
to a “gauge-fixing”. The position of a unit cell is labelled by n ∈ Z, and within a unit cell
C[
(
1
0

)
],C[

(
0
1

)
] corresponds to the A and B subspace of C2 respectively. The “hopping term”

Tblue taking A to B rightwards within a unit cell is represented, after Fourier transform, by(
0 0
1 0

)
, whereas the term Tred taking B to A rightwards changes unit cell and is represented

by

(
0 eik

0 0

)
. The general Hamiltonian is a self-adjoint combination of powers of Tblue, Tred

which is also required to be gapped and compatible with S, so that after Fourier transform,
it has the form in Eq. (3).

Consider the “fully-dimerised” Hamiltonian Hblue = Tblue + T ∗blue =

(
0 1
1 0

)
which has

9This generally refers to an element of a non-identity component of the automorphism group (gauge trans-
formation) of some principal bundle.
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B B B B B

. . .

n = −1 n = 0 n = 1 n = 2 n = 3

Figure 2: Dashed line represents the boundary of the infinite chain. Black and brown dotted
rectangles indicate two choices of unit cells.

winding number 0. Another fully-dimerised Hamiltonian is Hred = Tred +T ∗red =

(
0 eik

e−ik 0

)
has winding number10 1.

Without the boundary, it is clear that Hred and Hblue are unitarily equivalent by translat-
ing A, or equivalently, choosing a different unit cell convention such that Tred is an intra-cell
hopping term rather than an inter-cell one11. With the boundary, the choice of unit cell is
fixed, and furthermore, the right-half-space12 version of T ∗blue remains unitary, whereas Tred
becomes only an isometry since TredT

∗
red = 1− pnA=0 where pnA=0 is the projection onto the

A-site at n = 0. In fact, Tred is modified to become a Toeplitz operator T̃red with symbol
the invertible function u(k) = eik, which has Fredholm index −1 equal to −Wind(u). The
latter equality between the Fredholm (analytic) index and the winding number (topological)
index is a type of Toeplitz index theorem. When applied to the physical context of the SSH
model, identifies the index/winding number with the number of unpaired edge modes — the

bulk-with boundary Hamiltonian H̃red (Wind = 1) has an unpaired A site at n = 0, whereas

all sites are paired up for H̃blue (Wind = 0).

4 Bulk-boundary correspondence

The “non-trivial topology” of a (bulk) topological insulator is expected to be manifested on
its boundary, because a continuous interpolation between the topological insulator and the
outside world (the “vacuum”, a topologically trivial insulator) would required a breakdown of
the definability of discrete insulator invariants somewhere in between. The idea is that there
will be boundary-localised surface states at the Fermi energy (thus breaking the spectral gap
condition) which furthermore have some topological properties that are inherited from those
of the bulk insulator. More generally, we can consider the interface of two bulk insulators with
different bulk invariants, then the surface states are expected to reflect the difference between
these bulk invariants. This phenomenon was already known and analysed in the context of
the quantum Hall effect [25]. We have also given a Class AIII example in which a Toeplitz
index implements such a correspondence: there is an unpaired zero energy boundary mode
for H̃red.

10Higher winding numbers may be obtained by “dimerising across more unit cells”.

11This corresponds to the large gauge transformation

(
eik 0
0 1

)
mentioned earlier.

12This is also the Hardy space in L2(T) comprising the functions with non-negative Fourier coefficients.
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Later on, bulk-boundary correspondences were found for other classes of topological in-
sulators. For instance, helical Dirac cones were detected in Class AII insulators [22]. The
precise mathematical nature of these correspondences remains an area of active research. Let
us outline one idea which is quite close to the physicists’ intuition of “topological boundary
states”.

4.1 Spectral flow

Recall that when a Zd-invariant Hamiltonian H on l2(Zd) is assumed to have a spectral gap
at the Fermi level EF , we obtained a projection pF to the occupied states defining the bulk
invariant. In the presence of a boundary, only the quasimomenta k|| ∈ Td−1 parallel to the
boundary remain well-defined, so we can still partially Fourier-transformed the bulk Hamil-
tonian H into k 7→ H(k||), and similarly pF (k||). With boundary conditions imposed, H(k||)

becomes a half-space operator H̃(k||), whose corresponding p̃F (k||) need not remain a projec-

tion. We can think of the bulk-with-boundary operators H̃, p̃F as living in a Toeplitz algebra
T , generated by d − 1 commuting translations together with an extra half-space translation
(which is therefore not unitary). The Toeplitz algebra fits into a non-split extension

0→ C∗(Zd−1)⊗K → T → C∗(Zd)→ 1,

where K is the compact operators, and we recognise C∗(Zd−1), C∗(Zd) as, respectively, the
boundary and bulk Brillouin tori13.

