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Abstract

In this paper, we consider both estimation and testing problems in a nonlinear time series

model with nonstationarity. A nonparametric estimation method is proposed to estimate a

sequence of nonparametric departure functions. We also propose a test statistic to test whether

the regression function is of a known parametric nonlinear form. The power function of the

proposed nonparametric test is studied and an asymptotic distribution of the test statistic

is shown to depend on the asymptotic behavior of the “distance function” ∆n(·) under a

sequence of general semiparametric local alternatives. The asymptotic theory developed in this

paper differs from existing work on nonparametric estimation and specification testing in the

stationary time series case. In order to implement the proposed test in practice, a computer–

intensive bootstrap simulation procedure is proposed and asymptotic approximations for both

the size and power functions are established. Furthermore, the bandwidth involved in the test

statistic is selected by maximizing the power function while the size function is controlled by a

significance level. Meanwhile, both simulated and real data examples are provided to illustrate

the proposed approach.

Keywords: Asymptotic distribution, Edgeworth expansion, estimation, nonlinear time

series, power function, quadratic form, random walk, size function.
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1. Introduction

During the past two decades or so, there exists a rich literature on specification

testing for a parametric model versus a nonparametric/semiparametric alternative when

the time series satisfy a type of stationarity. Many testing procedures are proposed

based on a nonparametric kernel method. Existing tests include Fan and Li (1996), Li

and Wang (1998), Li (1999), Fan and Linton (2003), Chen and Gao (2007), and Juhl and

Xiao (2005a). It is shown that the leading term of each of many existing nonparametric

kernel test statistics is of a quadratic form (see, for example, Chapter 3 of Gao 2007).

With the help of an Edgeworth expansion for quadratic forms, Gao and Gijbels (2008)

developed an asymptotic theory to support a power function–based selection method

for the choice of the bandwidth for optimal test purposes. Some general asymptotic

distributions for nonparametric kernel test statistics have also been discussed in the

books by Fan and Yao (2003), Gao (2007), and Li and Racine (2007).

As pointed out in the literature, it may be quite restrictive to assume stationarity

for time series data in practice. When tackling economic issues from a time perspec-

tive, for example, we often deal with nonstationary components. In dealing real–world

problems, neither exchange rates nor prices, nor consumption, nor macroeconomic vari-

ables follow a stationary distribution. Hence, practitioners might feel more comfortable

avoiding restrictions like stationarity for time series data. In this respect, existing litera-

ture already discussed parametric and nonparametric estimation in nonlinear time series

models with possible nonstationarity. Such studies include Phillips and Park (1998),

Park and Phillips (1999, 2001), Karlsen and Tjøstheim (2001), Karlsen, Myklebust and

Tjøstheim (2007), Cai, Li and Park (2009), and Wang and Phillips (2008, 2009).

Meanwhile, there is some existing literature on model specification testing in the non-

stationary time series case. Hong and Phillips (2005), and Kasparis (2008) considered

model specification testing in cointegration models. Juhl and Xiao (2005b) focused on

testing for cointegration using a partially linear model. Marmer (2008) developed a func-

tional form test in dealing with nonlinearity, nonstationarity and spurious forecasts. Gao

and King (2007) considered testing for stationarity in a nonparametric autoregressive er-

ror model. More recently, Gao et al (2009a) established an asymptotically consistent test

for a nonparametric unit–root specification problem in a nonlinear time series autore-
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gression. In a paper closely related to the current paper, Gao et al (2009b) proposed a

nonparametric kernel test for specifying whether the regression function is of a known

parametric form indexed by a vector of unknown parameters and then established an

asymptotic distribution for the proposed kernel test statistic under the null hypothesis.

This paper is concerned with a nonlinear time series model of the form

Yt = g(Vt) + et, t = 1, · · · , n, (1.1)

where g(·) is some smooth function, {et} is a sequence of stationary martingale differ-

ences, and {Vt} is a random walk process of the form

Vt = Vt−1 + vt, t ≥ 1, V0 = OP (1), (1.2)

in which {vt} is a sequence of independent and identically distributed (i.i.d.) random

variables. We are then interested in studying a nonparametric test for specifying

H0 : g(v) = g(v, θ0) ↔ H1 : g(v) = g(v, θ1) + ∆n(v), (1.3)

where θ0 ∈ Θ is the true value of the parameter θ under H0, θ1 ∈ Θ and {∆n(·)} is a

sequence of nonparametrically unknown functions.

The choice of this type of semiparametric alternatives is mainly because interest in

some cases is to detect whether there is a kind of slight departure from the null hypothesis

when there is no sufficient evidence to suggest accepting the null hypothesis. Also in

such cases, the level of such departure may be unknown. This is not uncommon when

interest is to detect whether there is any slight unknown departure from an existing

parametric trend in climatology, economics or finance, for example. To the best of our

knowledge, the issue of how to consistently estimate ∆n(·) has been mentioned only in

Gao et al (2009b).

In addition to establishing an asymptotic distribution of the proposed test statistic

under H0 as has been done in Gao et al (2009b), the current paper addresses two im-

portant issues. The first issue is that we propose using a local–linear kernel estimation

method to consistently estimate ∆n(·) when the null hypothesis is not true and then

establish an asymptotic distribution for a relative difference of the form ∆̂n(v)
∆n(v)

− 1, where

∆̂n(v) is an estimate to be proposed in Section 2 below. The second issue is that we

study asymptotic properties of the proposed test statistic under a sequence of general

3



semiparametric local alternatives. As shown in Theorems 3.1 and 3.2 in Section 3 below,

we find that the asymptotic distribution of the proposed test statistic under the alterna-

tive hypothesis depends on the asymptotic behavior of the nonparametrically unknown

distance function ∆n(·). For example, when the distance function is δn–integrable as

defined in Definition 2.1, the proposed nonparametric kernel test can detect alternatives

when δnn
1/8h1/4 → ∞ as n → ∞. When the distance function is δn–asymptotically

homogeneous as defined in Definition 2.2, the test can also detect alternatives when

δnn
3/8v(

√
n)h1/4 → ∞ as n → ∞, where v(

√
n) → ∞ is as defined in Theorem 3.2

below.

Note that the corresponding order is n−1/2h−1/4 when parametrically specifying the

mean function of a stationary time series (see, for example, Chapter 3 of Gao 2007). Our

results in this paper show that for different distance functions, the nonparametric kernel

test in the nonstationary time series case can detect alternatives with either smaller or

larger rate than that in the stationary time series case. This is mainly because the rate

of convergence of an estimator in the nonstationary case heavily depends the functional

form of the function being estimated. Similar observations have been made in Park

and Phillips (2001) when the authors dealt with parametric estimation in parametric

nonlinear regression models with integrated regressors.

In order to implement the proposed test in practice, we propose a computer–intensive

bootstrap simulation procedure for the choice of a suitable bandwidth for optimal testing

purposes. The main idea for choosing an optimal bandwidth is to maximize the power

function of the proposed test while the size function is controlled by a significance level.

Meanwhile, we establish the asymptotic behavior of the bootstrap scheme under mild

conditions and obtain an Edgeworth expansion for the asymptotic distribution of the

bootstrap test statistic. The rate of the remainder term of the Edgeworth expansion

in our paper is OP (n−1/2), which is of an order higher than OP (h) (since
√

nh → ∞),

the corresponding rate for the stationary time series case as established in Gao and

Gijbels (2008). In addition, with the help of an Edgeworth expansion, we obtain some

asymptotic approximations for both the size and power functions in Section 4.1.

The rest of the paper is organized as follows. Section 2 introduces a sequence of

semiparametric local alternative functions and then proposes a nonparametric estima-
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tion method to estimate the “distance function” ∆n(·). An asymptotic distribution for

the proposed estimate of ∆n(·) is then given in Section 2. Section 3 proposes a nonpara-

metric kernel test for testing H0 and H1 and then studies asymptotic properties for the

proposed nonparametric test. Sections 4 proposes a simulated bootstrap procedure for

the bandwidth choice. Section 5 then illustrates the finite sample performance of the

proposed test through using both simulated and real data examples. Section 6 concludes

this paper with some comments. Appendix A provides some basic definitions for regular

functions and necessary assumptions to establish the asymptotic theory. Appendix B

gives some useful lemmas and then the proofs of the main results. The proofs of the

lemmas are relegated to Appendix C of the supplementary document.

2. Nonparametric kernel estimation

Note that ∆n(v) in H1 of (1.3) can be viewed as the measure of the “distance” between

the null hypothesis H0 and the alternative hypothesis H1. When the test rejects H0, how

to estimate the the “distance function” ∆n(v) is an interesting topic. As far as we know,

however, even in the stationary time series case, there is little study on the consistent

estimation of ∆n(v). In this section, we propose using a semiparametric kernel method

to estimate the “distance function”.

When H1 holds, model (1.1) becomes

Yt = g(Vt, θ1) + ∆n(Vt) + et, t = 1, · · · , n. (2.1)

Before we propose our estimation method, we need to impose certain conditions on

g(v, θ). As discussed in Park and Phillips (2001), we consider two classes of parametric

nonlinear regression functions: I–regular on Θ and H0–regular on Θ, whose detailed

definitions are given in Appendix A below.

We also need to introduce the following two families of functions ∆n(·): δn–integrable

functions and δn–asymptotically homogeneous functions, where δn → 0 as n → ∞. In

the sequel, a(x) ∼ b(x) denotes that a(x)
b(x)

→ 1 as x →∞.

Definition 2.1. ∆n(·) is said to be δn–integrable if

δnΓ1(x) ≤ ∆n(x) ≤ δnΓ2(x)
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for all x ∈ R = (−∞,∞), where Γk(x), k = 1, 2, are integrable.

Definition 2.2. ∆n(·) is said to be δn–asymptotically homogeneous if

δnΛ1(x) ≤ ∆n(x) ≤ δnΛ2(x)

for all x ∈ R = (−∞,∞), where both Λ1(x) and Λ2(x) are asymptotically homogeneous.

