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Not so long ago there was something of a consensus regarding the conceptual foundations of cognitive 
science. Participants in this multidisciplinary enterprise were united in the conviction that natural 
intelligence is to be explained in computational terms. Furthermore, since “there is no computation 
without representation” (Fodor 1975, p.34), it seemed obvious that cognitive explanation requires mental 
representation. Computation and representation were the twin foundation stones on which the whole 
business was based (see, e.g., Thagard 2008). 

These days things are very different. Representation is under attack from several quarters. There have 
always been sceptics about the prospects of naturalizing the mysterious “aboutness” of mental states, but 
attention has recently turned to concerns about the explanatory role of mental representation in cognitive 
science. Two lines of argument stand out. The first stems from the worry that semantic properties are, by 
nature, incapable of shaping cognitive processes. It was precisely this worry that prompted Stephen Stich 
to advocate replacing the computational theory of mind with the syntactic theory of mind (1983). The 
second derives from the perceived failure of the computational theory of mind to deliver on its promise of 
explaining intelligence, and correlatively, the failure of traditional approaches in AI to construct deeply 
intelligent systems. Some theorists regard this problem as so severe that cognitive science should abandon 
its flirtation with representation: “Representation is the wrong unit of abstraction in building the bulkiest 
parts of intelligent systems” (Brooks 1991, p.140).  

These arguments have begun to marginalise representation in cognitive science. There is talk of a Kuhnian-
style paradigm shift in which the computational theory of mind will give way to dynamical systems theory, 
or some other approach that emphasises the embodied and embedded nature of cognition.1

We think this anti-representationalist movement marks a wrong turn in cognitive science. Without 
representation, cognitive science is bereft of its principal tool for explaining natural intelligence. It is thus 
incumbent on admirers of cognitive science to rescue representation from its threatened extinction. This 
chapter is written with that aim in mind. 

 What unites 
these positions is scepticism about explaining intelligence in computational terms. Instead, cognition is 
conceived as a coupling between organism and environment, such that the world acts as its own 
representation (e.g., Brooks 1991, O’Regan & Noë 2001). This is an extraordinary situation, given the 
pivotal role of the concepts of representation and computation in the development of cognitive science. 

Our diagnosis is that anti-representationalism has its roots in an overly restrictive take on mental 
representation that arose in the 1960s and 1970s. It was during this period that digital computers 
superseded analog computers, and in the process profoundly influenced our thinking about the mind. We 
will examine how digital computation has shaped our understanding of mental representation, and 
consider what cognitive science might have looked like had it arisen in the 1930s and 1940s, during the 
heyday of analog computation. Specifically, we will flesh out an account of representation based on careful 
analysis of the Differential Analyzer: the world’s first general-purpose computer, and an analog device to 
boot. Our account undermines anti-representationalism, which turns out to be an attack on digital forms of 
representation, rather than representation tout court. 

                                                                 

1 See, e.g., Beer 1995; Brooks 1991; Clark 1997a, 1997b; Keijzer 2002; Port & Van Gelder 1995; Van Gelder 1995; 
Wallace et al 2007; Wheeler 2005. 
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1. Revisiting the Foundations of Cognitive Science 

The birth of cognitive science (and its technology-focused fellow traveller, the field of artificial intelligence) 
is often identified with the Dartmouth conference of 1956.2

So when cognitive scientists first proposed that cognition is computation, it’s no surprise they turned to the 
theory of digital computers to flesh out this conjecture. To solve a problem by digital means one first 
develops a formal description of the problem domain, and then physically implements that description. A 
formal description comprises a set of symbols that represent the elements of the target domain, together 
with syntactic rules that describe the behaviour of those elements. A physical implementation of a formal 
description consists of a device whose internal states realize the symbols in the description, and whose 
state-transitions satisfy the syntactic rules.

