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Abstract

This paper treats estimation in a class of new nonlinear threshold au-

toregressive models with both a stationary and a unit root regime. Existing

literature on nonstationary threshold models have basically focused on mod-

els where the nonstationarity can be removed by differencing and/or where

the threshold variable is stationary. This is not the case for the process we

consider, and nonstandard estimation problems are the result.

This paper proposes a parameter estimation method for such nonlinear

threshold autoregressive models using the theory of null recurrent Markov

chains. Under certain assumptions, we show that the ordinary least squares

(OLS) estimators of the parameters involved are asymptotically consistent.

Furthermore, it can be shown that the OLS estimator of the coefficient pa-

rameter involved in the stationary regime can still be asymptotically normal

while the OLS estimator of the coefficient parameter involved in the nonsta-

tionary regime has a nonstandard asymptotic distribution. In the limit, the

rate of convergence in the stationary regime is asymptotically proportional to

n−
1
4 , whereas it is n−1 in the nonstationary regime. The proposed theory and

estimation method are illustrated by both simulated and real data examples.

1Correspondence: Dag Tjøstheim, Department of Mathematics, University of Bergen, Bergen
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1 Introduction

Ordinary unit root models have just one regime, whereas ordinary threshold models

have several regimes, but are stationary. In this paper, we study a threshold model

that has unit–root behavior on one regime and acts as a stationary process in another

regime. More specifically, we consider a parametric threshold auto–regressive (TAR)

model of the form

yt = α1yt−1I[yt−1 ∈ Cτ ] + α2yt−1I[yt−1 ∈ Dτ ] + et, 1 ≤ t ≤ n, (1.1)

where Cτ is a subset of R1 = (−∞,∞) indexed by τ > 0, Dτ = Cc
τ = R1 − Cτ

is the complement of Cτ , τ is essentially assumed to be known in the asymptotic

analysis in this paper, −∞ < α1, α2 <∞ are assumed to be unknown parameters,

but will be estimated under the assumption that α2 = 1, the distribution of {et} is

absolutely continuous with respect to Lebesgue measure with pe(·) being the density

function satisfying infx∈C pe(x) > 0 for all compact sets C, {et} is assumed to be

a sequence of independent and identically distributed (i.i.d.) random errors with

E[e1] = 0, 0 < σ2 = E[e21] < ∞ and E[e41] < ∞, {et} and {ys} are assumed to be

mutually independent for all s < t, and n is the sample size of the time series. Let

y0 = 0 throughout this paper. Even though (1.1) is the simplest possible of the type

of models we are discussing, it requires nonstandard techniques using the theory of

null recurrent Markov chains.

The vast majority of threshold models used have been stationary models, i.e.,

models for which |α1| < 1 and |α2| < 1 in the first order case. Such models were

introduced by Tong and Lim (1980). See also Tong (1983, 1990). Among the more

recent contributions, Chan (1990, 1993) consider both estimation and testing prob-

lems for the case where {yt} of (1.1) is stationary, Pham, Chan and Tong (1991)

consider a nonlinear unit–root problem and establish strong consistency results for

the ordinary least squares (OLS) estimators of α1 and α2 for the case where (α1, α2)

lies on the boundary, Hansen (1996) rigorously establishes an asymptotic theory for

the likelihood ratio test for a threshold, Chan and Tsay (1998) discuss a related

continuous–time TAR model, and Hansen (2000) proposes a new approach to esti-

mating stationary TAR models. More recently, Liu, Ling and Shao (2009) extend

the discussion of Pham, Chan and Tong (1991) by establishing an asymptotic dis-
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tribution of the OLS estimator of α2 for the case where Cτ = (−∞, τ ] and either

α2 = 1 and α1 < 1 or α2 > 1 and α1 ≤ 1 holds.

Lately, there have been extensions to the nonstationary case, see in particular

Caner and Hansen (2001), thus having a class of models that allow for both nonlin-

earity and nonstationarity, and where these properties can be (Caner and Hansen

2001) separately tested for. The nonstationarity of these models under the null hy-

pothesis has been of a rather restricted form, thus typically regarding both yt− yt−1
and the threshold variable to be stationary. In the first order case, this leads to a

somewhat degenerate model that under the null hypothesis has H0 : α1 = α2 = 1

in

yt − yt−1 = (α1 − 1) yt−1I[zt ∈ Cτ ] + (α2 − 1) yt−1I[zt ∈ Dτ ] + et, (1.2)

where {zt} is a sequence of stationary threshold variables, Cτ = (−∞, τ ] and Dτ =

(τ,∞). The parameters α1 and α2 can then be estimated under H0, which leads to

a pure random walk model for (1.2) but more general difference type models for the

higher order case are treated in Caner and Hansen (2001). The authors also point

out that there are several nonstationary alternatives when H0 does not hold. One

of the alternatives to H0 is as follows:

H1 : |α1| 6= 1 and α2 = 1, (1.3)

which does not imply yt − yt−1 is stationary under H1.

We allow for more general forms of nonstationarity in which we do not require

yt− yt−1 to be stationary, nor do we require the threshold variable to be stationary.

To the best of our knowledge, estimation in this situation has not been treated before

in the literature. In the present paper, for simplicity, we only treat the first order

case, but the theory can be extended to higher order and vector models, making

it possible to introduce threshold cointegration models in this context. It is also

possible to allow nonlinear behavior in the regime Cτ . This is done by replacing

the linear function α1y by a nonparametric function, also implicitly including an

intercept in the model.

Although our focus in this paper is to estimate both α1 and α2 and then study

asymptotic properties of the proposed estimates in Section 2.1 when τ is assumed

to be known, we propose an estimation procedure for the τ parameter in Section
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2.2 when τ is unknown. Since the case of both |α1| < 1 and |α2| < 1 and the case

of α1 = α2 = 1 have already been discussed in the literature (Chen 1993; Hansen

2000 for example), we are interested in proposing an estimation method to deal

with model (1.1) where Cτ is either a compact subset of R1 or a set of type (−∞, τ ]

or [τ,∞), Dτ is the complement of Cτ , |α1| < 1 or |α1| > 1 and α2 = 1. Model

(1.1) may be used to detect and then estimate structural change from one regime

to another. Note that τ can be a vector of unknown parameters. In the case where

Cτ = [τ1, τ2] with −∞ < τ1 < τ2 <∞, the choice of τ is τ = (τ1, τ2).

It is shown in Section 2 below that the OLS estimator of α1 is asymptotically

consistent with a rate of convergence which in the limit is proportional to n−
1
4 where

we can even let |α1| > 1 when Cτ is compact. By contrast, the OLS estimator of

α2 is asymptotically consistent with the super n–rate of convergence. In a related

paper by Liu, Ling and Shao (2009), the authors have established similar results for

α̂2, but have not established any asymptotic theory for α̂1.

The organization of this paper is as follows. Section 2 establishes asymptotic

distributions of the OLS estimators of α1 and α2 and contains an estimation proce-

dure for the threshold parameter τ . Section 3 discusses an extension of model (1.1)

to a semiparametric threshold auto–regressive (SEMI–TAR) model. Examples of

implementation are given in Section 4. The paper concludes in Section 5. We will

use the theory of β–null recurrent Markov chains in this paper and some general

results about these processes are given in Appendix A. Mathematical proofs of some

lemmas are given in Appendix B.