That is

Λk(λx) = vk(λ)Hk(x) + Rk(x, λ), k = 1, 2,

and v(λ) = v1(λ) + v2(λ) is defined as the asymptotically homogeneous order of ∆n(·),
v1(λ) ∼ v2(λ), Hk(·), k = 1, 2, are locally integrable and Rk(·, ·), k = 1, 2, satisfy one of

the following conditions:

(i) |Rk(x, λ)| ≤ ak(λ)Pk(x), where lim sup
λ→∞

ak(λ)
vk(λ)

= 0 and Pk(·) is locally integrable; or

(ii) |Rk(x, λ)| ≤ bk(λ)Qk(λx), where lim sup
λ→∞

bk(λ)
vk(λ)

< ∞ and Qk(·) is locally integrable

and vanishes at infinity, i.e., Qk(x) → 0 as |x| → ∞.

These definitions can be viewed as some extensions of Definitions 4.1 and 4.2 in Park

and Phillips (1999) to our asymptotic case.

Since ∆n(v) → 0 for each given v by Definitions 2.1 and 2.2, we may construct a

consistent estimator θ̂1 of θ1 such that

θ̂1 = arg min
θ∈Θ

n∑
t=1

(Yt − g(Vt, θ))
2 . (2.2)

Discussion about the suitability of using (2.2) and alternative estimation methods is

given in Remark B.1 of Appendix B below.

We then estimate ∆n(v) by a local linear estimate of the form

∆̂n(v) =
n∑

t=1

w̃nt(v)(Yt − g(Vt, θ̂1)), (2.3)

where {w̃nt(v)} is a sequence of weight functions given by

w̃nt(v) =
K̃v,b(Vt)

n∑
k=1

K̃v,b(Vk)
with K̃v,b(Vt) =

1

b
K̃n

(
Vt − v

b

)
, (2.4)
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in which K̃n

(
Vt−v

b

)
= K

(
Vt−v

b

) (
Sn,2(v)−

(
Vt−v

b

)
Sn,1(v)

)
, K(·) is a kernel function, b

is the bandwidth, Sn,j(v) = 1
T (n)b

∑n
s=1 K

(
Vs−v

b

) (
Vs−v

b

)j
for j = 0, 1, 2, and T (n) is the

number of regenerations of {Vt} in the time interval [0, n] (see the beginning of Appendix

B for more details).

Theorem 2.1 below establishes an asymptotic distribution for a relative difference of

the form ∆̂n(v)
∆n(v)

−1 under certain regularity conditions. Note that it is probably make more

sense to use the relative difference than an absolute difference of the form ∆̂n(v)−∆n(v)

when ∆n(v) → 0 as n →∞.

We now state the first result of this paper; its proof is given in Appendix B below.

Theorem 2.1. Let condition A1 hold. Suppose that A3′ listed in Appendix A is

satisfied when θ0 is replaced by θ1 and ∆n(·) has derivatives up to the second order.

(i) Suppose that ∆n(·), ∆̇n(v) and ∆̈n(v) := ∂2∆n(v)
∂v2 are all δn–integrable. If, in addition,

A2(i) is satisfied, then

√
T (n)b ∆n(v)

(
∆̂n(v)

∆n(v)
− 1 + ξn

)
d−→ N

(
0, σ2

e

∫
K2(v)dv

)
, (2.5)

where ξn = OP (b2 + (
√

nκ̇2(
√

n))−1/2 + (δn

√
nκ̇(

√
n))−1).

(ii) Suppose that ∆n(·), ∆̇n(v) and ∆̈n(v) are all δn–asymptotically homogeneous with

asymptotically homogeneous order v(·), v̇(·) and v̈(·). If, in addition, A2(ii) is

satisfied, then

√
T (n)b ∆n(v)

(
∆̂n(v)

∆n(v)
− 1 + ηn

)
d−→ N

(
0, σ2

e

∫
K2(v)dv

)
, (2.6)

where ηn = OP (b2 + v(
√

n)(κ̇(
√

n))−1 + (δn

√
nκ̇(

√
n))−1).

Under some additional conditions, Theorem 2.1 implies the following corollary.

Corollary 2.1. (i) Assume that the conditions of Theorem 3.1(i) are satisfied. If,

in addition, √√
nb δnξn = o(1), (2.7)

we have √
T (n)b ∆n(v)

(
∆̂n(v)

∆n(v)
− 1

)
d−→ N

(
0, σ2

e

∫
K2(v)dv

)
. (2.8)
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(ii) Assume that the conditions of Theorem 2.1(ii) are satisfied. If, in addition,√√
nb δnηn = o(1), (2.9)

then (2.8) still holds.

Remark 2.1. (i) Since T (n) is not easy to obtain in practice, it can be replaced by

TC(n) :=
n∑

t=1
IC(Vt), which is defined as in Karlsen and Tjøstheim (2001). In fact, TC(n)

is the number of times that the process {Vt} visits the set C up to the time n. By Lemma

3.2 in Karlsen and Tjøstheim (2001), we have

TC(n)

T (n)
= πs(C) + o(1) a.s.,

where πs is the invariant measure of the random walk {Vt}.
(ii) As shown in Lemma B.1 below, T (n) is proportional to

√
n. Thus, under the

condition
√√

nb δn →∞, Corollary 2.1 implies

∆̂n(v)

∆n(v)
= 1 + OP

((√√
nb δn

)−1
)

.

Remark 2.2. By equation (2.5), the asymptotic mean square error of ∆̂n(v)
∆n(v)

−1 equals

OP

(
1

T (n)bδ2
n

+ b4 + (
√

nκ̇2(
√

n))−1 + (δn

√
nκ̇(

√
n))−2

)
= OP

(
1

T (n)bδ2
n

+ b4

)

when (
√

nκ̇2(
√

n))
−1

= o(b4) and (δn

√
nκ̇(

√
n))−2 = o(b4). This leads to an optimal

bandwidth of the form

b̃optimal = Cv(T (n)δ2
n)−1/5(1 + oP (1)) = OP

((√
nδ2

n

)−1/5
)

, (2.10)

where Cv is some positive constant depending on v. In fact, the above order for an

optimal bandwidth is analogous to that in the stationary time series case (T (n) = n and

δn equals some nonzero constant).

Remark 2.3. As the leading order for an optimal bandwidth in (2.10) is not sufficient

and practically useful in the finite–sample study in Section 5 below, we propose using a

semiparametric cross–validation selection method of the form

b̂optimal = arg min
{over all possible b values}

1

n

n∑
t=1

(
Yt − g(Vt, θ̂1)− ∆̂n,−t(Vt)

)2
, (2.11)
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where ∆̂n,−t(v) =
T∑

s=1, 6=t
w̃ns,−t(v)

(
Ys − g(Vs, β̂1)

)
, in which w̃ns,−t(v) =

K̃
(−t)
v,b

(Vs)
n∑

s=1,6=t

K̃
(−t)
v,b

(Vs)

and

K̃
(−t)
v,b (Vs) =

1

b
K
(

Vs − v

b

)(
Sn2,−t(v)−

(
Vs − v

b

)
Sn1,−t(v)

)

with Snj,−t(v) = 1√
nb

∑n
s=1, 6=t

(
Vs−v

h

)j
K
(

Vs−v
b

)
for j = 0, 1, 2.

Theoretical discussion about b̂optimal is a difficult and interesting issue in itself and is

therefore left for future study.

3. Nonparametric specification testing

This section proposes testing H0 and H1. As proposed for both the stationary and

nonstationary cases (see Gao 2007; Li and Racine 2007; Gao et al 2009b), a nonpara-

metric kernel test of the quadratic form

Qn(h) =
n∑

t=1

n∑
s=1, 6=t

êtK
(

Vt − Vs

h

)
ês (3.1)

has been shown to work well in both the large and small/medium sample cases, where

K(·) is some kernel function, h is the bandwidth, and êt = Yt − g(Vt, θ̂), in which θ̂ is

the nonlinear least squares estimator of θ0 under H0.

Observe that under H0:

Qn(h) =
n∑

t=1

n∑
s=1, 6=t

êtKs,tês =
n∑

t=1

n∑
s=1, 6=t

etKs,tes

+
n∑

t=1

n∑
s=1, 6=t

gtKs,tgs + 2
n∑

t=1

n∑
s=1, 6=t

gtKs,tes =:
3∑

i=1

Qn,i(h),

where Ks,t = K
(

Vt−Vs

h

)
and gt = g(Vt, θ0)− g(Vt, θ̂).

As pointed out earlier, Gao et al (2009b) already established an asymptotic distri-

bution for Qn(h) under H0. In this section, we mainly study the power function of a

standardized version of Qn(h) for the case where the alternative hypothesis H1 holds.

Before studying the power function of the nonparametric test (1.3), we establish

an asymptotic distribution for the test statistic (3.1) under H0; its proof is given in

Appendix B below.
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Proposition 3.1. Assume that conditions A1, A2(iii) and either A3 or A3′ in Ap-

pendix A below are satisfied. Then under H0:

Q̂n(h) :=
Qn(h)

σn

d−→ N(0, 1), (3.2)

where σ2
n = 2σ4

e

n∑
t=1

n∑
s=1, 6=t

K2
s,t with σ2

e = 1
n

n∑
t=1

ê2
t .

While the same asymptotic normality was established by Gao et al (2009b), the

conditions used are a set of different conditions. The authors basically assumed some

high–level conditions on the rate of convergence of θ̂ to θ0 for both the establishment

and the proof of the asymptotic normality. By contrast, this paper chooses to impose

some natural conditions to achieve such a rate of convergence as given in A3 or A3′ in

Appendix A below.

As shown in Appendix B below, under H1 we have

Qn(h) =
n∑

t=1

n∑
s=1, 6=t

etKs,tes +
n∑

t=1

n∑
s=1, 6=t

g̃tKs,tg̃s + 2
n∑

t=1

n∑
s=1, 6=t

g̃tKs,tes

+ 2
n∑

t=1

n∑
s=1, 6=t

∆n(Vt)Ks,tg̃s + 2
n∑

t=1

n∑
s=1, 6=t

∆n(Vt)Ks,tes

+
n∑

t=1

n∑
s=1, 6=t

∆n(Vt)Ks,t∆n(Vs) ≡
6∑

j=1

Qn,j(h), (3.3)

where g̃t = g(Vt, θ1)− g(Vt, θ̂1).

In view of (3.3), in order to study the asymptotic behavior of Qn(h), certain conditions

on {∆n(·)} are needed. We now establish some asymptotic properties for a standardized

version of Qn(h) under H1 in Theorems 3.1 and 3.2 below; their proofs are given in

Appendix B of this paper. We first consider the case where ∆n(·) is δn–integrable.