Intuitively, the failure of p̃F (k||) to remain a projection means that new boundary-localised
spectra with some k|| is acquired at EF . Since EF may be varied within the bulk spectral
gap, one sees that the boundary spectra actually fills up this gap and connects a bulk valence
band to a conduction band. For d = 2, H̃(k||) is just a periodic family, and we can ask how
many times the edge spectra “flows” past the Fermi level from below as the boundary Bril-
louin circle is traversed around once (Fig. 3). Such edge indices (Bott–Maslov indices) and
the connection to the bulk topological invariants were studied for 2D in [16, 5], and using K-
theoretic techniques in a more general context in [38], building on the quantum Hall example
in [25]. The (topological) bulk-boundary map in [25, 38] is taken to be the connecting homo-
morphism ∂ in K-theory associated to the above Toeplitz algebra extension, so it computes
a kind of Toeplitz index, which in the d = 2 case can be understood precisely as computing
spectral flow. We can also think of ∂ as a kind of noncommutative Gysin/integration map
corresponding to projecting out the transverse momentum k⊥ [32, 2]

In the T-symmetric case (Class AII), the bulk-boundary map can be analogously defined,
and has a geometrical interpretation as “T-invariant integration” over the transverse momen-
tum k⊥. The precise interpretation of ∂ as spectral flow in this case, and higher dimensions,
is not so well-understood and is the subject of ongoing investigation.

5 Outlook

The K-theoretic approach to topological insulators is formally identical to the D-brane clas-
sification in string theory. There is a deep duality in the latter called T-duality, which

13More generally, a similar Toeplitz extension is canonically associated with some action of an algebra by Z
[36], and the above example is a special case where the algebra is C∗(Zd−1) and the Z-action is trivial.
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Figure 3: (a) Family of edge states (blue) connecting bulk bands (gray) in Class A case.
The number of intersections (chiral edge states) at the Fermi level EF , counted with signs,
stays invariant as EF is varied in the bulk gap. (b) Edge states in T-symmetric (Class AII)
case. Although the signed intersection number at EF always vanishes, the number of pairs of
intersections (edge Kramers pairs) mod 2 is a Z2-invariant.

n C2 T2 KOd−n(?) or Kd−n(?)
d = 0 d = 1 d = 2 d = 3

0 +1 Z 0 0 0
1 +1 +1 Z2 Z 0 0
2 +1 Z2 Z2 Z 0
3 +1 −1 0 Z2 Z2 Z
4 −1 Z 0 Z2 Z2

5 −1 −1 0 Z 0 Z2

6 −1 0 0 Z 0
7 −1 +1 0 0 0 Z
0 N/A Z 0 Z 0
1 S2 = +1 0 Z 0 Z

Table 2: A “Periodic Table” of topological phases [26, 15, 42], corresponding through K-
theoretic constructions to Bott’s table of homotopy groups of the stable classical groups [7].
Only the “strong” phases, corresponding to pullback under Td → Sd are indicated. This idea
is frequently used in the physics literature [40], although the precise meaning and construction
of these phases is actually quite subtle.
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Mathai–Thiang imported into the theory of topological phases to understand geometrically
the bulk-boundary correspondences [32]. The remarkable effect of T-duality transformations
is to convert the map ∂ into a simple geometrical restriction map, as expected from physical
intuition. This duality is also linked to many deep mathematical ideas such as the Baum–
Connes isomorphism [18, 19].

Although we have spoken only on topological phases of gapped Hamiltonians, there has
been a huge surge of interest in the last two years on “semimetallic” phases, following a
theoretical prediction of [46]. The latter are, roughly speaking, gapped phases “almost ev-
erywhere” in a parameter space (such as Td), see Fig. 4. Quite dramatically, a “topological
semimetal” was discovered in 2015-16 [47, 48, 29], whose quasiparticle excitations realise (a
version of) the elusive Weyl fermion from relativistic quantum theory. At first glance, Td looks
quite boring, and physicists have often “approximated” Td ∼ Sd. The essential difference be-
tween the two is the existence of intermediate-degree cohomology, which physicists call weak
invariants. It turns out that weak invariants are essential for topological semimetals, and that
the (careful) topological classification of semimetallic phases involves interesting ideas from
differential topology [30], with connections to Turaev’s Euler structures and Seiberg–Witten
invariants [31]. This is particularly interesting in Class AII, in which “Z2”-monopoles make
an appearance [41].

Figure 4: Semimetal band structure, with band crossings at some isolated points in Td. There
are local and global topological obstructions to perturbing a semimetal Hamiltonian into an
insulator one. These obstructions can be understood in the language of differential topology
[30, 31].
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