2 Estimation in parametric threshold autoregres-

sive models

We propose an ordinary least squares (OLS) estimation method for the unknown

parameters α1 and α2 in Section 2.1. Discussion about estimation of the τ parameter

is given in Section 2.2.
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2.1 OLS estimation method and asymptotic theory

Consider model (1.1). It is obvious that α1 and α2 can be estimated by the ordinary

least squares estimators

α̂1 = α̂1(τ) =

∑n
t=1 yt yt−1I[yt−1 ∈ Cτ ]∑n
t=1 y

2
t−1I[yt−1 ∈ Cτ ]

and (2.1)

α̂2 = α̂2(τ) =

∑n
t=1 yt yt−1I[yt−1 ∈ Dτ ]∑n
t=1 y

2
t−1I[yt−1 ∈ Dτ ]

. (2.2)

This implies that

α̂1 − α1 =

∑n
t=1 et yt−1I[yt−1 ∈ Cτ ]∑n
t=1 y

2
t−1I[yt−1 ∈ Cτ ]

and (2.3)

α̂2 − 1 =

∑n
t=1 et yt−1I[yt−1 ∈ Dτ ]∑n
t=1 y

2
t−1I[yt−1 ∈ Dτ ]

. (2.4)

In order to establish an asymptotic distribution for each of the estimators, we

first need to state some auxiliary results. Observe that model (1.1) can be written

as

yt − yt−1 = (α1 − 1)yt−1I[yt−1 ∈ Cτ ] + et ≡ ut + et, (2.5)

where ut = (α1 − 1)yt−1I[yt−1 ∈ Cτ ].
Before our further discussion, we need to introduce Lemma 2.1 below. As it is

a special case of Lemma 3.1 below, we need only to prove Lemma 3.1 in Appendix

B.

Lemma 2.1 Let {yt} be generated by model (1.1). Then {yt} is a β–null recur-

rent Markov chain with β = 1
2
.

A β–null recurrent Markov chain possesses an invariant measure πs and there is

a variable T (n) keeping track of the number of regenerations at time n. Note that

the definitions of πs(·) and T (n) are given in detail in Appendix A below. If Cτ is

compact, T (n) may be taken to be proportional to the number of visits to Cτ , as is

seen from the remark at the end of this subsection. Let µi =
∫∞
−∞ y

iI[y ∈ Cτ ]πs(dy)

for i = 1, 2. Then Lemma A.1(i) implies that the following limits hold almost surely,

mu ≡ lim
n→∞

1

T (n)

n∑
t=1

ut = lim
n→∞

(α1 − 1)

T (n)

n∑
t=1

yt−1I[yt−1 ∈ Cτ ] = (α1 − 1)µ1. (2.6)

It follows from Lemma A.2 in Appendix A and then Lemma 2.1 that as n→∞√
T ([nr])

σu

 1

T ([nr])

[nr]∑
t=1

ut −mu

→D B[Mβ(r)] (2.7)
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uniformly in 0 ≤ r ≤ 1, where the symbol “ →D ” means weak convergence in

cadlag space (see, for example, the appendix of KT 2001), σ2
u = µ2− µ2

1, and Mβ(t)

is the Mittag-Leffler process as defined in KT (2001, p 388). Finally, [nr] is the

largest integer part of nr.

Let ηt = ut + et. Using (2.6) and (2.7), it then follows from the continuous

mapping theorem (Corollary 2 of Billingsley 1968, p. 31) and Lemma A.2 that as

n→∞

Qn(r) ≡ 1√
n

[nr]∑
t=1

ηt =
1√
n

[nr]∑
t=1

ut +
1√
n

[nr]∑
t=1

et

=
σu
√
T ([nr])
√
n

√
T ([nr])

σu

 1

T ([nr])

[nr]∑
t=1

ut −mu

+
T ([nr])√

n
mu

+
1√
n

[nr]∑
t=1

et =
σu
√
T ([nr])
√
n

B [Mβ(r)] +
1√
n

[nr]∑
t=1

et +
T ([nr])√

n
mu

+ oP (1) =
σ√
nσ

[nr]∑
t=1

et +
T ([nr])√

n
mu + oP (1)

→D σB(r) +M 1
2
(r) mu ≡ Q(r) (2.8)

uniformly in 0 < r ≤ 1, where Lemma A.4 in Appendix A has also been used.

This conclusion is summarized in Lemma 2.2.

Lemma 2.2 Let {yt} be generated by model (1.1). Then as n→∞

Qn(r) =
1√
n

[nr]∑
t=1

ut +
1√
n

[nr]∑
t=1

et →D σB(r) +M 1
2
(r) mu ≡ Q(r). (2.9)

Note that when µ1 = 0 and thus mu = 0, the contribution of {ut} to {yt} is

asymptotically negligible. In this case, {yt} behaves like a random walk process.

We state the following lemma; its proof is given in Appendix B.

Lemma 2.3 Assume that model (1.1) holds. Then as n→∞
1

T (n)

n∑
t=1

y2t−1I[yt−1 ∈ Cτ ] →P

∫ ∞
−∞

y2I[y ∈ Cτ ]πs(dy), (2.10)

1

n2

n∑
t=1

y2t−1I[yt−1 ∈ Dτ ]
d−→

∫ 1

0
Q2(r) dr, (2.11)

1√
T (n)

n∑
t=1

yt−1etI[yt−1 ∈ Cτ ]
d−→ N(0, σ2

1), (2.12)

1

n

n∑
t=1

yt−1etI[yt−1 ∈ Dτ ]
d−→ 1

2

(
Q2(1)− σ2

)
, (2.13)
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where the symbol “
d−→ ” denotes convergence in distribution, σ2

1 = σ2
∫∞
−∞ y

2I[y ∈
Cτ ]πs(dy) and Q(r) = σB(r) + (α1 − 1)µ1 M 1

2
(r).

We now state the main results of this section.

Theorem 2.1 Assume that model (1.1) holds. Then as n→∞√
T (n) (α̂1 − α1)

d−→ N
(
0, σ4 σ−21

)
, (2.14)

n (α̂2 − 1)
d−→ (Q2(1)− σ2)

2
∫ 1
0 Q

2(r)dr
. (2.15)

Note that Q(r) = σB(r) when µ1 = 0. This implies that the asymptotic theory

for α̂2 is the same as that for the unit–root case when µ2 =
∫∞
−∞ yI[y ∈ Cτ ]πs(dy) = 0,

i.e., {yt} has some symmetrical structure in the stationary regime. In this symmet-

rical case, the asymptotic distribution in (2.15) corresponds to the main result in

Theorem 2.1 of Liu, Ling and Shao (2009).

Proof: Recall that

α̂1 − α1 =

∑n
t=1 et yt−1I[yt−1 ∈ Cτ ]∑n
t=1 y

2
t−1I[yt−1 ∈ Cτ ]

and (2.16)

α̂2 − 1 =

∑n
t=1 et yt−1I[yt−1 ∈ Dτ ]∑n
t=1 y

2
t−1I[yt−1 ∈ Dτ ]

. (2.17)

The proof of Theorem 2.1 then follows immediately from Lemma 2.3 and the

continuous mapping theorem.