Theorem 3.1. Assume that conditions A1 and A2(iii) in Appendix A are satisfied

and that either A3 or A3′ in Appendix A is satisfied when θ0 is replaced by θ1. In

addition, both ∆n(·) and ∆̇n(v) := d∆n(v)
dv

are δn–integrable.

(i) If δn = O
(
n−1/8h−1/4

)
, then under H1

Q̂n(h)− λn =
Qn(h)

σn

− λn
d−→ N(0, 1) (3.4)

as n →∞, where λn ≡
∑6

j=2
Qn,j(h)

σn
satisfies λn = OP (1).
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Furthermore, if δn = o
(
n−1/8h−1/4

)
, then under H1

Q̂n(h) =
Qn(h)

σn

d−→ N(0, 1) (3.5)

as n →∞.

(ii) If n1/8h1/4δn →∞ as n →∞, then under H1, Q̂n(h) −→P ∞ as n →∞.

For the case where ∆n(·) and ∆̇n(v) are both δn–asymptotically homogeneous, we

have the following theorem.

Theorem 3.2. Assume that conditions A1 and A2(iii) in Appendix A are satisfied

and A3′ in Appendix A is satisfied when θ0 is replaced by θ1. Suppose that ∆n(·) and

∆̇n(v) are both δn–asymptotically homogeneous with asymptotically homogeneous order

v(·) and v̇(·), respectively. In addition, v(m) = O(κ̇(m)) as m → ∞, where κ̇(·) is

defined in A3′ of Appendix A.

(i) If δn = O
(
n−3/8v−1(

√
n)h−1/4

)
, then (3.4) still holds under H1. Furthermore, if

δn = o
(
n−3/8v−1(

√
n)h−1/4

)
, then (3.5) still holds under H1.

(ii) If n3/8v(
√

n)h1/4δn →∞ as n →∞, then under H1, Q̂n(h) −→P ∞ as n →∞.

Theorems 3.1 and 3.2 show that whether the proposed test under H1 is asymptotically

powerful depends on the rate of δn → 0. When the rate of δn → 0 is faster than that of

n−1/8h−1/4 → 0, for example, Theorem 3.1(i) shows that Q̂n(h) converges in distribution

to the standard normality. This implies that the proposed test is not asymptotically

powerful. When the rate of δn → 0 is slower than that of n−1/8h−1/4 → 0, Theorem

3.1(ii) shows that Q̂n(h) → ∞ in probability. The same implications can be derived

from Theorem 3.2.

In Propositions 4.1 and 4.2 below, we are able to establish more explicit results for

both the asymptotic distribution and the power function of a bootstrapping version of

the proposed test for the special case where {et} is a sequence of i.i.d. continuous random

variables. This is mainly because the applicability of the Edgeworth expansions involved

requires the i.i.d. assumption on {et}. Note also that the use of an Edgeworth expansion

for this kind of quadratic form is valid for the case where {et} is assumed to be a sequence

of continuous random variables. As a consequence, the Cramér condition is satisfied (see

page 45 of Hall 1992).
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4. Bootstrap method and bandwidth selection

Proposition 3.1 shows that the proposed test statistic has an asymptotic standard

normal distribution under the null hypothesis H0. This section proposes combining

a bootstrap simulation procedure with an Edgeworth expansion for the test statistic

Q̂n(h) in order to establish a bandwidth selection method for the choice of an optimal

bandwidth h for optimal testing purposes. We first propose using a bootstrap method

to construct a simulated critical value in each case.

Let lα be the α–level critical value, which is the (1 − α)–quantile of the exact finite

sample distribution of Q̂n(h).

Step 1: Generate the bootstrap residuals {e∗t} by e∗t = σ̂eηt, where

σ̂2
e =

1

n

n∑
t=1

(
Yt − g(Vt, θ̂)

)2
, (4.1)

in which {ηt, 1 ≤ t ≤ n} is a sequence of i.i.d. random variables drawn from a pre–

specified distribution with E[η1] = 0, E[η2
1] = 1 and E[η6

1] < ∞.

Step 2: Obtain Y ∗
t = g(Vt, θ̂) + e∗t . The resulting sample {(Y ∗

t , Vt), 1 ≤ t ≤ n} is

called a bootstrap sample.

Step 3: Use the data set {(Y ∗
t , Vt), 1 ≤ t ≤ n} to re–estimate θ0 and denote its

estimator by θ̂∗. Then calculate the test statistic Q̂∗
n(h), which is the corresponding

version of Q̂n(h) by replacing {Yt, Vt} and θ̂ with {Y ∗
t , Vt} and θ̂∗, respectively.

Step 4: Repeat Steps 1–3 M times and produce M versions of Q̂∗
n(h). Denote the

M versions of Q̂∗
n(h) by Q̂∗

n,m(h), m = 1, 2, · · · , M . Then, we construct the empirical

distributions of Q̂∗
n,m(h). That is, P ∗

(
Q̂∗

n(h) ≤ x
)

= P
(
Q̂∗

n(h) ≤ x|Wn

)
, where Wn =

{(Yt, Vt), 1 ≤ t ≤ n}. For each fixed h, choose l∗α such that P ∗
(
Q̂∗

n(h) > l∗α
)

= α and

estimate lα by l∗α.

Proposition 4.1 below establishes an Edgeworth expansion for the bootstrap distribu-

tion of the test statistic Q̂∗
n(h). Asymptotic approximations to the bootstrapping version

of the power function of Q̂∗
n(h) are given in Proposition 4.2 below.

Proposition 4.1. Assume that conditions A1(i)(ii)(iv), A2(iii) and either A3 or

A3′ in Appendix A are satisfied. Furthermore, {et} is a sequence of i.i.d. continuous

random variables with E[e1] = 0, E[e2
1] = σ2

e and E[e6
1] < ∞. Then under H0, we have
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as n →∞,

sup
x∈R

∣∣∣P ∗
(
Q̂∗

n(h) ≤ x
)
− Φ(x− s∗n) + ρ∗n(h)Φ(3)(x− s∗n)

∣∣∣ = OP (n−1/2), (4.2)

where s∗n = OP (n−1/8h1/4),

ρ∗n(h) =

√
2

3
· Tr(A3

0(h))

σ̃3
n,1(h)

= OP

(
n−1/4h1/2

)
, (4.3)

in which σ̃2
n,1(h) =

n∑
t=1

n∑
s=1, 6=t

K2
s,t, Φ(·) is the distribution function of the standard normal

distribution, Φ(3)(·) is the third derivative of Φ(·) and Tr(A3
0(h)) is the trace of the matrix

A0(h) which is given by

A0(h) =



0 K1,2 · · · K1,n

K2,1 0 · · · K2,n

...
...

...

Kn,1 Kn,2 · · · 0


. (4.4)

The above result extends some existing results in the literature (such as, Li and Wang

1998; Fan and Linton 2003; Gao 2007; and Gao and Gijbels 2008) for the stationary case

to the nonstationary time series case. The rate of the right hand side of (4.2) is OP (n−1/2),

the rate of which going to zero is faster than that of OP (h), the corresponding rate in

the stationary time series case (as
√

nh →∞ by A2(iii) in Appendix A).

To study the size and power functions of the proposed test, we introduce the following

bootstrapping version of the size and power functions of the form

α∗n(h) = P ∗
(
Q̂∗

n(h) > l∗α|H0

)
and β∗n(h) = P ∗

(
Q̂∗

n(h) > l∗α|H1

)
. (4.5)

For optimal testing purposes, we then propose choosing an optimal bandwidth htest

at the α significance level such that

htest = arg max
h∈Hn

β∗n(h), (4.6)

where Hn = {h : α∗n(h) = α}.
The above bandwidth selection method is based on the criterion that the optimal

bandwidth is chosen such that while the size of the bootstrapping version of the test is
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under control, the power of the bootstrapping version of the test is maximized. This

is motivated by existing literature for the stationary time series case, such as Gao and

Gijbels (2008). In the finite–sample simulation study and empirical analysis, we show in

Section 5 below that this method also performs well for the nonstationary case.

In theory, Proposition 4.2 below provides an asymptotic approximation to the leading

term of β∗n(h) in each case.

Proposition 4.2. Assume that conditions A1(i)(ii)(iv) and A2(iii) in Appendix A

are satisfied. Furthermore, {et} is a sequence of i.i.d. continuous random variables with

E[e1] = 0, E[e2
1] = σ2

e and E[e6
1] < ∞.

(i) Suppose that both ∆n(·) and ∆̇n(v) are δn–integrable. If, in addition, n1/8h1/4δn →
∞ as n →∞, then,

β∗n(h) = 1− Φ(l∗α −$∗
n)− ρ∗n(h)(1− (l∗α −$∗

n)2)φ(l∗α −$∗
n) + OP (n−1/2), (4.7)

where $∗
n =

n∑
t=1

∑
s 6=t

∆n(Vs) Ks,t ∆n(Vt)

σ2
e

√
2

n∑
t=1

∑
s 6=t

K2
s,t

(1 + oP (1)) and φ(·) is the standard normal density

function.

(ii) Suppose that both ∆n(·) and ∆̇n(v) are δn–asymptotically homogeneous. If, in

addition, n3/8v(
√

n)h1/4δn →∞ as n →∞, then equation (4.7) holds.

The proofs of Propositions 4.1 and 4.2 are given in Appendix B below. Equation

(4.7) implies that β∗n(h) can be approximated by

β̂∗n(h) = 1− Φ(l∗α − $̂∗
n)− ρ̂∗n(h)(1− (l∗α − $̂∗

n)2)φ(l∗α − $̂∗
n), (4.8)

where ρ̂∗n(h) is an estimate of ρ∗(h) with σ2
e being replaced by its conventional estimator σ̂2

e

and $̂∗
n is an estimator of $∗

n with ∆n(·) and σ2
e being replaced by ∆̂n(·) and σ̂2

e , respectively.

Section 5 below employes (4.6) directly in the choice of htest. Our experience with Tables

5.1–5.3 below shows that the use of β̂∗n(h) in the implementation of (4.6) is computationally

less expensive, although the resulting size and power values are slightly less satisfactory.