 Whether or not such a specific dating is 
possible, what was ultimately responsible for establishing the field was a series of intellectual and technical 
achievements during the 1950s and 1960s. Noam Chomsky’s (1959) lacerating critique of B. F. Skinner’s 
Verbal Behavior is among the former, because it sounded the death knell for the behaviourism that had 
dominated psychology in the first half of the twentieth century. And chief among the latter was the rapid 
development of the electronic digital computer. A number of important innovations took place at this time, 
including the development of the von Neumann, stored-program architecture. But the efflorescence of 
digital computers was largely the result of a technical breakthrough—the introduction of the transistor as 
the basic computing element. As a result, digital computers were immediately smaller, faster, cheaper to 
produce, and more reliable. 

3

When cognitive science looked to computer science for a model of cognition, it was this familiar picture of 
rule-governed symbol manipulation that emerged. And despite various developments in cognitive science 
since that time, including the appearance of connectionism in the 1980s, this conception of cognition has 
stuck. 

 

However, the history of computer science has two strands: digital and analog. Digital computing has its 
origin in the methods of arithmetic. The first digital computers were devices such as the abacus, which 
appeared in Babylonia around 300 BC. Analog computation originated with non-symbolic graphical and 
geometric methods. The earliest known analog computer ― the Antikythera mechanism, used to calculate 
astronomical positions ― was built in about 100 BC (Bromley 1990). During the 1930s and 1940s, computer 
science was dominated by mechanical analog computers. And contrary to the popular view that analog 
computers are all “special-purpose” devices, the first general-purpose, automatic computer was actually an 
analog machine: the Differential Analyzer developed by Vannevar Bush at MIT in the 1930s.  

The rapid advance of electronic technology during the Second World War enabled digital computers to 
perform numerical calculations at speeds sufficient to rival analog devices. But it wasn’t until the 1960s, 
with the dramatic reduction in costs that accompanied the development of transistorised circuits, that 
digital computers largely supplanted analog devices. Indeed, prior to this time, analog computers were 
often preferred, particularly in applications where accurate real-time calculations were required (Small 
1993). 

Given that the emergence of digital computation is best explained as a result of a technical innovation, 
rather than a conceptual revolution, it is worth considering what cognitive science might have looked like 
had it been founded on an analog conception of cognition. In particular, what account of representation 
might have emerged from the analog computational framework? In the next section we will start to 
explore this question by revisiting the distinction between analog and digital computation.  

2. Distinguishing between Digital and Analog Computation 

The relationship between digital and analog computation is subject to some confusion. It’s often claimed 
that the essential difference between the two is that digital computers use discrete variables to represent 
their targets (e.g., high and low voltage states), whereas analog computers use continuous variables. This 
way of dividing things up appears to be based on the view that a physical system performs a computation 
just in case its operation can be interpreted as implementing some function. Churchland et al express the 
idea as follows: 

                                                                 

2 See, e.g., Copeland 1993, p.8. 
3 Haugeland 1985 is the classic philosophical account of formal descriptions and their physical realization. 
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[W]e can consider a physical system as a computational system just in case there is an 
appropriate (revealing) mapping between some algorithm and associated physical variables. 
More exactly, a physical system computes a function f(x) when there is (1) a mapping between 
the system’s physical inputs and x, (2) a mapping between the system’s physical outputs and y, 
such that (3) f(x) = y. (1993, p.48) 

This view of computation suggests the following way of distinguishing between digital and analog 
computers: a physical system is a digital computer if its state variables map onto a discrete function, an 
analog computer if its state variables map onto a continuous function. Despite the tidiness of this scheme, 
and a certain degree of acceptance within the computer science community, we believe this way of 
proceeding is deeply mistaken. It fails on two grounds. 