Remark 2.1. Theorem 2.1 shows that the rate of convergence of α̂1 to α1 is

proportional to
√
T (n) while the rate of convergence of α̂2 to 1 is proportional to

n. According to Lemmas 2.1 and 3.4 and Theorem 3.2 of Karlsen and Tjøstheim

(2001), T (n) behaves asymptotically as the Mittag–Leffler variable M 1
2
(·) and in

the limit can be associated with the deterministic convergence rate of n−
1
2 . Our

results can be translated to local–time terminology and are threshold autoregressive

counterparts of the results in Phillips (1987), and Park and Phillips (2001). The

results of those papers were for the nonlinear and nonstationary regression case and

it is not clear whether the local time techniques used there can be extended to an

autoregressive situation. Note that T (n) may be replaced by TC(n)
πs(1C)

(Lemma 3.6 of

Karlsen and Tjøstheim 2001), where TC(n) is the number of visits to a small set C,

which may be taken to be a subset of Cτ or Cτ itself if it is compact.
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2.2 Discussion about estimation of the τ parameter

In both theory and practice, estimation of the τ parameter is of interest and impor-

tance.

Let êt(τ) = yt − α̂1yt−1I[yt−1 ∈ Cτ ] − α̂2yt−1I[yt−1 ∈ Dτ ] and then define the

estimated variance by

σ̂2(τ) =
1

n

n∑
t=1

ê2t (τ). (2.18)

The τ parameter can then be estimated by

τ̂ = arg min
over all τ

σ̂2(τ). (2.19)

In both the stationary and nonstationary unit–root cases, asymptotic properties

of τ̂ have been discussed (see, for example, Pham, Chan and Tong 1991; Chan 1993;

Hansen 2000). In the paper by Chan (1993), the author shows that the rate of

convergence of τ̂ to τ can be as fast as the super–rate of n. Our simulation study

in Section 4 however suggests that the rate of convergence of τ̂ to τ may be related

to T (n), as will also be pointed out in the discussion below.

Studying asymptotic properties for τ̂ in detail for the model we are considering

requires a separate investigation, since even in the stationary case the theory is quite

complex (see, for example, Chan 1993). In the present paper, we will only indicate

how Chan’s proof of consistency can be extended and comment on the rate that can

be expected.

Chan (1993) restricts himself to the case of a single threshold τ , so that there

is a stationary regime to the left of τ and another stationary regime to the right of

τ . In our discussion we will use the same simplification but with one of the regimes

being a unit root regime. Moreover, since we only look at the first order case, we

take the threshold variable yt−d to be yt−1.

Chan makes use of ergodicity in his proof, which we do not have in our case, but

his proof of consistency can nevertheless be adapted to our situation by noting that

L(θ) =
n∑
t=1

(yt − Eθ(yt|Ft−1))2

can be decomposed using the existence of the regeneration mechanism for a null

recurrent process, such that (see (A.2) and (A.3) of Appendix A)

L(θ) = U0 +
T (n)∑
k=1

Uk + U(n). (2.20)
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Here, θ is the parameter composed of the AR coefficients and the threshold with θ

belonging to a parameter space Θ. Moreover, Eθ (·|Ft−1) is the conditional expec-

tation with respect to the σ–field Ft−1 generated by {ys, 1 ≤ s ≤ t− 1}, and

Uk = Uk(g, θ) =
τk∑

t=τk−1+1

g(yt, yt+1, θ)

with g(yt−1, yt, θ) = (yt − Eθ(yt|Ft−1))2, and where the τk’s are regeneration times.

Finally, U0 and U(n) in (2.20) are a starting term and an ending term that can

be neglected as n → ∞. The sequence {Uk} consists of random variables that

are identically distributed and are 1–dependent. It essentially takes the place of

the ergodic process {yt} in Chan’s proof and of course {Uk} trivially fulfills the

stationarity and ergodicity requirement of his Theorem 1, where strong consistency

is proved.

The decomposition of (3.2) of Chan (1993) can now be written as

τk∑
t=τk−1+1

(yt − Eθ(yt|Ft−1))2 = R1k(θ) +R2k(θ) +R3k(θ) +R4k(θ),

with

R1k(θ) =
τk∑

t=τk−1+1

(yt − β1yt−1)2 I(yt−1 ≤ z, yt−1 ≤ τ),

R2k(θ) =
τk∑

t=τk−1+1

(yt − β1yt−1)2 I(yt−1 ≤ z, yt−1 > τ),

R3k(θ) =
τk∑

t=τk−1+1

(yt − β2yt−1)2 I(yt−1 > z, yt−1 ≤ τ),

R4k(θ) =
τk∑

t=τk−1+1

(yt − β2yt−1)2 I(yt−1 > z, yt−1 > τ),

where β1, β2 and z are neighboring points of the true values α1, α2 and τ in the

parameter space Θ. Next, Rik(θ), i = 1, · · · , 4 can themselves be decomposed anal-

ogously to (3.3) in Chan (1993) by adding and substracting the true AR param-

eters α1 and α2. With these changes, the proof of Lemma 1 in Chan (1993) can

be carried through. Moreover, in the proof of his claim 1, σ2
θ can be replaced by

E
[∑τk

t=τk−1+1 (yt − Eθ0(yt|Ft−1))
2
]

with θ0 = (α1, α2), and one has to introduce a

truncation variable to ensure the existence of E [Rik(θ)]. The rest of the proof of

consistency can be carried out along the lines of Chan (1993).
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Chan obtains a rate for τ̂ − τ of order n−1. By the decomposition in (2.20) we

effectively introduce a 1–dependent process where T (n) can be taken as the number

of observations. We could therefore possibly expect a rate for τ̂ − τ of order T−1(n)

which can be associated with n−
1
2 . This is in agreement with the finite sample

results for Case A of Example 4.3 below, which is an example where a threshold

of this type was investigated by simulation. The finite sample rate for the other

examples, where two thresholds are involved, is slower. It should be kept in mind,

though, that the association of T (n) with
√
n is itself an asymptotic result (see, for

example, Lemma 3.4 and Theorem 3.2 of Karlsen and Tjøstheim 2001). For a finite

n, T (n) will certainly depend on the set Cτ . Rigorous conditions and results about

the rate and indeed about the asymptotic distribution would require an extension

of Chan’s Propositions 1 and 2 as well as Theorem 2. This is far from trivial and

would require a separate paper.

3 Estimation in semiparametric threshold autore-

gressive models

This section considers a semiparametric threshold auto–regressive (SEMI–TAR)

model of the form

yt = g(yt−1)I[yt−1 ∈ Cτ ] + αyt−1I[yt−1 ∈ Dτ ] + et

=


g(yt−1) + et if yt−1 ∈ Cτ ,

α yt−1 + et if yt−1 ∈ Dτ ,
(3.1)

where Cτ and Dτ are as defined in (1.1), g(x) is an unknown and bounded function

when x ∈ Cτ , α = 1, and {et} is the same as assumed in (1.1). Let y0 = 0. Model

(3.1) may be used to detect and then estimate structural change from a nonlinear

‘stationary’ regime to a linear ‘nonstationary’ regime.

While the special case of α = 1 of model (3.1) has been mentioned in Karlsen

et al (2007) as an example of a null recurrent process, the asymptotic estimation

theory for model (3.1) has not been studied in the literature. Existing results for the

stationary nonlinear time series models (Tong 1990; Fan and Yao 2003; Gao 2007)

are also not directly applicable to study such SEMI–TAR models. Our interest is to
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study asymptotic behavior of both a nonparametric estimator of g(·) and an OLS

estimator of α.

In order to establish consistent estimates for g(·) and α, we need to introduce

the following assumption.

Assumption 3.1 (i) The invariant measure πs of {yt} has a locally continuous

density ps(y) that is locally strictly positive; that is, ps(y) > 0 for all y ∈ R1.