5. Examples of implementation

This section provides both simulated and real data examples to implement the test proposed

in Section 3 in association with the bandwidth selection procedure proposed in Section 4.
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Example 5.1. Consider a time series model of the form

Yt = g(Vt, θ) + et with Vt = Vt−1 + vt, t = 1, 2, · · · , (5.1)

where both {et} and {vt} are sequences of i.i.d. standard normal random variables, {vt} is

independent of {et} and V0 = 0.

This example then considers three pairs of hypotheses. The first pair named as HI is as

follows:

H0 : g(v, θ0) = θ0v ↔ H1 : g(v, θ1) = θ11v + θ12v
2. (5.2)

where the initial values of the parameters are chosen as follows:

Case 1 : θ0 = θ11 = 1, θ12 = 0.005; Case 2 : θ0 = θ11 = 1, θ12 = 0.01. (5.3)

The second pair named as HII is as follows:

H0 : g(x, θ) = θ0v ↔ H1 : g(v, θ) = θ21v + log
(
1 + θ22v

2
)
, (5.4)

where the initial values of the parameters are chosen as follows:

Case 1 : θ0 = θ21 = 1, θ22 = 0.005; Case 2 : θ0 = θ21 = 1, θ22 = 0.01. (5.5)

The third pair named as HIII is as follows:

H0 : g(x, θ) =
1

1 + θ0v2
↔ H1 : g(v, θ) =

1
1 + θ31v2

+
(
1− e−θ32v2

)
, (5.6)

where the initial values of the parameters are chosen as follows:

Case 1 : θ0 = θ31 = 0.5, θ32 = 0.001; Case 2 : θ0 = θ31 = 0.5, θ32 = 0.005. (5.7)

In the following simulation, we estimate the parameters by an ordinary least squares

method. We choose K(x) = 1
2I[−1,1](x) as the kernel function throughout the examples in

this section. The bandwidth selection method proposed in (4.6) is applied in the simulation

study. Meanwhile, we also propose using the cross–validation (CV) based bandwidth given by

hcv as chosen by (2.11). Note that both htest and hcv have two different versions under the null

and alternative hypotheses.

To use some simple notations, we introduce hitest = htest and hicv = hcv for i = 0, 1, 2 to

represent h0test and h0cv under H0, and hitest and hicv under H1 for Cases i with i = 1, 2. We

then define Qitest = Q̂n(hitest) and Qicv = Q̂n(hicv) for i = 0, 1, 2. For i = 0, 1, 2, let fitest

denote the frequency of Qitest > l∗α(hitest) and ficv denote the frequency of Qicv > l∗α(hicv).
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Table 5.1. Simulated sizes and power values for HI in (5.2)

Level 1% Level 5% Level 10%

H0 holds

n f0cv f0test f0cv f0test f0cv f0test

200 0.013 0.010 0.055 0.050 0.099 0.100

500 0.013 0.010 0.057 0.050 0.100 0.100

800 0.007 0.010 0.050 0.050 0.091 0.100

H1 holds (Case 1)

n f1cv f1test f1cv f1test f1cv f1test

200 0.286 0.345 0.385 0.465 0.474 0.540

500 0.769 0.878 0.843 0.922 0.876 0.947

800 0.969 0.982 0.985 0.993 0.990 0.996

H1 holds (Case 2)

n f2cv f2test f2cv f2test f2cv f2test

200 0.584 0.629 0.684 0.738 0.738 0.806

500 0.957 0.978 0.975 0.991 0.985 0.997

800 0.999 1.000 1.000 1.000 1.000 1.000

In Table 5.1, we consider the case where the number of replications for each of the sample

versions of the size and power functions is R = 1000, each with M = 250 number of boot-

strapping resamples {e∗t } (involved in the bootstrap scheme introduced in Section 4) from the

standard normal distribution N(0, 1), and the simulations are done for the cases of n = 200,

500 and 800.

It follows from Table 5.1 that the simulated sizes for the test based on htest perform better

than those based on hcv since htest is chosen to make sure that the size function can be controlled

by the significance level. Furthermore, the test based on htest is more powerful than that based

on hcv. As θ12 in Case 2 is larger than that in Case 1, f2test and f2cv are larger than f1test

and f1cv, respectively. In fact, both the sizes and power values for the test based on hcv also
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perform well in Table 4.1 for moderate sample (n = 500 and 800). Meanwhile, the power values

of the proposed test improve as the sample size increases.

Table 5.2. Simulated sizes and power values for HII in (5.4)

Level 1% Level 5% Level 10%

H0 holds

n f0cv f0test f0cv f0test f0cv f0test

200 0.016 0.011 0.068 0.052 0.113 0.100

500 0.018 0.012 0.054 0.050 0.108 0.100

800 0.018 0.011 0.052 0.051 0.103 0.100

H1 holds (Case 1)

n f1cv f1test f1cv f1test f1cv f1test

200 0.058 0.077 0.119 0.152 0.181 0.241

500 0.241 0.329 0.361 0.491 0.452 0.584

800 0.463 0.557 0.585 0.713 0.664 0.778

H1 holds (Case 2)

n f2cv f2test f2cv f2test f2cv f2test

200 0.108 0.146 0.198 0.256 0.278 0.355

500 0.380 0.484 0.503 0.622 0.585 0.690

800 0.628 0.712 0.716 0.801 0.767 0.850

We find from Table 5.2 that the test based on htest not only avoids any size distortion,

but also is more powerful when the null hypothesis does not hold. Furthermore, f2test and

f2cv are larger than f1test and f1cv in Table 5.2 as θ22 in Case 2 is larger than that in Case

1. Meanwhile, as log(1 + xn) < xn for xn > 0, fitest and ficv in Table 5.2 are smaller than

corresponding results in Table 5.1 for i = 1, 2. As in Table 5.1, the power values in Table

5.2 improve as the sample size increases. The simulation results show that the proposed test

performs well even when the distance function is nonlinear under H1.
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Table 5.3. Simulated sizes and power values for HIII in (5.6)

Level 1% Level 5% Level 10%

H0 holds

n f0cv f0test f0cv f0test f0cv f0test

200 0.01 0.01 0.043 0.05 0.092 0.100

500 0.014 0.011 0.064 0.050 0.112 0.101

800 0.016 0.011 0.053 0.050 0.100 0.100

H1 holds (Case 1)

n f1cv f1test f1cv f1test f1cv f1test

200 0.052 0.089 0.108 0.196 0.167 0.269

500 0.427 0.447 0.532 0.548 0.607 0.621

800 0.701 0.719 0.780 0.785 0.825 0.826

H1 holds (Case 2)

n f2cv f2test f2cv f2test f2cv f2test

200 0.195 0.318 0.316 0.562 0.415 0.644

500 0.852 0.861 0.909 0.912 0.928 0.941

800 0.954 0.959 0.975 0.977 0.985 0.988

The simulation results in Table 5.3 show that the proposed test in this paper performs well

when both the regression function and the “distance function” are nonlinear. Analogously, we

find that the test based on htest not only avoids the size distortion, but also is more powerful

than that based on hcv.

Example 5.2. In this example, we consider the 2–year (X1t) and 30–year (X2t) Australian

government bonds, which represent short–term and long–term series in the term structure of

interest rates.

Our aim is to analyze the relationship between the long–term data {X2t} and short–term

data {X1t}. We first apply the transformed versions defined by Yt = log(X2t) and Vt = log(X1t).

The time frame of the study is during January 1971 to December 2000, with 360 observations

for each of {Yt} and {Vt}.
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Consider the null hypothesis defined by

H0 : Yt = α1 + β1Vt + γ1V
2
t + et, (5.8)

where {et} is an unobserved error process.

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
1.5
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3
(a)

0.68 0.69 0.7 0.71 0.72 0.73 0.74
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x 10!3 (c)

Figure 5.1: (a) provides the scatter chart of (Yt, Vt) and the binomial regression plot y = −0.2338 +

1.4446 v− 0.1374 v2, (b) gives p–values of the test for different bandwidths and (c) is the plot of ∆̂n(v)

when the null hypothesis (5.8) does not hold (the values of ∆̂n(v) are between −5×10−3 and 5×10−3).

In Figure 5.1(a), we provide the scatter chart of (Yt, Vt) and a regression estimator of the

form y = −0.2338 + 1.4446 v− 0.1374 v2. In Figure 5.1(b), we give the p–values of the test for

different bandwidths. The upper line in Figure 5.1(b) corresponds to the 10% significance level,

the intermediate one corresponds to the 5% significance level and the lower one corresponds

19



to the 1% significance level. The p–value plot suggests that we should apply the second–

order polynomial regression model when h is large, since a large bandwidth h will produce a

very smooth nonparametric estimator which is close to the second–order polynomial regression

function. When h is small, there is only a few data used in the procedure, which implies that

the variability of the nonparametric estimate is larger. Hence, for small h, the p–value suggests

rejecting the null hypothesis defined in (5.8).

In order to check whether there is any departure from the second–order polynomial fitting,

we propose using a semiparametric estimate of the form (2.3) given by

∆̂n(v) =
n∑

t=1

w̃nt(v)
(
Yt − α̂1 − β̂1Vt − γ̂1V

2
t

)
, (5.9)

where α̂1 = −0.2338, β̂1 = 1.4446, γ̂1 = −0.1374, and {w̃nt(v)} is as defined in (2.4), in which

K(x) = 1
2I[−1,1](x) and the optimal bandwidth b̂optimal is chosen by (2.11).

In Figure 5.1(c), we provide the plot of ∆̂n(v). Figure 5.1(c) suggests that the values of

∆̂n(v) are between −5 × 10−3 and 5 × 10−3. This thus shows that the relationship between

Yt and Vt may be approximately modeled by a second–order polynomial function of the form

y = −0.2338 + 1.4446 v − 0.1374 v2.

6. Conclusions

The main contributions of this paper can be summarized as follows. We have proposed a

nonparametric estimation method to estimate the unknown “distance function”. We have also

proposed a nonparametric kernel test for specifying whether the regression function of a nonsta-

tionary regressor is of a known parametric form. We have first discussed asymptotic properties

of the nonparametric estimation method and then shown that the asymptotic distribution of

the proposed test statistic under the alternative hypothesis depends on the smoothness of the

functional form of the distance function. The asymptotic theory developed in this paper differs

from existing work on nonparametric estimation and specification testing in the stationary time

series case.