First, there is good reason to reject the idea that computation is merely a matter of implementing a 
function. Since all law-governed physical systems can be interpreted as implementing some function or 
other, this view leads to the conclusion that all physical systems are computational. But the concept of 
computation was originally introduced into cognitive science as a way of distinguishing two classes of 
causal processes: those characteristic of systems (such as ovens, cups of tea, and cyclones) that show no 
signs of intelligence, and those exhibited by intelligent systems alone. Computational processes are 
supposed to be special in some way—in a way, moreover, that provides us with some explanatory 
purchase on the problem of intelligent behaviour. Implementing a function is a ubiquitous feature of 
nature, so characterizing computation in this way undermines the motivation for introducing the concept 
in the first place.4

Secondly, recourse to the divide between discrete and continuous variables is at odds with the way 
computer scientists themselves have generally drawn the analog/digital distinction. Consider, for example, 
the familiar tactic of representing a physical variable as a curve on the plane. If we plot the velocity of a 
moving object against time, it is possible to compute the distance it travels by measuring the area under 
the curve, or its acceleration at some instant by constructing a tangent to the curve (

  

Figure 1).  

Figure 1 about here. 

These computations employ an analog representing vehicle, a 2-d curve plotted against a pair of linear 
axes. What makes this representation analog is the existence of a relation-preserving mapping between the 
curve and its target. Velocity is represented as the projection of the curve onto the y-axis, such that 
relations among velocities correspond to relations among those points. If the velocity at some time t3 is 
greater than the velocity at t1, then its representative point v3 will be further along the vertical axis than v1; 
if the velocity at t2 is mid-way between the first two velocities, then v2 will lie between v1 and v3, and so on 
(Figure 1). In other words, there is a simple physical analogy between the curve and the variable it 
represents. Such analogies are responsible for the effectiveness of both special-purpose analog devices, 
such as scale models, and general purpose analog computers such as the Differential Analyzer (as we will 
demonstrate). 

Classic texts in engineering and computer science such as Analog Computation (Jackson 1960), Basics of 
Analog Computers (Truit & Rogers 1960) and Analog Methods in Computation and Simulation (Soroka 
1954) make precisely this point. 

Devices that rely…on the analogous relationships that subsist between the physical quantities 
associated with a computer and the quantities associated with a problem under study are called 
analog computers. (Jackson 1960, p.1) 

All [analog computers] have one characteristic in common ― that the components of each 
computer…are assembled to permit the computer to perform as a model, or in a manner 
analogous to some other physical system. (Truit & Rogers 1960, p.3) 

The term analog means similarity of properties or relations without identity. When analogous 
systems are found to exist, measurements or other observations made on one of these systems 
may be used to predict the behaviour of the others. (Soroka 1954, p.v) 

                                                                 

4 For further discussion see O’Brien & Opie 2006. We there suggest an alternative characterization of computation that 
avoids this criticism. 
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What these authors are suggesting is that an analog computer is a device designed to exploit an analogy 
between the physical properties of a system of representing vehicles and some target system. Digital 
computers don’t work that way, instead deploying symbolic vehicles whose physical properties stand in an 
arbitrary relationship to the objects they represent.5 The distinction between continuous and discrete 
variables is not fundamental to the relationship between analog and digital computation, because analog 
representation need not involve continuous variables. Modern analog clocks, for example, represent time 
via the angular position of hands on a dial. But such clocks typically represent time to a resolution of no 
better than a second, because their hands move in discrete steps around the dial.6

3. The Differential Analyzer 

  

Most early analog computers were special-purpose devices. They were designed to perform computations 
related to a particular problem or system. For example, during the 1870s Lord Kelvin invented an analog 
device that determined the components of tidal variation by performing a Fourier analysis of tide height 
records. Kelvin’s Harmonic Analyzer used a system of disk-and-ball integrators developed by his brother 
James Thomson (Bromley 1990, pp.172-4). In the 1910s and 1920s, Hannibal Ford produced a number of 
very accurate analog computers for determining the range of moving targets. These were used extensively 
in ship-to-ship naval gunnery and later for anti-aircraft fire control (Clymer 1993). But these sophisticated 
mechanical computers were designed with a narrow range of applications in mind. Scientists and 
engineers, who sought to develop mathematical models unhindered by the limits of analytic techniques, 
were sorely in need of general-purpose computers. 