(ii) Let g(y) be twice differentiable and the second derivative g′′(y) be continuous

at all y ∈ R1.

(iii) Let K(·) be a symmetric probability kernel function with compact support

C(K). The bandwidth parameter h satisfies limn→∞ h = 0, limn→∞ nh = ∞ and

lim supn→∞ n
1+δ0h6 <∞ for some 0 < δ0 <

1
2
.

(iv) In case Cτ is not compact, i.e. Cτ = (−∞, τ ] or Cτ = [τ,∞), |g(y)| ≤ cg|y|
with 0 < cg < 1 as |y| → ∞.

Conditions in Assumption 3.1(i)(ii)(iii) are quite mild conditions (see, for exam-

ple, Assumptions B0 − B3 of Karlsen and Tjøstheim 2001). Condition 3.1(iv) is to

secure stationary type behavior on Cτ .

We need the following lemma; its proof is given in Appendix A below.

Lemma 3.1 Let {yt} be generated by model (3.1). If Assumption 3.1(i)(ii)(iv)

holds, then {yt} is a β–null recurrent Markov chain with β = 1
2
.

Similarly to (2.5), we have

yt − yt−1 = (g(yt−1)− yt−1) I[yt−1 ∈ Cτ ] + et ≡ vt + et. (3.2)

Let µg =
∫∞
−∞ g(y)I[y ∈ Cτ ]πs(dy). Then Lemma A.1(i) below implies that the

following limits hold almost surely,

gv ≡ lim
n→∞

1

T (n)

n∑
t=1

vt = lim
n→∞

1

T (n)

n∑
t=1

(g(yt−1)− yt−1) I[yt−1 ∈ Cτ ] = µg − µ1, (3.3)

where µ1 is as defined in (2.6).

We state the following lemma; its proof is similar to equations (2.7)–(2.9).

Lemma 3.2 Let {yt} be generated by model (3.1). If Assumption 3.1(i)(ii)(iv)

holds, then as n→∞

Pn(r) ≡ 1√
n

[nr]∑
t=1

et +
1√
n

[nr]∑
t=1

vt →D σB(r) +M 1
2
(r) gv ≡ P (r). (3.4)
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Let K(·) be a probability kernel function and h be a bandwidth parameter sat-

isfying Assumption 3.1(ii) above. It is obvious that g(y) and α can be estimated

by

ĝ(y) = ĝ(y, τ) =

∑n
t=1K

(
y−yt−1

h

)
ytI[y ∈ Cτ ]∑n

t=1K
(
y−yt−1

h

)
I[y ∈ Cτ ]

and

α̂ = α̂(τ) =

∑n
t=1 yt yt−1I[y ∈ Dτ ]∑n
t=1 y

2
t−1I[y ∈ Dτ ]

, (3.5)

which imply that

ĝ(y)− g(y) =

∑n
t=1K

(
y−yt−1

h

)
(g(yt−1)− g(y)) I[y ∈ Cτ ]∑n

t=1K
(
y−yt−1

h

)
I[y ∈ Cτ ]

+

∑n
t=1K

(
y−yt−1

h

)
et I[y ∈ Cτ ]∑n

t=1K
(
y−yt−1

h

)
I[y ∈ Cτ ]

,

α̂− 1 =

∑n
t=1 et yt−1I[y ∈ Dτ ]∑n
t=1 y

2
t−1I[y ∈ Dτ ]

. (3.6)

We now state the main results of this section.

Theorem 3.1 Assume that both model (3.1) and Assumption 3.1 hold. Then

as n→∞√√√√ n∑
t=1

K
(
y − yt−1

h

)
I[y ∈ Cτ ] (ĝ(y)− g(y))

d−→ N(0, σ2
2), (3.7)

n (α̂− 1)
d−→ (P 2(1)− σ2)

2
∫ 1
0 P

2(r)dr
, (3.8)

where σ2
2 = σ2

∫
K2(u)du and P (r) = σB(r) + M 1

2
(r) gu. Note that P (r) = σB(r)

when gu = 0.

Proof: Because of Lemma 3.1, the proof of (3.8) is the same as that of (2.15).

Let Wnt(y) =
K

(
y−yt−1

h

)
I[yt−1∈Cτ ]∑n

t=1
K

(
y−yt−1

h

)
I[yt−1∈Cτ ]

. In order to prove (3.7), in view of (3.6), it

suffices to show that as n→∞√√√√ n∑
t=1

K
(
y − yt−1

h

)
I[yt−1 ∈ Cτ ]

n∑
t=1

Wnt(y) (g(yt−1)− g(y))→P 0, (3.9)

√√√√ n∑
t=1

K
(
y − yt−1

h

)
I[yt−1 ∈ Cτ ]

n∑
t=1

Wnt(y) et
d−→ N(0, σ2). (3.10)
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Note that by Taylor expansions, Lemma A.1(i) and Assumption 3.1

1

T (n)h

n∑
t=1

K
(
y − yt−1

h

)
I[yt−1 ∈ Cτ ] = I[y ∈ Cτ ] ps(y)(1 + oP (1)),

1

T (n)h

n∑
t=1

K
(
y − yt−1

h

)
I[yt−1 ∈ Cτ ] (g(yt−1)− g(y))

=
g′(y)h

T (n)h

n∑
t=1

K
(
y − yt−1

h

)
I[yt−1 ∈ Cτ ]

(yt−1 − y)

h

+
g′′(u)h2

2T (n)h

n∑
t=1

K
(
y − yt−1

h

)
I[yt−1 ∈ Cτ ]

(yt−1 − y)2

h2

= g′(y) h
∫
vK(v)dv I[y ∈ Cτ ] ps(y) + oP (h)

+
h2g′′(y)

2

∫
v2K(v)dv I[y ∈ Cτ ] ps(y) + oP (h2)

= oP (h), (3.11)

where u is between y and yt−1, and ps(y) is the density function of the invariant

measure πs of {yt}.

This, along with Lemma A.1(ii) and using Assumption 3.1(iii), implies (3.9).

Let ant(y) =
K

(
y−yt−1

h

)
I[yt−1∈Cτ ]√∑n

t=1
K2

(
y−yt−1

h

)
I[yt−1∈Cτ ]

. We can re–write (3.10) as

√√√√ n∑
t=1

K
(
y − yt−1

h

)
I[yt−1 ∈ Cτ ]

n∑
t=1

Wnt(y)et

=

√√√√√∑n
t=1K

2
(
y−yt−1

h

)
I[yt−1 ∈ Cτ ]∑n

t=1K
(
y−yt−1

h

)
I[yt−1 ∈ Cτ ]

n∑
t=1

ant(y)et. (3.12)

Thus, in order to show (3.10), it suffices to show that as n→∞

n∑
t=1

ant(y)et
d−→ N(0, σ2). (3.13)

To prove (3.13), by a conventional martingale central limit theorem (see, for

example, Corollary 3.1 of Hall and Heyde 1980), it suffices to verify that as n→∞

n∑
t=1

a2nt(y)E[e2t ] →P σ2, (3.14)

n∑
t=1

a4nt(y)E[e4t ] →P 0. (3.15)

13



The proof of (3.14) follows automatically from
∑n
t=1 a

2
nt(y) ≡ 1, while the proof

of (3.15) follows from

∑n
t=1K

4
(
y−yt−1

h

)
(∑n

t=1K
2
(
y−yt−1

h

))2 =
1

T (n)

1
T (n)

∑n
t=1K

4
(
y−yt−1

h

)
(

1
T (n)

∑n
t=1K

2
(
y−yt−1

h

))2 = OP

(
1

T (n)

)
= oP (1)

(3.16)

using Lemma A.1(i). This therefore completes the proof of Theorem 3.1.