In order to implement the proposed kernel test in practice, we have developed a computer–

intensive bootstrap simulation procedure to select a suitable bandwidth for optimal testing

purposes. We have also established some higher–order asymptotic properties for the bootstrap

version of the proposed test as well as both the size and the power functions. The proposed

theory and methodology has been illustrated using both simulated and real data examples.
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The finite sample studies have shown that the proposed estimation and testing methods work

well numerically.
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Appendix A

In this section, we provide some basic definitions for regular functions and necessary as-

sumptions to establish the asymptotic theory in Sections 2–4. As introduced by Park and

Phillips (2001), we consider two classes of parametric nonlinear regression functions: I–regular

on Θ and H0–regular on Θ.

Definition A.1. We say that m(·, ·) is regular on Θ if

(i) for all θ ∈ Θ, m(·, θ) is regular;

(ii) for all x ∈ R, m(x, ·) is equicontinuous in a neighborhood of x.

Conditions (i) and (ii) are called regularity conditions. We then introduce two classes of

nonlinear regression functions: I–regular on Θ and H0–regular on Θ.

Definition A.2. m(·, ·) is said to be I–regular on Θ if the following two conditions are

satisfied:

(i) for each θ ∈ Θ, there exist a neighborhood N0 of θ and M : R→ R bounded integrable

such that ‖m(x, θ′)−m(x, θ)‖ ≤ ‖θ′ − θ‖M(x) for all θ′ ∈ N0;

(ii) for some C > 0 and k > 6/(p−2) with p > 4 defined as in A1 (ii), ‖m(x, θ)−m(y, θ)‖ ≤

C|x− y|k for all θ ∈ Θ, on each piece Si of their common support S = ∪m
i=1Si ⊂ R.

Definition A.3. Let m(λx, θ) = κ(λ, θ)H(x, θ)+R(x, λ, θ), where κ is nonsingular. m(·, ·)

is said to be H–regular on Θ if the following two conditions are satisfied:

(i) H(·, ·) is regular on Θ;

(ii) R(x, λ, θ) is of order smaller than κ(λ, θ) as λ→∞ for all θ ∈ Θ.

Note that κ is said to be the asymptotic order of m(·, ·) and H(·, ·) is the limit homogeneous

function. When κ does not depend upon the parameter θ, then m(·, ·) is said to be H0–regular.
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Throughout the paper, we only consider the case that κ is independent of the parameter θ.

For detailed discussion about such function families, we refer to Park and Phillips (2001).

To establish and then prove the main results in Sections 2–4, we need to introduce the

following assumptions.

A1 (i) K(·) is a continuous and symmetrical probability kernel function with compact

support.

(ii) {vt, t ≥ 1} is a sequence of i.i.d. random variables with E[v1] = 0, E[v2
1] = 1 and

E [|v1|p] < ∞ for some p > 4. Furthermore, the characteristic function ψ(·) of {vt} satisfies∫∞
−∞ |ψ(v)|dv <∞.

(iii) {et} is a sequence of stationary martingale differences such that

E[et|Bt−1] = 0, E[e2t |Bt−1] = σ2
e , E[e3t |Bt−1] = 0, 0 < E[e4t |Bt−1] <∞, a.s.,

where Bt is the σ–field generated by {es, s ≤ t}.

(iv) The errors {et} and {vt} are assumed to be mutually independent.

A2 (i) As n→∞, b→ 0,
√√

nb δn →∞,
√
nκ̇2(

√
n) →∞ and δn

√
nκ̇(

√
n) →∞.

(ii) As n→∞, b→ 0,
√√

nb δn →∞, v(
√
n)(κ̇(

√
n))−1 → 0 and δn

√
nκ̇(

√
n) →∞.

(iii) For some 0 < ε0 < 1/2, we have nε0h→ 0 and n1/2−ε0h→∞ as n→∞.

A3 (i) The nonlinear regression function g(·, θ) is I–regular on Θ. Let∫ ∞

−∞
(g(v, θ)− g(v, θ0))2dv > 0 for all θ 6= θ0.

(ii) Both ġ(·, θ) and g̈(·, θ) are I–regular on Θ, where ġ(·, θ) =
(

∂g
∂θ

)
and g̈(·, θ) =

(
∂2g

∂θ∂θ′

)
.

Furthermore,
∫
ġ(v, θ0)ġ(v, θ0)′dv is some positive definite matrix.

A3′ (i) The nonlinear regression function g(·, θ) is H0–regular on Θ with asymptotic order

κ(·) and limit homogeneous function h(·, ·). And κ(λ) is bounded away from zero as λ → ∞.

Furthermore,
∫
|v|≤ε0

(h(v, θ)− h(v, θ0))2dv > 0 for all θ 6= θ0 and ε0 > 0.

(ii) Both ġ(·, θ) and g̈(·, θ) are H0–regular on Θ with asymptotic order κ̇(·) and κ̈(·).

Furthermore, ‖(κ̇⊗ κ̇)−1κκ̈‖ <∞ and
∫
|v|≤ε1

ḣ(v, θ0)ḣ(v, θ0)′dv is some positive definite matrix

for some ε1 > 0, where ḣ(v, θ) is the limit homogeneous function of ġ(·, θ) and⊗ is the Kronecker

product. In addition, κ̇(λ) is bounded away from zero as λ→∞.

The above assumptions are quite mild and justifiable. A1(i) is a quite standard condition. If

the characteristic function ψ(v) of {vt} satisfies
∫
|ψ(v)|dv <∞ as in A1 (ii), by the standard

convergence results in Chow and Teicher (1988), we have sup
v∈R

|φt(v) − φ(v)| = o(1) as t →

∞, where φ(·) is the density function of the standard normal distribution and φt(·) is the
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density function of Vt√
t
. This implies that φt(·) can be replaced by φ(·) when t is large enough.

The conditions on the errors in A1(iii) are similar to those used in Gao et al (2009b). The

independence assumption between {et} and {vt} in A1(iv) may be somewhat restrictive, but

this is what we need to evaluate the orders of various moments for quadratic forms before we

can complete the proofs of the main results. It is not clear at the moment whether it is possible

to relax this to a set of weak conditions as in Park and Phillips (1999, 2001). A2(i) and A2(ii)

are both satisfied when b = O

((√
nδ2n

)− 1
5

)
and the functional form of g(v, θ) belongs to a

family of either polynomial functions, or trigonometric functions or logarithm functions (see,

for example, Park and Phillips 1999, 2001). Condition A2(iii) on the bandwidth corresponds

to h→ 0 and nh→∞ as n→∞ in the stationary time series case.

Conditions A3 and A3′ impose some assumptions on the smoothness and functional form

of g(v, θ0) such that θ̂ is a consistent estimator of θ0 under the null hypothesis. Such conditions

were initially introduced by Park and Phillips (2001) when they established asymptotic theory

for their nonlinear least squares estimator in the parametric nonlinear regression model with

integrated time series. It is easy to check that A3 is satisfied for all nonzero I–regular linear–

in–parameter regression function (g(v, θ) = g(v)θ) and it is also satisfied for g(v, α0, α1) =

α0 exp{−α1v
2} with θ = (α0, α1) ∈ Θ. Meanwhile, A3′ is satisfied for all nonzero H0–regular

linear–in–parameter regression function and it is also satisfied for g(v, θ) = v
1+θv I{v≥0}.

Appendix B

Before we prove the main results in the second part of this appendix, we introduce several

lemmas with their proofs being given in Appendix C in the supplementary document. Let T (n)

be the regeneration times for the random walk process {Vt} defined by (1.2). We first provide

an asymptotic rate of T (n) in probability. A detailed definition similar to that given in Karlsen

and Tjøstheim (2001) is provided in the first part of Appendix C.

Lemma B.1. Assume that A1(ii) and A2(iii) hold. Then there are some constants 0 < C1 <

C2 <∞ such that

lim
n→∞

P

(
C1 <

T (n)√
n
≤ C2

)
= 1. (B.1)

Park and Phillips (2001) studied the asymptotic properties for the estimator θ̂ under the

null hypothesis. The following lemma establishes rates of convergence for θ̂1 under H1.

Lemma B.2. Assume that A1(ii)(iii)(iv) holds. Let θ̂1 = arg min
θ∈Θ

n∑
t=1

(Yt − g(Vt, θ))
2 be the

nonlinear least squares estimator of θ1 under H1.
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(i) If A3 is satisfied when θ0 is replaced by θ1 and ∆n(·) is δn–integrable, we have

θ̂1 − θ1 = OP

(
δn + ( 4

√
n)−1

)
. (B.2)

(ii) If A3′ is satisfied when θ0 is replaced by θ1 and ∆n(·) is δn–integrable, we have

θ̂1 − θ1 = OP

(
δn( 4
√
nκ̇(

√
n))−1 + (

√
nκ̇(

√
n))−1

)
. (B.3)

(iii) If A3′ is satisfied when θ0 is replaced by θ1 and ∆n(·) is δn–asymptotically homogeneous

with order v(·), we have

θ̂1 − θ1 = OP

(
δnv(

√
n)(κ̇(

√
n))−1 + (

√
nκ̇(

√
n))−1

)
. (B.4)

Lemma B.3. Suppose that A1(ii)(iv) holds and that {et} is a sequence of i.i.d. continuous

random variables with E[e1] = 0, E[e21] = σ2
e and E[e61] <∞.

Let θ̂∗1 = arg min
θ∈Θ

n∑
t=1

(Y ∗t − g(Vt, θ))
2 be the bootstrap nonlinear least squares estimator of θ1

under H1.