In 1876, Kelvin discovered that by creating a feedback connection between two integrators he could solve 
linear second-order differential equations. He also saw how to generalize the feedback principle to 
differential equations of any order, but technical difficulties prevented him from constructing a working 
model (Bromley 1990, pp.174-7). Fifty years later, Vannevar Bush and his students independently 
developed an electromechanical device capable of solving second-order equations. Again, the original 
impetus had been to solve equations connected with specific physical systems7

Figure 2

, but the result was a 
general-purpose device. Like Kelvin, Bush was aware of the need to generalize to higher-order systems of 
equations. The key to Bush’s success was the introduction of mechanical torque amplifiers (a suggestion of 
his student Harold Hazen) and highly accurate disk-and-wheel integrators. Torque amplifiers permit a series 
of integrators to drive one another despite their inherently limited output ― the very problem that had 
hindered Kelvin’s work (Owens 1986, pp.66-70). With these innovations in place, Bush and his colleagues 
were able to build the first Differential Analyzer, a mechanical analog computer capable of quickly and 
accurately solving differential equations of any desired order.  

 about here. 

Bush’s computer consisted of a long table criss-crossed by a series of rotating shafts (Figure 2). On one side 
of the table were six disk-and-wheel integrators interlinked by torque amplifiers. On the opposite side were 
a set of boards, some used to graph output variables, others to generate input via an operator who traced 
a graph of the input function, thereby governing the rotation of a shaft. Each shaft was associated with a 
variable, and by using geared connections between them it was possible to add, subtract, multiply, divide 
and integrate variables. 

Figure 3 about here. 

The heart of a Differential Analyzer is the disk-and-wheel integrator. This device takes any variable as input 
and produces its integral as output. It consists of a metal disk, and a small wheel oriented at right angles to 
the disk such that rotation of the disk causes the wheel to rotate. The wheel is also free to move along the 
radius of the disk, its position determined by the lateral movement of a connecting shaft (Figure 3). 
Suppose the disk turns through the angle ∆x. If the radius of the wheel is r and its distance from the centre 
of the disk is f, then: 
                                                                 

5 This implies that symbols don’t carry their meaning intrinsically, but acquire meaning by virtue of how they are 
manipulated. For example, numerals represent numbers not because of their physical form, but because we operate 
on them according to syntactic rules that support a numerical interpretation. See Section 4 for further details. 
6 See Lewis (1971) for further examples of discrete analog representation. 
7Among other things, Bush and his students investigated long-distance transmission lines and vacuum-tube circuits. 
See Owens 1986, pp.66-70, for further details. 



Representation in Analog Computation Page 5 

𝑓∆𝑥 = 𝑟∆𝑦 

This expresses the fact that the length of the path traced out on the disk by the rotating wheel must equal 
the arc on the wheel itself. In the Differential Analyzer the rotation of the disk indirectly governs the lateral 
movement of the wheel (see below for details), so f is actually a function of x. Rearranging and taking the 
limit for small ∆x we get: 

𝑓 = 𝑟
𝑑𝑦
𝑑𝑥

 

That is, f is proportional to the derivative of y with respect to x. For a unit wheel, this implies: 

𝑦(𝑡) − 𝑦(0) = � 𝑓(𝑥)𝑑𝑥
𝑡

0
 

In other words, the angular displacement ∆y of the wheel is the integral of the function that describes the 
linear motion of the upper shaft. Depending on one’s interests one might therefore describe the disk-and-
wheel system as a model of the integration process, or a means of calculating the integral of a function. 