Remark 3.1. Compared with Theorem 2.1, Theorem 3.1 shows that while

the parameter estimator α̂ has the same asymptotic distribution as that of α̂2, the

nonparametric estimator ĝ(·) as expected has a rate of convergence slower than

its parametric counterpart α̂1. In addition, Theorem 3.1 shows that the rate of

convergence of ĝ(·) is also slower than that of the corresponding nonparametric

kernel estimator for the stationary case, as shown in Karlsen and Tjøstheim (2001),

Karlsen, MyKelbust and Tjøstheim (2007), and Wang and Phillips (2009).

Other closely related papers in the field of nonparametric and semiparametric

regression estimation involving nonstationary time series include Chen, Gao and Li

(2008), Cai, Li and Park (2009), Gao et al (2009a, 2009b), and Wang and Phillips

(2010).

4 Examples of implementation

This section gives several examples to evaluate the finite–sample performance of the

proposed estimation method in several different cases. There are four simulation

examples and one real date example.

Consider a general threshold autoregressive (TAR) model of the form

yt = α1yt−1I[yt−1 ∈ Cτ ] + α2yt−1I[yt−1 ∈ Cc
τ ] + et, 1 ≤ t ≤ n, (4.1)

where τ = (τ1, τ2), Cτ = [τ1, τ2] for −∞ < τ1 < τ2 < ∞ with both τ1 and τ2 being

the threshold parameters, Cc
τ = (−∞, τ1) ∪ (τ2,∞), and {et} is assumed to be a

sequence of independent and normally distributed random errors with E[e1] = 0

and σ2 = E[e21] = 1. That is, et ∼ N(0, 1). Let y0 = 0.

The unknown parameters α1, α2 and τ are estimated by the ordinary least

14



squares estimators:

α̃1 = α̂1(τ̂) =

∑n
t=1 ytyt−1I[yt−1 ∈ Cτ̂ ]∑n
t=1 y

2
t−1I[yt−1 ∈ Cτ̂ ]

, (4.2)

α̃2 = α̂2(τ̂) =

∑n
t=1 yt yt−1I[yt−1 ∈ Cc

τ̂
]∑n

t=1 y
2
t−1I[yt−1 ∈ Cc

τ̂
]
, (4.3)

τ̂ = arg min
over all τ

σ̂2(τ), (4.4)

where σ̂2(τ) = 1
n

∑n
t=1 (yt − α̂1(τ)yt−1I[yt−1 ∈ Cτ ]− α̂2(τ)yt−1I[yt−1 ∈ Cc

τ ])
2. Let

τ̂ = (τ̂1, τ̂2) for the asymmetrical case.

Example 4.1 consider a symmetrical case of the form Cτ = [−τ, τ ]. An asymmet-

rical bounded case where Cτ = [τ1, τ2] is discussed in Example 4.2 below. Example

4.3 examines the unbounded case where Cτ = (−∞, τ ]. Throughout Examples

4.1–4.3 below, we consider both the cases of |α1| < 1 and |α1| > 1.

• Consider the case of n = 1000, 2000, 5000 and 10000. Let N = 1000 be the

number of replications and α̃i(j) and τ̂(j) be the respective value of α̃i and τ̂

at the j–th replication.

• Calculate the standard deviations of the form

std(α̃i) =

√√√√ 1

N − 1

N∑
j=1

(
α̃i(j)− α̃i

)2
and std(τ̂) =

√√√√ 1

N − 1

N∑
j=1

(
τ̂(j)− τ̂

)2
(4.5)

for i = 1, 2 and Cases A and B separately under N = 1000, where α̃i =

1
N

∑N
j=1 α̃i(j) and τ̂ = 1

N

∑N
j=1 τ̂(j).

Example 4.1 Consider a symmetrical (bounded) threshold autoregressive (TAR)

model of the form

yt = α1yt−1I[|yt−1| ≤ τ ] + α2yt−1I[|yt−1| > τ ] + et, 1 ≤ t ≤ n. (4.6)

This example then considers the following cases.

• Case A: α1 = 1
2
, α2 = 1 and τ = 2.5; and

• Case B: α1 = 3
2
, α2 = 1 and τ = 2.

The simulated results for Example 4.1 are given in Table 4.1 below.
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Table 4.1 Simulation Results for Case A and Case B

Case A std(α̃1) std(α̃2) std(τ̂) Case B std(α̃1) std(α̃2) std(τ̂)

n = 1000 0.1032 0.0144 0.1204 n = 1000 0.2703 0.0026 0.2040

n = 2000 0.0890 0.0059 0.0958 n = 2000 0.2270 0.0013 0.1761

n = 5000 0.0756 0.0015 0.0825 n = 5000 0.1817 0.0006 0.1439

n = 10000 0.0645 0.0007 0.0695 n = 10000 0.1558 0.0003 0.1238

Table 4.1 supports the rate results of Theorem 2.1. Case B has larger standard

errors for α̂1 and smaller standard errors for α̂2, because the explosive behavior on

Cτ in this case leads to more frequent stays in the random walk regime.

Example 4.2 Consider an asymmetrical (bounded) threshold autoregressive (TAR)

model of the form

yt = α1yt−1I[yt−1 ∈ Cτ ] + α2yt−1I[yt−1 ∈ Cc
τ ] + et, 1 ≤ t ≤ n. (4.7)

We are then interested in the following cases:

• Case A: α1 = 1
2
, α2 = 1, τ1 = −3 and τ2 = 2.5; and

• Case B: α1 = 3
2
, α2 = 1, τ1 = −1.5 and τ2 = 1.

The simulated results for Example 4.2 are given in Table 4.2 below.

Table 4.2 Simulation Results for Cases A and B

Case A std(α̃1) std(α̃2) std(τ̂1) std(τ̂2)

n = 1000 0.0694 0.0208 0.2506 0.1396

n = 2000 0.0503 0.0074 0.2029 0.1186

n = 5000 0.0362 0.0024 0.1634 0.0754

n = 10000 0.0359 0.0008 0.1401 0.0659

Case B std(α̃1) std(α̃2) std(τ̂1) std(τ̂2)

n = 1000 0.7606 0.0028 0.2825 0.3146

n = 2000 0.7438 0.0015 0.2501 0.2937

n = 5000 0.6596 0.0006 0.2155 0.2799

n = 10000 0.6168 0.0003 0.1938 0.2535
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Similarly to Table 4.1, Table 4.2 also demonstrates that the proposed estima-

tion method still works well numerically even when two truncation parameters are

involved in the model.

Example 4.3 Consider a threshold autoregressive (TAR) model with unbounded

Cτ of the form

yt = α1yt−1I[yt−1 ≤ τ ] + α2yt−1I[yt−1 > τ ] + et, 1 ≤ t ≤ n. (4.8)

This example also considers the following cases:

• Case A: α1 = 1
2
, α2 = 1, τ = 3; and

• Case B: α1 = 3
2
, α2 = 1, τ = 3.

The simulated results for Example 4.3 are given in Table 4.3 below.