(i) If A3 is satisfied when θ0 is replaced by θ1 and ∆n(·) is δn–integrable, we have

θ̂∗1 − θ1 = OP

(
δn + ( 4

√
n)−1

)
. (B.5)

(ii) If A3′ is satisfied when θ0 is replaced by θ1 and ∆n(·) is δn–integrable, we have

θ̂∗1 − θ1 = OP

(
δn( 4
√
nκ̇(

√
n))−1 + (

√
nκ̇(

√
n))−1

)
. (B.6)

(iii) If A3′ is satisfied when θ0 is replaced by θ1 and ∆n(·) is δn–asymptotically homogeneous

with order v(·), we have

θ̂∗1 − θ1 = OP

(
δnv(

√
n)(κ̇(

√
n))−1 + (

√
nκ̇(

√
n))−1

)
. (B.7)

Remark B.1. (i) To justify the suitability of the definitions of θ̂1 and θ̂∗1, we provide the

following discussion. Let us just focus on the definition of θ̂1. Similarly to the nonlinear least

squares estimation in the stationary case, in order to choose θ̂1 such that
∑n

t=1 (Yt − g(Vt, θ1))
2

is minimized over all θ1, it suffices to choose such θ1 such that

1
dn

n∑
t=1

(Yt − g(Vt, θ1))
∂g(Vt, θ1)

∂θ1
= oP (1), (B.8)

where dn is a sequence of positive real numbers such that dn → ∞. Note that equation (B.8)

is equivalent to requiring E
[
(Yt − g(Vt, θ1))

∂g(Vt,θ1)
∂θ1

]
= 0 in the case where both {Yt} and {Vt}

are stationary.
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Equation (B.8) follows from

1
dn

n∑
t=1

et
∂g(Vt, θ1)

∂θ1
= oP (1) and

1
dn

n∑
t=1

∆n(Vt)
∂g(Vt, θ1)

∂θ1
= oP (1), (B.9)

which follow from the proof of Lemma B.2 in the cases of (i) with dn =
√
n, (ii) with dn =

n3/4κ̇(
√
n) and (iii) with dn = nκ̇(

√
n)v(

√
n).

(ii) One alternative estimation method for θ1 is to choose θ̃1 such that

θ̃1 = arg min
over all θ1

n∑
t=1

(
Yt − g(Vt, θ1)− ∆̃n(Vt, θ1)

)2

= arg min
over all θ1

n∑
t=1

(
Ỹt − g̃(Vt, θ1)

)2
(B.10)

where ∆̃n(v, θ1) =
∑n

s=1 w̃ns(v) (Ys − g(Vs, θ1)), Ỹt = Yt −
∑n

s=1 w̃ns(Vt)Ys and g̃(Vt, θ1) =

g(Vt, θ1)−
∑n

s=1 w̃ns(Vt)g(Vs, θ1), in which w̃ns(v) is as defined in (2.4).

Due to the local linear method, similarly to the proof of Theorem 2.1, one may show that

as n→∞

g̃(Vt, θ1) = (1 + oP (1)) c′g20(Vt, θ1) b2 and ∆̃n(Vt) = (1 + oP (1)) ∆̇n(Vt) b2, (B.11)

where g20(v, θ1) = ∂2g(v,θ1)
∂v2 , c is a constant vector and ∆̇n(v) = d∆n(v)

dv .

As a result, the proof of Lemma B.2 implies that as n→∞

b2
(
θ̃1 − θ1

)
= c (1 + oP (1))

(
n∑

t=1

ġ20(Vt, θ1)ġ20(Vt, θ1)′
)−1 n∑

t=1

ġ20(Vt, θ1) et (B.12)

+ c b2(1 + oP (1))

(
n∑

t=1

ġ20(Vt, θ1)ġ20(Vt, θ1)′
)−1 n∑

t=1

ġ20(Vt, θ1)∆̇n(Vt),

where c is some constant. This implies that the rate of convergence of b2
(
θ̃1 − θ1

)
is only

proportional to the corresponding rate of θ̂1 − θ1 given on the right–hand side of each of the

equations (B.2), (B.3) and (B.4). Therefore, this shows that θ̃1 has a rate slower than that for

θ̂1, because of b→ 0. This is the main reason we propose using θ̂1 rather than θ̃1 in this paper.

(iii) Another alternative method is to construct an instrumental–variable (IV) based con-

sistent estimator for θ1. This is based on the assumption and existence of an IV of the form

{Γn(Zt, θ1)} such that
n∑

t=1

∆n(Vt) Γn(Zt, V1) = 0 and
n∑

t=1

et Γn(Zt, θ1) = 0. (B.13)

This paper basically employes an asymptotic version of (B.13) in (B.9) with Γn(Zt, θ1) =
∂g(Vt,θ1)

∂θ1
. Further discussion on this issue is left for future research. This therefore completes

the discussion in Remark B.1.
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Let

f̂n(v,Q, l) =
1

T (n)

n∑
t=1

Qv,h,l(Vt) ≡
1

T (n)

n∑
t=1

(
Vt − v

h

)l

Kv,h(Vt),

where Qv,h,l(Vt) =
(

Vt−v
h

)l
Kv,h(Vt) for 0 ≤ l ≤ k0 with k0 being some positive integer and

Kv,h(Vt) = 1
hK

(
Vt−v

h

)
.

Lemma B.4. Let A1(i)(ii) and A2(iii) hold. Then as n→∞∣∣∣∣f̂n(v,Q, l)−
∫
ulK(u)du

∣∣∣∣ = o(1) a.s., (B.14)

uniformly for |v| ≤M
√
n and 0 ≤ l ≤ k0, where M is any given positive constant.

Remark B.2. Analogously to the proof of Lemma B.4, we conclude that as n→∞

f̂n(v,Q, l) →
∫
ulK(u)du (B.15)

almost surely for each given v. Similar results for point–wise convergence have been given

in Karlsen and Tjøstheim (2001), and Wang and Phillips (2009) for example. Lemma B.4 is

concerned with the uniform convergence. Some more general discussion is given in Gao, Li and

Tjøstheim (2009).

Lemma B.5. Let Q∗n,1(h) =
n∑

t=1

∑
s 6=t

e∗tKs,te
∗
s, where e∗t is defined in Section 4. Assume that

the conditions of Proposition 4.1 are all satisfied. Then

sup
x∈R

∣∣∣∣∣P ∗
(
Q∗n,1(h)
σ∗n

≤ x

)
− Φ(x) + ρ∗n(h) Φ(3)(x)

∣∣∣∣∣ = OP (n−1/2), (B.16)

where (σ∗n)2 = 2σ4
e,∗

n∑
t=1

n∑
s=1, 6=t

K2
s,t and σ2

e,∗ = 1
n

n∑
t=1

(ê∗t )
2.

With the help of the useful lemmas, we now give the proofs of the main results.

Proof of Theorem 2.1. Observe that under H1,

∆̂n(v) =
n∑

t=1

w̃nt(v)(Yt − g(Vt, θ̂1))

=
n∑

t=1

w̃nt(v)et +
n∑

t=1

w̃nt(v)∆n(Vt) +
n∑

t=1

w̃nt(v)(g(Vt, θ1)− g(Vt, θ̂1)),

which implies that

∆̂n(v)−∆n(v) =
n∑

t=1
w̃nt(v)et +

(
n∑

t=1
w̃nt(v)∆n(Vt)−∆n(v)

)
+

n∑
t=1

w̃nt(v)(g(Vt, θ1)− g(Vt, θ̂1))

=: Jn1(v) + Jn2(v) + Jn3(v).

(B.17)
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By the central limit theorem for martingale differences (cf. Hall and Heyde, 1980), we have

as n→∞
n∑

t=1

(
w̃nt(v)√∑n
s=1 w̃

2
ns(v)

)
et

d−→ N
(
0, σ2

e

)
, (B.18)

in which the CLT is applied to the case where {et} is a sequence of martingale differences

and
∑n

t=1 bnt(v)et is a partial sum of martingale differences given (V1, · · · , Vn), where bnt(v) =
w̃nt(v)√∑n

s=1
w̃2

ns(v)
satisfies

∑n
t=1 b

2
nt(v) = 1 and equation (B.19) below.

By Remark B.2 above, we have as n→∞

T (n)b
(

n∑
s=1

w̃2
ns(v)

)
=

1
T (n)b

n∑
s=1

K̃2
n(Vs−v

b )(
1

T (n)b

n∑
s=1

K̃n(Vs−v
b )

)2

P→
∫

K2(v)dv (
∫

v2K(v)dv)2

(
∫

v2K(v)dv)2

=
∫
K2(v)dv.

(B.19)

Meanwhile, by the definition of local linear estimator, we have

Jn2(v) =
1
2
∆̈n(v)b2(1 + oP (1)) = OP (δnb2). (B.20)

By Lemma B.2(ii), we have

Jn3(v) = (θ1 − θ̂1)′ġ(v, θ1)(1 + oP (1)) = OP (δn( 4
√
nκ̇(

√
n))−1 + (

√
nκ̇(

√
n))−1). (B.21)

By equations (B.17)–(B.21), we have shown that (4.3) holds. Hence, the proof of Theorem

2.1(i) is completed. The proof of Theorem 2.1(ii) follows from equations (B.17)–(B.20) and

Jn3(v) = (θ1 − θ̂1)′ġ(v, θ1)(1 + oP (1)) = OP (δnv(
√
n)(κ̇(

√
n))−1 + (

√
nκ̇(

√
n))−1), (B.22)

which follows from Lemma B.2(iii).

Proof of Proposition 3.1: While the main steps of the proof are similar to those for

the proof of Theorem 2.1 of Gao et al (2009b), we still need to prove the corresponding parts

under the conditions of Proposition 3.1. We also only give the proof under A3 since the proof

is similar when A3′ is satisfied. Recall that under H0

Qn(h) =
n∑

t=1

n∑
s=1, 6=t

êtKs,tês =
n∑

t=1

n∑
s=1, 6=t

etKs,tes

+
n∑

t=1

n∑
s=1, 6=t

gtKs,tgs + 2
n∑

t=1

n∑
s=1, 6=t

gtKs,tes =:
3∑

i=1

Qn,i(h).
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Similarly to the proof of Theorem 2.1 in Gao et al (2009b), we have

Qn,1(h)
σ̃n

d−→ N(0, 1) and
σ2

n − σ̃2
n

σ̃2
n

= oP (1), (B.23)

where σ̃2
n = 2σ̃4

e

n∑
t=1

n∑
s=1, 6=t

K2
s,t and σ̃2

e = 1
n

n∑
t=1

e2t .

By (B.23), it suffices to show that

Qn,i(h)
σ̃n

= oP (1), i = 2, 3. (B.24)

As in the proof of Theorem 2.1 in Gao et al (2009b), we have

σ̃2
n = C0T (n)nh(1 + oP (1)) with C0 = 2σ4

e

∫
K2(v)dv. (B.25)

By (B.25) and Lemma B.1, we have for large enough n

C1 n
3
2h(1 + oP (1)) ≤ σ̃2

n ≤ C2 n
3
2h(1 + oP (1)) (B.26)

for some constants 0 < C1 < C2 <∞.