To illustrate how a Differential Analyzer works, consider the problem of modelling an object in free fall near 
the surface of the earth. Such an object is subject to two forces: the force of gravity, and an opposing force 
caused by air resistance which is proportional to the object’s velocity. The acceleration of the object is 
given by: 

 𝑑2𝑦
𝑑𝑡2 = 𝑔 − 𝑘

𝑑𝑦
𝑑𝑡

  Equation 1 

Here g is the acceleration due to gravity and k is a drag coefficient. To solve Equation 1, the Differential 
Analyzer is set up as shown in Figure 4. Each shaft represents a variable or constant in the equation. The 
first lengthwise shaft is driven at a constant rate, so its angular position is a suitable representation of time. 
It acts like a metronome, tapping out a beat that is followed by the rest of the system. The next three 
shafts represent acceleration d2y/dt2, velocity dy/dt, and position y, respectively. Both integrators are 
driven by the time shaft. The acceleration shaft (shaft 2) determines the linear motion of the wheel on the 
first integrator, so its output is: 

 𝑑𝑦
𝑑𝑡

= ∫
𝑑2𝑦
𝑑𝑡2 𝑑𝑡  Equation 2 

The velocity shaft (shaft 3) determines the linear motion of the wheel on the second integrator. Its output 
is position, because: 
 𝑦 = �

𝑑𝑦
𝑑𝑡
𝑑𝑡  Equation 3 

The last two shafts (5 and 6) represent the product of velocity and the drag coefficient, and the 
acceleration due to gravity, respectively. They are added by a crucial set of connections which provide 
input to the acceleration shaft, as per Equation 1. To solve Equation 1 one initializes the shafts and turns on 
the driving motor. A graph of position versus time will immediately begin to appear on the plotting table, 
and it is this graph that constitutes a solution to the equation. 

Figure 4 about here. 

It is noteworthy that the operation of this system is completely parallel, in the sense that every variable is 
generated simultaneously. The instant the time shaft begins to rotate, this motion is communicated to the 
integrators, the first of which calculates velocity, the second, position, taking velocity as its input. Because 
the components of the system are rigidly connected, there is virtually no delay between these events and 
the moment when the sum of the final two shafts starts to provide feedback to the acceleration shaft. 
Although the free-fall equation can be solved using formal methods, the Differential Analyzer produces a 
solution very rapidly, and can with equal facility solve equations for which no exact formal solution exists. 

So how and in what sense does this device compute a solution to the free-fall equation? Certainly not in 
the manner of a digital computer, which instantiates a set of formal rules designed to govern the 
transformation of numerical symbols. Here there are no formal rules, and no symbols. Instead, the 
Differential Analyzer is “an elegant, dynamical, mechanical model of the differential equation” (Owens 
1986, p.75, emphasis added). Describing the analyzer in this way is appropriate when our target is a 
mathematical problem. But it can equally be described as a model of an object in free fall. Under either 
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description, the analyzer computes a solution by producing an output that represents the variable of 
interest to us.8

…the analog-computer family consists of all those devices in which measurable physical 
quantities are made to obey mathematical relationships comparable with those existing in a 
particular problem. (Smith & Wood 1959, p.1)  

 And it does so because its own operations are described by Equation 1. The classic texts in 
computer science are again clear on this point: 

Analog models are devices that behave in a fashion analogous to others simply because they 
obey the same or similar fundamental laws of nature. (Truit & Rogers 1960, p.7) 

The analyzer models an equation by mechanically acting it out. This does not apply to a digital computer, 
whose governing equations are, in most cases, those that apply to the components of a digital electronic 
device. A digital computer models a target system by “running the maths”, that is, by numerically 
calculating the values of a function that describes the system. It does not itself obey those equations. 

4. Representation in Analog Computation 

The Differential Analyzer was the first general purpose analog computer. It was followed in the 1950s and 
1960s by a series of increasingly sophisticated electronic computers, which employed electronic 
counterparts of the analyzer’s adders, multipliers, integrators, and so on (Small 1993). Such computers 
were initially less accurate than their mechanical brethren, but cheaper to build and easier to program 
(Bromley 1990). Like the Differential Analyzer, they were general purpose analog devices that could be 
used to model a wide variety of systems by combining components as required (Truit & Rogers 1960). 

Analog computers of all stripes operate in conformity with the equations they are designed to solve. We 
claimed in Section 2 that such systems exploit a physical analogy between a system of representing 
vehicles and the objects they represent. In this section we will consider what this implies about analog 
representation, using the Differential Analyzer as our touchstone. 