Table 4.3 Simulation Results for Case A and Case B

Case A std(α̃1) std(α̃2) std(τ̂)

n = 1000 0.0413 0.1177 0.1595

n = 2000 0.0373 0.0475 0.1133

n = 5000 0.0192 0.0155 0.0677

n = 10000 0.0169 0.0052 0.0556

Case B std(α̃1) std(α̃2) std(τ̂)

n = 1000 0.2798 0.0034 0.1830

n = 2000 0.1712 0.0012 0.1530

n = 5000 0.1551 0.0005 0.1453

n = 10000 0.1340 0.0002 0.1247

Table 4.3 again supports the rate results of Theorem 2.1. Note that Case B is

not covered by Assumption 3.1(iv), but it works well because the process “explodes”

from (−∞, τ ] into the random walk part [τ,∞).

In the following example, we consider a semiparametric threshold autoregressive

model and then study the finite sample performance of the proposed semiparametric

estimation method.
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Example 4.4 Consider a semiparametric threshold auto–regressive (SEMI–TAR)

model of the form

yt = g(yt−1)I[|yt−1| ≤ τ ] + αyt−1I[|yt−1| > τ ] + et, (4.9)

where τ = 2.5 and et ∼ N(0, 1). Let y0 = 0.

Let K(x) = 1
2
I[−1,1](x). We then estimate g(y) and α by

ĝ(y, τ̂) =

∑n
t=1K

(
y−yt−1

ĥcv

)
ytI[|yt−1| ≤ τ̂ ]

∑n
t=1K

(
y−yt−1

ĥcv

)
I[|yt−1| ≤ τ̂ ]

, (4.10)

α̃ = α̂(τ̂) =

∑n
t=1 yt yt−1I[|yt−1| > τ̂ ]∑n
t=1 y

2
t−1I[|yt−1| > τ̂ ]

, (4.11)

τ̂ = arg min
over all τ

σ̂2(τ), (4.12)

where σ̂2(τ) = 1
n

∑n
t=1 (yt − ĝ(yt−1, τ)I[|yt−1| ≤ τ ]− α̂(τ)yt−1I[|yt−1| > τ ])2, and ĥcv

is chosen such that

ĥcv = arg min
h∈Hn

1

n

n∑
t=1

(yt I[|yt−1| ≤ τ̂ ]− ĝ−t(yt−1;h) I[|yt−1| ≤ τ̂ ])2 , (4.13)

with ĝ−t(yt−1;h) =

∑n

s=1, 6=tK

(
yt−1−ys−1

h

)
ys I[|ys−1|≤τ̂ ]∑n

s=1, 6=tK

(
yt−1−ys−1

h

)
I[|ys−1|≤τ̂ ]

and Hn =
[
n−1, n−(1−δ0)

]
, in which

0 < δ0 < 1 is chosen such that ĥcv is achievable and unique in each individual case.

We are interested in the following cases:

• Case A: g(y) = 1
1+y2

, α = 1 and τ = 2.5; and

• Case B: g(y) = y2, α = 1 and τ = 2.5.

Consider the cases of n = 250, 600 and 1000. Let ĝj(y) be the estimated function

of ĝ(y) at the j–th replication and yt(j) be the generated value of yt at the j–th

replication.

• Calculate the standard deviations of the form

std(α̃) =

√√√√√ 1

N − 1

N∑
j=1

(
α̃(j)− α̃

)2

for Cases A and B separately under N = 1000, where α̃ = 1
N

∑N
j=1 α̃(j).
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• For the case of n = 250, 600 and 1000, N = 1000 and Cases A and B, calculate

the average of the standard deviations of the form

std(ĝ) =

√√√√√ 1

N

1

n− 1

N∑
j=1

n∑
t=1

(
ĝj(yt−1(j))− ¯̂gt

)2
,

where ¯̂gt = 1
N

∑N
j=1 ĝj(yt−1(j)).

Table 4.4 Simulation Results for Case A and Case B

Case A std(α̃) std(ĝ) std(τ̂) Case B std(α̃) std(ĝ) std(τ̂)

n = 250 0.0058 0.2304 0.6428 n = 250 0.1120 0.3305 0.2625

n = 600 0.0027 0.1944 0.6361 n = 600 0.0371 0.3255 0.1392

n = 1000 0.0018 0.1488 0.6005 n = 1000 0.0130 0.3106 0.1389

Table 4.4 also shows that the rate of α̃ to α is much faster than that of ĝ

to g as shown in Theorem 3.1. Unlike Examples 4.1–4.3, the simulation study in

Example 4.4 is more computationally intensive. This is because of the involvement

of the nonparametric kernel estimation procedure and the cross–validation (CV)

bandwidth selection method. Due to this, Table 4.4 provides only the simulation

study results for the sample sizes of up to n = 1000. Meanwhile, we have only used

the CV selection method in practice. Theoretical discussion about such an issue

requires further study and is therefore left for future research.

Example 4.5 Finally, as a real data illustration, we now look at the 2–year (x1t)

and 30–year (x2t) Australian government bonds, representing short–term and long–

term series in the term structure of interest rates. The time frame of the study is

January 1957 to March 2009, with 627 observations for each of xit.

Similarly to Tsay (1998), we also employ the 3–month moving–average “spread”

of logged interest rate as yt, where

y1 = s1, y2 =
s1 + s2

2
and yt =

st + st−1 + st−2
3

(4.14)

for t ≥ 3, in which st = z2t − z1t with zit = ln(xit) − ln(xi,t−1). The plot of yt is

given in Figure 2 below.
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Figure 1: Plot of the time series yt

Our estimation method also suggests a threshold model of the form

yt = 0.8615 yt−1I(yt−1 ∈ Cτ ) + 0.9925 yt−1I (yt−1 ∈ Cc
τ ) + et, (4.15)

where Cτ = [−0.128,−0.072] and σ̂2 = 3.1155× 10−4.

Model (4.15) therefore implies

yt − yt−1 = 0.1385 yt−1I(yt−1 ∈ Cτ )− 0.0075 yt−1I (yt−1 ∈ Cc
τ ) + et. (4.16)

Model (4.16) shows that {yt} is nonstationary but does not necessary follow a

random walk process, since the value of 0.1385 is significantly different from 0.

The finding in model (4.16) provides support from an empirical application point

of view that there is some need to study a nonstationary threshold model of the form

(1.1).

5 Conclusions and discussion

This paper has considered two classes of threshold autoregressive models with possi-

ble nonstationarity. The first one is a class of parametric threshold auto–regressive

(TAR) models with possible nonstationarity. The slope parameters have been con-

sistently estimated. The second class is a new class of semiparametric threshold

auto–regressive (SEMI–TAR) models. We have estimated both the unknown slope

parameter and unknown function using a semiparametrically consistent method.
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One issue that has not been addressed is how to establish an asymptotic theory

for τ̂ , a consistent estimate of τ , in this kind of nonlinear and nonstationary situa-

tion. While it is anticipated that an asymptotically normal estimator of τ may be

established (similar to Theorem 2 of Chan 1993), detailed assumptions and rigorous

proofs may involve both new tools and more technicalities and therefore are left for

future research.

Another issue is possible extensions of the current discussion for the first–order

univariate case to higher–order and vector models. If the latter is possible, one could

introduce a class of threshold cointegration models with nonstationarity. Further

discussion is also left for future research.
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7 Appendix A

In order to make this paper self–contained, we introduce some general results about β–null

recurrent Markov chains in this appendix.