To prove (B.24), in view of (B.26), it suffices to show that

Qn,2(h)
σ̃n

= OP

(
n−1/4

√
h
)

and
Qn,3(h)
σ̃n

= OP

(
n−1/8h1/4

)
. (B.27)

To prove the first part of (B.27), we first need to deal with the following term:

(θ̂ − θ0)′
n∑

t=1

n∑
s=1, 6=t

ġ(Vt, θ0)Ks,tġ(Vs, θ0)′(θ̂ − θ0). (B.28)

A Taylor expansion implies for some 0 < ϑs < 1 and all s = 1, · · · , n,
n∑

t=1

n∑
s=1, 6=t

ġ(Vt, θ0)Ks,tġ(Vs, θ0)′

=
n∑

t=1

ġ(Vt, θ0)ġ(Vt, θ0)′
n∑

s=1, 6=t

Ks,t +
n∑

t=1

ġ(Vt, θ0)
n∑

s=1, 6=t

Ks,t

× (Vt − Vs)g̈(Vs + ϑs(Vt − Vs), θ0) =: In,1 + In,2.

By a standard argument, we have

max
1≤t≤n

{
1

T (n)h

n∑
s=1, 6=t

K
(

Vt−Vs
h

)}
= max

1≤t≤n

{
1

T (n)h

n∑
s=1

K
(

Vt−Vs
h

)
+ K(0)

T (n)h

}
= max

1≤t≤n

{
1

T (n)h

n∑
s=1

K
(

Vt−Vs
h

)}
+ oP (1).

(B.29)

By Lemma B.4, we have for any given ε > 0

P

({
max
1≤t≤n

∣∣∣∣∣ 1
T (n)h

n∑
s=1

K

(
Vt − Vs

h

)
− 1

∣∣∣∣∣ > ε

}
∩
{

max
1≤t≤n

|Vt| ≤M0

√
n

})
= o(1). (B.30)
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Meanwhile, for any given small ε > 0, applying the Kolmogorov inequality, we have

P

(
max
1≤t≤n

|Vt| > M0

√
n

)
≤ Var(Vn)

M2
0n

=
1
M2

0

< ε (B.31)

by letting M0 >
√

1
ε .

Equations (B.29), (B.30) and (B.31) imply that for the given small ε > 0

P

(
max
1≤t≤n

∣∣∣∣∣ 1
T (n)h

n∑
s=1

K

(
Vt − Vs

h

)
− 1

∣∣∣∣∣ > ε

)
(B.32)

= P

({
max
1≤t≤n

∣∣∣∣∣ 1
T (n)h

n∑
s=1

K

(
Vt − Vs

h

)
− 1

∣∣∣∣∣ > ε

}
∩
{

max
1≤t≤n

|Vt| ≤M0

√
n

})

+ P

({
max
1≤t≤n

∣∣∣∣∣ 1
T (n)h

n∑
s=1

K

(
Vt − Vs

h

)
− 1

∣∣∣∣∣ > ε

}
∩
{

max
1≤t≤n

|Vt| > M0

√
n

})

≤ P

({
max
1≤t≤n

∣∣∣∣∣ 1
T (n)h

n∑
s=1

K

(
Vt − Vs

h

)
− 1

∣∣∣∣∣ > ε

}
∩
{

max
1≤t≤n

|Vt| ≤M0

√
n

})

+ P

(
max
1≤t≤n

|Vt| > M0

√
n

)
= o(1).

By (B.29)–(B.32), we thus have

In,1 = T (n)h(1 + oP (1))
n∑

t=1

ġ(Vt, θ0)ġ(Vt, θ0)′. (B.33)

Furthermore, when A3 is satisfied, following the proof of Lemma B.2, we have

(θ̂ − θ0)′
n∑

t=1

ġ(Vt, θ0)ġ(Vt, θ0)′(θ̂ − θ0) = OP (1). (B.34)

Similarly, we can show that In,2 is of an order smaller than In,1. Hence, by (B.33), (B.34)

and Lemma B.1, we have shown that

Qn,2(h)
σ̃n

= OP

( √
nh

n3/4
√
h

)
= OP

(
n−1/4

√
h
)
, (B.35)

which shows that the first part of (B.27) holds. Meanwhile, note that

Q2
n,3(h) = 4

(
n∑

t=1

n∑
s=1, 6=t

gt

√
Ks,t

√
Ks,tes

)2

≤ 4

(
n∑

t=1

n∑
s=1, 6=t

gtKs,tgs

)(
n∑

t=1

n∑
s=1, 6=t

etKs,tes

)
= O (Qn,1(h)Qn,2(h)) = OP

(√
nhn3/4h

)
,

(B.36)

which implies the second part of (B.27). The proof of Proposition 3.1 is therefore completed.
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Proof of Theorem 3.1(i): Note that under H1, we have

Qn(h) =
n∑

t=1

n∑
s=1, 6=t

êtKs,tês

=
n∑

t=1

n∑
s=1, 6=t

etKs,tes +
n∑

t=1

n∑
s=1, 6=t

g̃tKs,tg̃s + 2
n∑

t=1

n∑
s=1, 6=t

g̃tKs,tes

+ 2
n∑

t=1

n∑
s=1, 6=t

∆n(Vt)Ks,tg̃s + 2
n∑

t=1

n∑
s=1, 6=t

∆n(Vt)Ks,tes

+
n∑

t=1

n∑
s=1, 6=t

∆n(Vt)Ks,t∆n(Vs) =:
6∑

i=1
Qn,i(h).

(B.37)

where g̃t = g(Vt, θ1)− g(Vt, θ̂1).

Following the proof of Proposition 3.1 as above, we have

1
σn
Qn,1(h)

d−→ N(0, 1). (B.38)

When A3 is satisfied with θ0 being replaced by θ1, by the proof of Lemma B.2(i), we have

(θ̂1 − θ1)′
n∑

t=1

ġ(Vt, θ1)ġ(Vt, θ1)′(θ̂1 − θ1)

≤ OP

(
(δ2n + (

√
n)−1)

n∑
t=1

ġ(Vt, θ1)ġ(Vt, θ1)′
)

= OP

(
δ2n
√
n+ 1

)
.

Letting In,1 =
n∑

t=1
ġ(Vt, θ1)ġ(Vt, θ1)′

n∑
s=1, 6=t

Ks,t, we then have

In,1 = OP (nδ2nh+
√
nh) = OP

(
n3/4

√
h
)
, (B.39)

by the condition of δn = O
(
n−1/8h−1/4

)
.

Hence, we have

Qn,2(h) = OP (σn). (B.40)

By Definition 2.1, we can find an integrable function Γ(·) such that

max{∆2
n(v),

∣∣∣∆n(v)∆̇n(v)
∣∣∣} ≤ δ2nΓ(v). (B.41)

Note that

Qn,4(h) =
n∑

t=1

n∑
s=1, 6=t

(
∆2

n(Vs)Ks,t + (∆n(Vt)−∆n(Vs))Ks,t∆n(Vs)
)

=: Qn,4,1(h) +Qn,4,2(h).
(B.42)
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By the condition of δn = O
(
n−1/8h−1/4

)
, (B.41), Lemma B.1, Lemma B.4, Theorem 5.1

in Park and Phillips (1999) and following the calculation of In,1,

Qn,4,1(h) =
n∑

s=1

∆2
n(Vs)

n∑
t=1, 6=s

Ks,t

= T (n)h
n∑

s=1

∆2
n(Vs)

(
1

T (n)h

n∑
t=1

Ks,t −
K(0)
T (n)h

)

≤ (T (n)
√
nhδ2n)

1√
n

n∑
s=1

Γ(Vs) (1 + oP (1))

= OP (nhδ2n) = OP (n3/4h1/2). (B.43)

Meanwhile, note that ∆̇n(·) is also δn–integrable. By Taylor’s expansion, we can show that∣∣∣Qn,4,2(h)
∣∣∣ ≤

n∑
t=1

n∑
s=1, 6=t

|∆n(Vt)−∆n(Vs)|Ks,t |∆n(Vs)|

P∼ T (n)h2
n∑

s=1

∣∣∣∆̇n(Vs)∆n(Vs)
∣∣∣
 1
T (n)h

n∑
t=1, 6=s

∣∣∣∣Vt − Vs

h

∣∣∣∣Ks,t


≤

(
T (n)

√
nh2δ2n

∫
|u|K(u)du

)
1√
n

n∑
s=1

Γ(Vs) (1 + oP (1))

= OP (nh2δ2n) = oP (n3/4h1/2), (B.44)

where an
P∼ bn means that an

bn
= 1 + oP (1).

Thus, we have

Qn,4(h) = OP (σn). (B.45)

Similarly to the proof of (B.36), we can also show that

Qn,i(h) = OP (σn), i = 3, 5, 6. (B.46)

When A3′ is satisfied for θ1, the proof is analogous with the help of Lemma B.2(ii). There-

fore, the proof of Theorem 3.1(i) is completed.

To complete the proof for the case of δn = o
(
n−1/8h−1/4

)
, in view of the proof for the case

of δn = O
(
n−1/8h−1/4

)
above, it suffices to verify

Qn,2(h) = oP (σn), (B.47)

Qn,4,1(h) = OP (nhδ2n) = oP (n3/4h1/2). (B.48)∣∣∣Qn,4,2(h)
∣∣∣ = OP (nh2δ2n) = oP (n3/4h1/2), (B.49)

Qn,4(h) = oP (σn). (B.50)

Qn,i(h) = oP (σn), i = 3, 5, 6, (B.51)
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which follows from (B.40) and (B.43)–(B.46), respectively, when δn = o
(
n−1/8h−1/4

)
. The

proof of Theorem 3.1(i) is therefore completed.