Scientists who worked with Differential Analyzers took it for granted that they could be used to represent 
physical or mathematical objects. Representations are content-bearers: things that carry meaning. 
Although a completely general account of representation still eludes us, there is some consensus that such 
an account must address two main questions: 

• The Role Question. What systemic role must something fill to be a representation, i.e., what makes 
some state or object a content-bearer in the first place.  

• The Content Question. What determines the content of a representation? 

It is commonplace these days for theorists to insist that any answer to the role question must emphasize 
the place of “interpretation”. Bits of the world only become representations when there is some user for 
whom they operate as content bearers.9

Symbols stand in an arbitrary physical relationship to the things they represent. Consequently, the content 
of the representations in a digital computer cannot be determined by their intrinsic properties. The 
standard story is that this content emerges as a result of the computational processes in which such 
representations are implicated.

 Digital and analog computers are alike in this regard: both digital 
and analog representation is always representation for or to some further system or process. But despite 
this common ground, digital and analog computers differ crucially with respect to the content question. 

10

                                                                 

8 Note that the analyzer of 

 In a modern electronic calculator, for example, the internal circuitry is so 
arranged that transitions among select groups of voltage states conform to the rules that regulate 
arithmetic. And it is this internal causal organization that licenses the interpretation of the voltage states as 
representing specific numbers. 

Figure 4 can easily be modified to output a graph of velocity or acceleration.  
9 Peirce (1955) argued long ago that representation is a triadic relation between a representing vehicle, a represented 
object, and an “interpretant”. Others who have emphasised the triadic nature of representation are Millikan (1984), 
whose “representation-consumers” correspond to Peirce’s “interpretants”, Bechtel (1998, 2009), and O’Brien & Opie 
(2004). 
10 The standard story is disputed by some theorists, most famously by Jerry Fodor (see, e.g., his 1987). 
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Analog computers, on the other hand, are designed to exploit an analogy between the physical properties 
of a system of representing vehicles and some target system. This entails that analog representations, by 
contrast with symbols, stand in a non-arbitrary physical relationship to the things they represent. The 
content of analog representations is determined by certain of their intrinsic properties—those that ground 
the physical analogy between the computer and the system it represents. 

Consider the Differential Analyzer we described in Section 3. The physical analogy between this analyzer 
and an object in free fall is captured formally by Equation 1, but to fully appreciate this relationship one 
needs to understand the dynamics of the two systems. When first released, an object falling near the 
surface of the earth has an acceleration g = 9.8 ms-2. Such an object quickly picks up speed, but the faster it 
falls, the more drag it experiences. Eventually the object’s acceleration will reduce to zero, at which point it 
reaches its terminal velocity. Equation 1 describes the relationship between linear acceleration and velocity 
that results from these forces. But equally, Equation 1 describes the behaviour of our Differential Analyzer. 
In this case, the variable “y” corresponds to the angular position of shaft 4. This shaft rotates in a manner 
that is analogous to the behaviour of an object in free fall. It begins at rest, but then begins to rotate with 
an angular acceleration equal to the constant g (set by the position of shaft 6), and a steadily increasing 
angular velocity. Its acceleration gradually reduces as a result of feedback from shaft 5, which mimics the 
effect of drag, and hence its angular velocity will reach a “terminal” value. The mechanical principles that 
give rise to this behaviour are those of a device incorporating two integrators (as described in Section 3) 
and the set of gearings and connections portrayed in Figure 4. 

So our Differential Analyzer can be used to model an object in free fall precisely because the rotational 
dynamics of its “position” shaft (shaft 4) is physically analogous to the linear dynamics of an object in free 
fall. The angular position of shaft 4 and the displacement of a falling object are in fact isomorphic. Formally, 
this means that there is a relation-preserving mapping from angular position onto displacement. 
Informally, it means that the graphs of these two variables have the same shape, and overlap if placed one 
on top of the other. Thus, the graph produced by our Differential Analyzer is at once a record of the 
behaviour of shaft four, and a representation of the motion of an object falling near the surface of the 
earth. 