Let {yt} be a null recurrent Markov chain. We have n observations of this process and

consider the sum

Sn(g) =
n∑
j=0

g(yj , . . . ,j+r−1 ) (A.1)

for some function g(·). We let π be an invariant measure for {yt} and

Sn(g) = U0 +

T (n)∑
k=1

Uk + U(n) (A.2)

be the decomposition of Sn(g) as in (3.23) of Karlsen and Tjøstheim (2001) (hereafter KT).

Moreover, T (n) is the number of regenerations in the time interval [0, n]. We also need a

notation for the moments w.r.t. the invariant measure π. Note from the decomposition

(A.2) that

Uk = Uk(g) =
τk∑

τk−1+1

g(yj , . . . , yj+r−1), k = 1, 2, . . . , (A.3)

where the τk-s are regeneration times. The U ′ks are identically distributed and are (r−1)–

dependent. (If r = 1 they are independent). If they exist, we denote the expectation and

variance of these terms by µ(g) = E(Uk(g)) and σ2(g) = var(Uk(g)). Note that for r = 1,

µ(g) =
∫
g(x)πs(dx) and similarly for σ2(g). For r > 1

µ(g) = πs(g)
.
=

∫
πs(dx1)P (x1, dx2) · · ·P (xr−1, dxr)g(x1, . . . , xr), (A.4)

where s refers to the small function used in the minimization condition (see (3.4) of KT

2001) and P (·, ·) is the transition probability of the chain.

Finally, as in equation (4.4) of KT we introduce the notation

σ̄2 = σ̄2(g) =

(r−1)∑
k=−(r−1)

cov(U1+|k|(g), U1(g)). (A.5)

We are now ready to formulate the lemmas:

Assumption A.1. Assume that the minorization condition ((3.4) of KT) is fulfilled

and that {yt} is β–null recurrent as defined in Definition 3.2 and in Theorem 3.1 of KT.

We let u(n) = nβLs(n) where 0 < β < 1 and the slowly varying function Ls(n) is as in

the tail condition (3.16) of KT.
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Lemma A.1 Let Assumption A.1 hold. (i) Let ||g|| ∈ L1
r(πs) and also the process have

an arbitrary initial distribution λ. Then as n→∞

Sn(g)

T (n)
→ πs(g) almost surely (a.s.). (A.6)

(ii) Then for n large enough, the inequality n
1
2
−ε0 ≤ T (n) ≤ n

1
2
+ε0 holds with probability

one for some 0 < ε0 <
1
4 .

Proof. The proof of (i) follows from that of Lemma 3.2 of KT (2001) while the proof

of (ii) follows from Lemma 3.4 of KT (2001).

Lemma A.2 Let Assumption A.1 hold. If (i) µ(|g|) <∞ and (ii) there exists an m > 1

so that E |U(g)− µ(g)|2m ≤ dm for some dm > 0, then

(∆n, Tn)→D2 (B(Mβ),Mβ), with B and Mβ independent. (A.7)

where the symbol “ →D2 ” means weak convergence in cadlag space (see, for example,

the appendix of KT 2001), Tn =
{
T ([nt])
u(n) : t ≥ 0

}
, ∆n(t) = u−1/2(n)σ̄−1(g){S[nt](g) −

µ(g)T ([nt])}, [nt] is the integer function and Mβ(t) is the Mittag-Leffler process as defined

in KT on page 388.

Proof. The proof is essentially the same as the proof of Theorem 4.1 in KT but much

simpler. As in that proof one introduces the scaled variables

Wk(g) = σ̄−1(Uk(g)− µ(g)). (A.8)

(note that the existence of σ̄2 follows from condition ii), the definition of σ̄2 and the

Schwartz inequality.) From condition ii) it also follows that there exists an m > 1 such

that E(W 2m) < d′m for some constant d′m from which

n−m
[nt]∑
k=1

E(W 2m
k (g) ≤ d′mtn−m−1 = o(1). (A.9)

It follows from standard limit theorems that

Qn(t)
.
= n−1/2

[nt]∑
k=1

Wk(g)→D B(t). (A.10)

Tightness is then proved exactly as in KT (note that there is a misprint in the last

formula on page 393 of KT: W2k−1 should be W2k−i). It follows that the convergence can

be strengthened to convergence in D2. We can neglect the edge terms

δg,n(t) ≡ u−1/2(n)σ̄−1(g){U0(t) + U(n)(t)}. (A.11)
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using the technique of part 2 of the proof of KT. The final part of the proof of KT only deals

with the process Tn induced by the number of regenerations T (n), and this is completely

independent of the bandwidth considerations introduced in KT. The lemma follows.

The limit distribution in Lemma A.2 is non-Gaussian. However, as in Theorem 4.2 of

KT (2001), a Gaussian distribution can be obtained by a stochastic normalization. We

let TC(n) denote the number of visits of Xt to a small set C in the time period [0, n]. We

have that TC(n)/T (n) converges with probability 1 to πs(C). We now have the following

lemma.

Lemma A.3 Assume that the conditions of Lemma A.2 hold and let C be a small set.

Then

T
1/2
C (n)π1/2s (C)σ̄−1(g){T−1C (n)Sn(g)− π−1s (C)µ(g)} d−→ N(0, 1). (A.12)

In Lemma A.2 the process B(Mβ(t)) enters. Concerning the existence of moments we

have the following lemma.

Lemma A.4 Let k be a positive integer. Then, E
[
B(Mβ(t))2k+1

]
= 0, and

E
[
B(Mβ(t))2k

]
= (2k − 1)(2k − 3) · · · 1 · tβk/(Γ(1 + β))k. (A.13)

Proof. We use double expectation and the independence of the processes B and Mβ

to obtain

E
[
B(Mβ(t))2k

]
= E[E(B(Mβ(t))2k|Mβ(t))] = E[(2k − 1)(2k − 3) · 1Mβ(t)k]

= (2k − 1)(2k − 3) · · · 1 · tβk/(Γ(1 + β))k,

so that all moments exist.

8 Appendix B

This appendix provides the detailed proofs of Lemmas 2.1 and 2.3 given in Section 2 and

Lemma 3.1 given in Section 3.

Proof of Lemma 2.1: Since the proof follows from that of Lemma 3.1 for the case

of g(y) = α1y, we omit the detail here.

Proof of Lemma 2.3: Recall from Lemma 2.2 that as n→∞

Qn(r) =
1√
n

[nr]∑
t=1

ut +
1√
n

[nr]∑
t=1

et →D σB(r) +M 1
2
(r) mu ≡ Q(r) (B.1)
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uniformly in 0 < r ≤ 1.

We then start by proving (2.10) and (2.11). It follows from Lemma A.1(i) that as

n→∞
1

T (n)

[nr]∑
t=1

yit−1I[yt−1 ∈ Cτ ]→P µi for i = 1, 2, (B.2)

which implies the proof of (2.10).

Let bnt = yt−1I[yt−1∈Cτ ]√∑n

s=1
y2t−1I[yt−1∈Cτ ]

. In order to prove (2.12), it suffices to show that as

n→∞
n∑
t=1

 yt−1I[yt−1 ∈ Cτ ]√∑n
s=1 y

2
t−1I[yt−1 ∈ Cτ ]

 et d−→ N
(
0, σ2

)
, (B.3)

which follows from a conventional central limit theorem (see, for example, Corollary 3.1

of Hall and Heyde 1980) for the case where {et} is a sequence of i.i.d. random errors by

verifying

n∑
t=1

b2ntE[e2t ] →P σ2 and
n∑
t=1

b4nt(y)E[e4t ]→P 0. (B.4)

The first part follows automatically from
∑n
t=1 b

2
nt = 1 while the second part of (B.4)

follows from ∑n
t=1 y

4
t−1I[yt−1 ∈ Cτ ](∑n

t=1 y
2
t−1I[yt−1 ∈ Cτ ]

)2 =
1

T (n)

1
T (n)

∑n
t=1 y

4
t−1I[yt−1 ∈ Cτ ](

1
T (n)

∑n
t=1 y

2
t−1I[yt−1 ∈ Cτ ]

)2
= OP

(
1

T (n)

)
= oP (1) (B.5)

using Lemma 2.1 and then Lemma A.1(i).