Proof of Theorem 3.1(ii): Following the proof of Theorem 3.1(i), in order to prove

Theorem 3.1(ii), we need only to show that

1
n3/4h1/2

Qn,4,1(h)
P−→∞, (B.52)

when the condition of δn n1/8h1/4 → ∞ is satisfied. By Definition 2.1, we can find some

integrable function Γ̃(·) such that

∆2
n(v) ≥ δ2nΓ̃(v) and

∫ ∞

−∞
Γ̃(v)dv > 0. (B.53)

By (B.53), Lemma B.4, Theorem 5.1 in Park and Phillips (1999) and following the calcu-

lation of In,1,

1
T (n)

√
nhδ2n

Qn,4,1(h) =
1

T (n)
√
nhδ2n

n∑
s=1

∆2
n(Vs)

n∑
t=1, 6=s

Ks,t (B.54)

=
1√
nδ2n

n∑
s=1

∆2
n(Vs)

(
1

T (n)h

n∑
t=1

Ks,t −
K(0)
T (n)h

)

≥ 1√
n

n∑
s=1

Γ̃(Vs) (1 + oP (1))

P−→
∫ ∞

−∞
Γ̃(v)dvLW (1, 0)(1 + oP (1)),

where LW (1, 0) is the local time of the standard Wiener process at the origin. Hence, we can

show that (B.52) holds by δn n1/8h1/4 → ∞ and Lemma B.1. Then, the proof of Theorem

3.1(ii) is completed.

Proof of Theorem 3.2(i): By Definition 2.2, we can find some asymptotically homoge-

neous function Λ(·) such that

max{∆2
n(v),

∣∣∣∆n(v)∆̇n(v)
∣∣∣} ≤ δ2nΛ(v), (B.55)

where Λ(λx) = v2(λ)H(x) + R(x, λ), in which H(·) is locally integrable and R(·, ·) satisfies

Definition 2.2(i)(ii).

By (B.55), Lemma B.1, Lemma B.4, Theorem 5.3 in Park and Phillips (1999) and following

the calculation of In,1,

Qn,4,1(h) =
n∑

s=1

∆2
n(Vs)

n∑
t=1, 6=s

Ks,t ≤ (T (n)nv2(
√
n)hδ2n)

× 1
nv2(

√
n)

n∑
s=1

Λ(Vs) (1 + oP (1)) = OP (n3/2v2(
√
n)hδ2n),
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which implies that either (B.45) or (B.50) holds by either

n3/8ν(
√
n)h1/4δn = O(1) or n3/8ν(

√
n)h1/4δn → 0.

The rest of the proof is the same as the proof of Theorem 3.1(i).

Proof of Theorem 3.2(ii): By Definition 2.2, we can find some asymptotically homo-

geneous function Λ̃(·) such that ∆2
n(v) ≥ δ2nΓ̃(v), and

Λ̃(λx) = v2(λ)H̃(x) + R̃(x, λ) and
∫ ∞

−∞
H̃(v)LW (1, v)dv > 0. (B.56)

By the condition of n3/8ν(
√
n)h1/4δn → ∞, (B.56), Lemma B.4 and Theorem 5.3 in Park

and Phillips (1999) and following the calculation of In,1,

1
T (n)nv2(

√
n)hδ2n

Qn,4,1(h) =
1

T (n)nv2(
√
n)hδ2n

n∑
s=1

∆2
n(Vs)

n∑
t=1, 6=s

Ks,t (B.57)

≥ 1
nv2(

√
n)

n∑
s=1

Λ̃(Vs) (1 + oP (1))

P−→
∫ ∞

−∞
H̃(v)LW (1, v)dv(1 + oP (1)),

which implies that equation (B.52) holds by Lemma B.1. The proof of Theorem 3.2(ii) is

therefore completed.

Proof of Proposition 4.1: Recall the definition of Q∗n,1(h) in Lemma B.5 and observe

that under H0

Q∗n(h) =
n∑

t=1

n∑
s=1, 6=t

ê∗tKs,tê
∗
s = Q∗n,1(h) +Q∗n,2(h) +Q∗n,3(h), (B.58)

where Q∗n,2(h) =
n∑

t=1

n∑
s=1, 6=t

g∗tKs,tg
∗
s and Q∗n,3(h) = 2

n∑
t=1

n∑
s=1, 6=t

g∗tKs,te
∗
s, in which g∗t = g(Vt, θ̂)−

g(Vt, θ̂
∗), (σ∗n)2 = 2σ4

e,∗
n∑

t=1

n∑
s=1, 6=t

K2
s,t and σ2

e,∗ = 1
n

n∑
t=1

(ê∗t )
2.

By (B.58) and Lemma B.5, to prove (4.2), we first show that

Q∗n,2(h) +Q∗n,3(h)
σ∗n

= OP (s∗n) and
σ̃n − σ∗n
σ̃n

= oP (s∗n) (B.59)

given Vn = (V1, · · · , Vn)′.

The first part of (B.59) can be proved by arguments similar to those used in the proof of

(B.27) in the proof of Proposition 3.1. We thus need only to give the proof of the second part
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of (B.59). Following the proof of Lemma B.3, we have

1
n

n∑
t=1

(ê∗t )
2 =

1
n

n∑
t=1

(
Yt − g(Vt, θ̂

∗)
)2

(B.60)

=
1
n

n∑
t=1

(
Yt − g(Vt, θ̂) + g(Vt, θ̂)− g(Vt, θ̂

∗)
)2

=
1
n

n∑
t=1

(e∗t )
2 +

1
n

n∑
t=1

(g∗t )
2 +

2
n

n∑
t=1

etg
∗
t + oP (s∗n).

Then, following the same arguments as in the proof Lemma B.5, we have

1
n

n∑
t=1

(ê∗t )
2 =

1
n

n∑
t=1

e2t + oP (s∗n). (B.61)

This implies that as n→∞
1
n

n∑
t=1

(ê∗t )
2

1
n

n∑
t=1

e2t

→P 1, (B.62)

which shows that the second part of (B.59) holds.

Meanwhile, equation (B.26) implies for some 0 < C1 < C2 <∞,

C1 n
3
2h (1 + oP (1)) ≤ σ̃2

n,1(h) ≤ C2 n
3
2h (1 + oP (1)), (B.63)

where σ̃2
n,1(h) =

n∑
t=1

n∑
s=1, 6=t

K2
s,t.

To complete the proof of Proposition 4.1, in view of (B.63), we need only to show that

E
[
Tr(A3

0(h))
]

= O
(
n2h2

)
. (B.64)

Note that

E
[
Tr(A3

0(h))
]

=
n∑

s=1

n∑
t=1
t6=s

n∑
q=1

q 6=s,t

E [Ks,tKt,qKq,s] (B.65)

=
n∑

s=1

∑
t<s

∑
q<t

E [Ks,tKt,qKq,s] +
n∑

s=1

∑
t<s

s−1∑
q=t+1

E [Ks,tKt,qKq,s]

+
n∑

s=1

∑
t<s

∑
q>s

E [Ks,tKt,qKq,s] +
n∑

s=1

∑
t>s

∑
q<s

E [Ks,tKt,qKq,s]

+
n∑

s=1

∑
t>s

t−1∑
q=s+1

E [Ks,tKt,qKq,s] +
n∑

s=1

∑
t>s

∑
q>t

E [Ks,tKt,qKq,s] =:
6∑

i=1

Π̂n,i.
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By the definition of the random walk {Vt}, we have

Π̂n,1 =
n∑

s=1

∑
t<s

∑
q<t

E
[
K
(

Vs−Vt
h

)
K
(

Vt−Vq

h

)
K
(

Vq−Vs

h

)]
=

n∑
s=1

∑
t<s

∑
q<t

∫ ∫ ∫
K
(√

s−tw
h

)
K
(√

t−qv
h

)
K
(√

s−tw+
√

t−qv
h

)
ϕq(u)ϕt−q(v)ϕs−t(w)dudvdw

=
n∑

s=1

∑
t<s

∑
q<t

h2√
(s−t)(t−q)

∫ ∫ ∫
K(z1)K(z2)K(z1 + z2)

ϕq(z3)ϕt−q

(
hz1√
t−q

)
ϕs−t

(
hz2√
s−t

)
dz1dz2dz3 = O(n2h2).

(B.66)

Equation (B.66) also holds for Π̂n,i for i = 2, · · · , 6. Hence, equation (B.64) holds with the

help of Lemma B.1.

Proof of Proposition 4.2: Observe that

Q∗n(h) =
n∑

t=1

n∑
s=1, 6=t

ê∗tKs,tê
∗
s

=
n∑

t=1

n∑
s=1, 6=t

e∗tKs,te
∗
s +

n∑
t=1

n∑
s=1, 6=t

g̃∗tKs,tg̃
∗
s + 2

n∑
t=1

n∑
s=1, 6=t

g̃∗tKs,te
∗
s

+ 2
n∑

t=1

n∑
s=1, 6=t

∆n(Vt)Ks,tg̃
∗
s + 2

n∑
t=1

n∑
s=1, 6=t

∆n(Vt)Ks,te
∗
s

+
n∑

t=1

n∑
s=1, 6=t

∆n(Vt)Ks,t∆n(Vs) =:
6∑

i=1

Q
∗
n,i(h). (B.67)

where g̃∗t = g(Vt, θ1)− g(Vt, θ̂
∗
1).

Let Q̂∗n,1(h) = Q
∗
n,1(h)

σ∗n
. Observe that

β∗n = P ∗
(
Q̂∗n(h) > l∗α|H1

)
= 1− P ∗

(
Q̂∗n(h) ≤ l∗α|H1

)
= 1− P ∗

(
Q̂∗n,1(h) ≤ l∗α −

Q
∗
n,6(h)
σ∗n

−
∑5

j=2Q
∗
n,j(h)

σ∗n
|H1

)
. (B.68)

Since the proof of Proposition 4.2(ii) is very similar to that for Proposition 4.2(i), we then

need only to provide the proof of Proposition 4.2(i). To prove Proposition 4.2(i), in view of

Lemma B.5, (B.59) and (B.68), it suffices to show that as n→∞

Q
∗
n,i(h)
σ∗n

= oP

(
Q
∗
n,6(h)
σ∗n

)
for i = 2, · · · , 5. (B.69)

In view of the corresponding derivations of (B.69) in the proofs of Theorems 3.1(i)(ii) and

3.2(i)(ii) as well as the second part of (B.59), replacing Lemma B.2 by Lemma B.3 in the

derivations of (B.39) and (B.40) as well as (B.47) and (B.51), we can obtain for i = 2, · · · , 5

Q
∗
n,i(h) = OP (σ∗n) = oP

(
nhδ2n

)
= OP

(
Q
∗
n,6

)
(B.70)
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using equations (B.54) and (B.57) as well as the conditions of either Proposition 4.2(i) or

Proposition 4.2(ii).

Equation (B.70) completes the proof of (B.69). We therefore have completed all the proofs.
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