Physical analogy is a resemblance relation. Two systems resemble each other if they share first-order 
properties, such as mass or conductivity, or second-order properties, such as layout or organization. A nice 
example of second-order resemblance is the relationship between the width of a tree’s growth rings and 
seasonal rainfall. Plentiful seasons produce wide rings, whereas drought years produce comparatively 
narrow rings. For this reason, if we map the set of growth rings (indexed by year) into the set of seasons, 
variations in rainfall are reflected in the relative width of the rings.11

What the foregoing makes clear is that the representational content of a Differential Analyzer, and our 
free-fall analyzer in particular, depends on a physical analogy between the analyzer and its target. In the 
next and final section we consider what implications this might have for cognitive science. 

 When a second-order resemblance is 
grounded in properties or relations that are intrinsic to some material system, as in this case, it is a physical 
analogy. Other physical analogies include the relationships between: i) a land map and the terrain it 
portrays, ii) the mercury levels in a thermometer and ambient temperature, and iii) the movements of the 
dial on a kitchen scale and the masses it registers. In each of these cases we harness a second-order 
physical analogy for representational purposes. A thermometer can be used to represent temperature 
because one of its intrinsic properties (the height of the mercury) bears a non-arbitrary relationship to that 
variable. 

5. Representation Redux 

The current disquiet about mental representation depends on two main lines of argument. The first begins 
with the premise that the specifically semantic properties of representing vehicles are by nature incapable 
of shaping cognition. The second, with the claim that cognitive science has by and large failed to explain 
the kind of fluid, context-sensitive intelligence exhibited by human beings and many other organisms. Both 
conclude that mental representation fails to earn its explanatory keep in cognitive science, and is best 
abandoned.  
                                                                 

11 This mapping is unlikely to be an isomorphism, because the width of tree rings only approximately corresponds to 
variations in the weather. But even when the mapping between the parts and relations of two systems is patchy and 
inexact, we may still legitimately speak of them resembling each other. 
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However, as we observed in Section 1, cognitive science grew up in an era when digital computers were in 
the ascendant. The heyday of analog computation was already over, and it was the theory of digital 
computation that shaped the thinking of the first cognitive scientists. Consequently, the dominant picture 
of mental representation ever since has been the one suggested by digital computation: mental 
representations are symbols. In our view, it is this picture of mental representation that has led to the 
marginalisation of representation in contemporary cognitive science. 

A symbol, like any representation, has both intrinsic properties and semantic properties. The 
representational content of a symbol depends on the causal organization of the digital computer in which it 
is embedded. Machine states become symbols, as opposed to meaningless bits of syntax, if their behaviour 
is regulated by physically implemented transition rules that conform to an intended interpretation. But the 
intrinsic properties of a symbol have no direct bearing on its meaning. Consequently, the causal impact of a 
symbol on computational processes is not determined by its representational content.12 This feature of 
digital computation has led to considerable controversy about the significance of representation for 
cognition, and to the view that representational content is at best merely “explanatorily relevant” to 
cognition.13

As for deep intelligence, here the so-called “knowledge problem” looms large—the problem of equipping a 
cognitive system with the informational resources to choose appropriate courses of action in real time, in 
response to open-ended internal goals (Dennett 1984). This problem has stymied the best attempts of 
classical AI to produce fluid, human-like intelligence. One plausible analysis of this failure is that it 
represents a limitation inherent in classical AI’s commitment to symbolic representation. We noted in 
Section 1 that to solve a problem by digital means one must physically implement a formal description of 
the problem domain. Because the symbols composing the formal description bear arbitrary relations to the 
elements of the modelled domain, the former can capture the latter only when their behaviour is 
disciplined by carefully crafted syntactic rules. As a consequence, representation in a digital computer 
inevitably has a “micro-managed” character, in the sense that each and every semantic relation among its 
symbols must be regulated by proprietary syntactic machinery. Moreover, whenever descriptive 
components are added to the formalism or existing components are updated (as is necessary in modelling 
the real world), a myriad of further rules must be installed to ensure continued semantic coherence. As the 
formalism grows richer in content, the number of rules, and with it the number of individual processing 
steps, increases dramatically. In a digital system operating in real-time, the representational demands 
quickly outstrip the processing capacities of even the fastest hardware. 