We then prove equations (2.11) and (2.13). Recall that yt =
∑t
s=1 us +

∑t
s=1 es. We

now start to prove (2.11). Let Xn(r) = 1√
n

∑[nr]
s=1 (us + es). By the same arguments as in

the proof of Theorem 3.1(a) of Phillips (1987), we have as n→∞

1

n2

n∑
t=1

y2t−1I[|yt−1| ∈ Dτ ] =
1

n2

n∑
t=1

y2t−1 −
1

n2

n∑
t=1

y2t−1I[yt−1 ∈ Cτ ]

=
1

n2

n∑
t=1

y2t−1 + oP (1) (B.6)

=

∫ 1

0
X2
n(r)dr + oP (1) (B.7)

d−→
∫ 1

0
Q2(u)du,

where (B.6) follows from the fact that 1
T (n)

∑n
t=1 y

2
t−1I[yt−1 ≤ τ ] →P µ2 by Lemmas 2.1

and A.1(i), and Lemma 2.2 has been used in (B.7). The proof of (2.11) is now completed.
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Recall ηt = ut + et. We finally prove (2.13). Note that

1

n

n∑
t=1

yt−1etI[yt−1 ∈ Dτ ] =
1

n

n∑
t=1

yt−1et −
1

n

n∑
t=1

yt−1etI[yt−1 ∈ Cτ ]

=
1

n

n∑
t=1

yt−1et + oP (1) (B.8)

=
1

n

n∑
t=1

yt−1ηt −
1

n

n∑
t=1

yt−1ut + oP (1)

=
1

n

n∑
t=1

yt−1ηt −
(α1 − 1)

n

n∑
t=1

y2t−1I[yt−1 ∈ Cτ ] + oP (1)

=
1

n

n∑
t=1

yt−1ηt + oP (1) (B.9)

=
1

n

n∑
t=2

(
t−1∑
s=1

ηs

)
ηt + oP (1)

=
1

2n

n∑
t=1

(
n∑
s=1

ηs

)
ηt −

1

2n

n∑
t=1

η2t + oP (1)

d−→ 1

2

(
Q2(1)− σ2

)
, (B.10)

where Q(r) = σB(r) +M 1
2
(r) mu, equation (2.12) has been used in (B.8), Lemma A.1(i)

has been used in (B.9) and Lemma 2.2 has been used in (B.10).

Therefore, the proof of Lemma 2.3 is completed.

Proof of Lemma 3.1: We shall use Theorem 3.1 of Karlsen and Tjøstheim (2001)

(KT) to show that {yt} of (B.11) below is β–null recurrent with β = 1
2 as in the random

walk case. Recall the structure of model

yt = g(yt−1) I[yt−1 ∈ Cτ ] + αyt−1 I[yt−1 ∈ Dτ ] + et, (B.11)

where Cτ is either a compact subset of R1 or Cτ = (−∞, τ ] or Cτ = [τ,∞) and Dτ is the

complement of Cτ .

Then the process {yt} is null recurrent (see Appendix B2 of Meyn and Tweedie 1994).

Note that the proof in that book is easily modified to the situation of model (3.1) and a

bounded g(·), see the remark at the bottom of page 303). This implies that there exists

an invariant measure π and that the process recurs with probability 1, but with infinite

expected recurrence time. The next step is to establish that the minorization condition

(3.4) of KT holds. We first look at the case where Cτ is compact. Then the construction

of Example 3.1 of KT can be used. The minorization condition then follows directly from

Example 3.1 of KT with f(x) of that paper given by f(x) = g(x)I(x ∈ C)+x(1−I(x ∈ C))

with C = Cτ since it is assumed that the distribution of et is absolutely continuous with
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respect to Lebesgue measure. The fact that the minorization condition holds means that

the split chain can be used, and as in KT, {Sα} is used to denote the recurrence times.

They are iid and because of null recurrence P (Sα > n) must be asymptotically larger than

Ls(n)/n1+ε, where Ls(n) is slowly varying and ε > 0.

We are free to choose any small set K0 as a set of regeneration in (B.11). We choose

K0 as Cτ if Cτ is compact. This is because compact sets are small if the distribution of

{et} is absolutely continuous with respect to Lebesgue measure. There are two ways in

which {yt} may regenerate:

1. The process {yt} does not leave the set Cτ before it regenerates. Let An be the

event that yt stays in Cτ in at least n + i steps and regenerates at step n + i for i ≥ 1.

The time S′ to regeneration satisfies

P (S′ > n) = P (An) ≤
∞∑

i=n+1

ρi ≤Mρn+1 = o(n−γ)

for any 0 < γ < 1, where 0 < M < ∞ is an absolute constant. Here ρ = ρ1ρ2 where

ρ1 = supx∈Cτ P (x,Cτ ), where P (·, ·) is the transition probability of the chain. Note that

0 < ρ1 < 1. Similarly, ρ2 = 1− a, where a is defined in Example 3.1 of KT and 0 < a < 1.

From this, comparing to O(n−γ), it is seen that these recurrence times do not contribute

to the tail bahaviour of Sα.

2. The process {yt} does leave the set Cτ before it regenerates. Outside the set Cτ ,

{yt} behaves as a random walk, and therefore according to the paper by Kallianpur and

Robbins (1954) and the fact that what goes on inside the set Cτ can be neglected compared

to a probability of order O(n−1/2), if S′′ is such a recurrence time, P (S′′ > n) = O(n−1/2).

This means that the tail behaviour of Sα is controlled by the tail behaviour of S′′ and that

{yt} is β–null recurrent with β = 1
2 .

Next we look at the case where Cτ = (−∞, τ ] or [τ,∞). Without loss of generality, we

may assume Cτ = (−∞, τ ] In this case we let the set of regeneration be the set K0 = [τ ′, τ ]

where τ ′ can be taken to be any real number smaller than τ . From Assumption 3.1(iv), we

may assume that {yt} behaves as a stationary process to the left of τ ′ and like a random

walk to the right of τ .

Again it follows from Appendix B2 of Meyn and Tweedie (1994) that {yt} is null

recurrent. (In fact Meyn and Tweedie has g(·) linear). By the same reasoning as above,

option 2 then splits into two cases: 2a) where {yt} leaves K0 going to the stationary part

of {yt} and then does not enter the random walk part before it regenerates. The associated

recurrence time S′′′ has tail behaviour controlled by P (S′′′ > n) = O(Ls(n)/n1+ε). The
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possibility 2b) is the case where the random walk part is visited before it regenerates, but

here P (S′′ > n) = O(n−1/2), as time spent in the stationary part and in the set Cτ can

be neglected as far as tail behaviour is concerned. This implies again that {yt} is β–null

recurrent with β = 1
2 .

Remark: The process {yt} may even be explosive on the left–hand side, if it explodes

in the direction of K0 and the random walk regime. This is illustrated by the simulated

example in Example 4.3.
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