 Little wonder then, that Stich (1983) and others countenance dispensing with the 
computational perspective altogether. 

How would cognitive science look if our conception of mental representation had been shaped by 
experience with analog computers? The answer, we contend, is that the field’s recent flirtation with anti-
representationalism would not have occurred. This is because the two principal arguments that have led to 
the marginalisation of representation in contemporary cognitive science gain no traction when viewed 
from the perspective of analog computation. 

First, we’ve seen that analog computation, unlike its digital counterpart, is directly shaped by the content-
determining properties of its vehicles. Since the representational content of a symbol is determined by 
factors extrinsic to that vehicle, its content can have no bearing on what it does. The representing vehicles 
in an analog computer, by contrast, acquire content by virtue of their intrinsic physical properties and the 
resemblance relations these support. Hence, the computational processes that occur in an analog 
computer are driven by the very properties that determine the content of its vehicles. In this sense, an 
analog computer is not a mere semblance of a semantic engine—it’s the real thing. Any organism whose 
inner processes are analog in nature is causally indebted to the semantic properties of its inner states.  

Second, the constraint that makes the knowledge problem so acute for digital computers—viz., that 
syntactic rules are required to discipline the causal commerce between symbols—doesn’t apply to analog 
computers. An analog computer is powered by a physical analogy between its representing vehicles and its 
task domain. As a consequence, representation in an analog computer has an “autonomous” character, in 

                                                                 

12 The relationship between content and causation is in fact the reverse. It is the causal role of a symbol that 
determines its content. 
13 See, for example, Baker 1993, Fodor 1989, Jackson & Pettit 1990, and LePore & Loewer 1989. 
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the sense that the semantic relations among its representing vehicles are inherently aligned with their 
physical relations. So when the content of an analog computer is augmented, via the enrichment of the 
physical analogy between its representational medium and its target domain, the semantic relations 
among its constituent vehicles take care of themselves. Prima facie, analog computers have the potential 
to capture the real-world, real-time character of deep intelligence. 

From this perspective, contemporary anti-representationalism is best understood as a reaction to the 
symbolic form of representation implicated in digital computation, rather than representation per se. 
Cognitive science grew up at a time when digital computers, largely on the back of technical innovations, 
had supplanted their analog brethren. Digital computers have dominated and conditioned theorising in the 
field ever since. But digital computers have limitations―limitations owing to the fact that they are not 
genuine semantic engines, but ingeniously crafted syntactic devices that behave as if they were semantic 
engines. Instead of responding to these limitations by ditching representation and entertaining alternatives 
to computation, as many in the field are doing, the analysis we have presented suggests it would be more 
fruitful for cognitive science to explore the alternative form of computation. 
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Figure 2: The Cambridge Differential Analyzer, which is similar to Bush’s design. The disk-and-
wheel integrators are on the right; the input and output tables on the left. 

  

Figure 1: A graph of velocity versus time. The distance travelled between t1 and t2 can be 
computed by measuring the area of the shaded region. The acceleration at t3 can be computed by 
measuring the slope of the tangent to the curve at that point. 
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Figure 3: A disk-and-wheel integrator. The small wheel rotates in response to 
rotation of the disk, and is free to move along the radius of the disk as a result of 
linear movements of the upper shaft. 
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Figure 4: A Differential Analyzer set up to solve the free-fall equation. Each shaft represents a 
variable or a constant in the equation. The analyzer requires two integrators because it is 
designed to solve a second-order differential equation. The first lengthwise shaft is driven by 
a motor at a constant speed and represents the independent variable t. 
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