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Expressions for Wi (�) and Zi (�)

The expressions for Wi (�) and Zi (�) depend on whether or not there is an
agenda constraint.

When there is no agenda constraint (N = 2) the policy choice for issue i depends
on only the PM�s belief for this issue, �i (`i; ai). If the PM grants access to IGi,
he anticipates to make the correct policy choice for issue i with probability one;
Wi (�) = 1. If the PM grants access to IG�i, and therefore not to IGi, he anticipates
to make the correct policy choice for issue i with probability

Zi (�) = �
Acc
i �i (1; 0) +

�
1� �Acci

�
[1� �i (1; 0)]

where �i (1; 0) denotes the probability that the PM chooses pi = 1 given (`i; ai) =
(1; 0). The �rst term on the r.h.s is the PM�s belief that �i = pi = 1. The second
term on the r.h.s. is the PM�s belief that �i = pi = 0.
We thus obtain the following expression for Xi (�):

Xi (�) = �i (1; 0)
�
1� �Acci

�
+ [1� �i (1; 0)] �Acci

which corresponds to the PM�s belief that he will make the wrong policy choice for
issue i if he does not grant access to IGi.

When there is an agenda constraint (N = 1) the policy choice for issue i depends
on the PM�s beliefs for both issues, �1 (`1; a1) and �2 (`2; a2). It is not di¢ cult,
although tedious, to show that the expressions for Wi (�) and Zi (�) are given in
this case by8>>><>>>:

Wi (�) = �
Acc
i �i (�i = 1) +

�
1� �Acci

�
Zi (�) =

�
1� �Acci

�
+
�
2�Acci � 1

� h
�Acc�i �i (��i = 1) +

�
1� �Acc�i

�
�i (��i = 0)

i
where �i (�i = 1) (resp. �i (��i)) is a shorthand for the probability that the PM
chooses pi = 1 given that he had granted access to IGi (resp. IG�i) and observed
�i = 1 (resp. ��i) while, at the same time, IG�i (resp. IGi) lobbied but was not
granted access.
We thus obtain the following expression for Xi (�):

Xi (�) = �
Acc
i �i (�i = 1)�

�
2�Acci � 1

� h
�Acc�i �i (��i = 1) +

�
1� �Acc�i

�
�i (��i = 0)

i
which corresponds to

(1) the PM�s belief that pi = �i = 1 when he grants access to IGi (�rst term
on the r.h.s) from which we subtract the PM�s belief that pi = �i = 1 when
he does not grant access to IGi (�

Acc
i times the term in square brackets),

and to which we add
(2) the PM�s belief that pi = 1 and �i = 0 when he does not grant access to

IGi (
�
1� �Acci

�
times the term in square brackets).
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The �rst part corresponds to the probability increase of making the correct policy
choice for issue i when �i = 1. The second part corresponds to the probability
reduction of making the wrong policy choice for issue i when �i = 0 (knowing that
the PM will choose pi = 0 when he grants access to IGi and observes �i = 0).

Extensions

Proof of Lemma 3.
Note that if we had �� = 0 then it must be that �i(1) = �i(0) = 0: In that case

an IGi has a pro�table deviation �i(0) = 1. This gives us a contradiction.
Similarly, if we had �� = 1 then it must be that �i(1) = �i(0) = 1: However, if

we had an equilibrium with ��(0) = ��(1) = 1 then it must be that ��(1; �) = �(<
1=2); which means we must have ��(1; �) = 0. However, in that case i is better
o¤ deviating to �i(0) = 0 and theyby saving on the lobbying cost. This gives us a
contradiction. Hence, in any symmetric equilibrium we must have �� 2 (0; 1):
Since �� > 0, we have

@E�i
@�i(1)

= (1� �i(��)) � ��i (1; �) + �i(��)� f >
@E�i
@�i(0)

= (1� �i(��)) � ��i (1; �)� f:

Since �� > 0 =) ��(��) > 0; we have that ��(1) � ��(0). But we already ruled
out the case, ��(1) = ��(0) = 1: Hence, we must have ��(1) > ��(0):
This gives us three possible types of symmetric equilibria: (1) truthful lobbying

equilibrium: ��(1) = 1; ��(0) = 0; (2) overlobbying equilibrium: ��(1) = 1; ��(0) 2
(0; 1); (3) underlobbying equilibrium: ��(1) 2 (0; 1); ��(0) = 0:�
Proof of Lemma 4.
4.1 if part. Suppose f 2 [(1 � �(�)) � e�(�); (1 � �(�)) � e�(�) + �(�)]: Consider

the truthful lobbying strategies played by the IGs (i.e., �(0) = 0; �(1) = 1); let
access strategy of the PM be 
(0) = 0; 
(1) = minfK=M; 1g where M = #i such
that `i = 1; and let �(0; �) = 0 = �(1; 0); �(1; 1) = 1 and �(1; �) = maxfN� bK

M�K ; 1g
where M = #i such that `i = 1 and bK = #i such that mi = 1; PM�s beliefs are
�Acc(0) = 0; �Acc(1) = 1;�(0) = 0; �(1) = 1 and �(�) = 1: It is easy to see that
the interim beliefs are consistent with the lobbying strategies; the access strategy
is optimal given the beliefs and the policy function; the �nal beliefs are consistent
with the access strategy and the policy function; and the policy function if optimal
given the beliefs. We, therefore need to check if each IGi�s lobbying strategies are
optimal given the PM�s and other IG�s strategies. Note that when �i = 0, IGi�s
expected payo¤ from lobbying is (1 � �(�)) � e�(N;�) � f which is weakly less 0,
the expected payo¤ from not lobbying. On the other hand, when �i = 1, IGi�s
expected payo¤ from lobbying is (1 � �(�)) � e�(N;�) + �(�) � f which is weakly
greater than 0, the expected payo¤ from not lobbying. This establishes that the
strategies described above constitute a symmetric Nash equilibrium.
4.1 only if part. Given the de�nition of equilibrium, a truthful lobbying equilib-

rium is unique. In equilibrium an IGi lobbies with probability 1 when �i = 1 which
implies f � (1� �(�)) � e�(N;�) + �(�); also, the IGi does not lobby when �i = 0,
which implies f � (1� �(�)) � e�(N;�):
4.2 Overlobbying equilibrium: There are two possibilities to consider: 4.2.1 There

exists b� 2 [�; 2�] such that f = [1 � �(b�)] � e�(N;b�): 4.2.2 For any � 2 [�; 2�];
f > [1� �(�)] � e�(N; �):
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4.2.1 Pick such a b�: Consider the following strategies for each IG: �(1) = 1;

�(0) = b� � �=1 � �; PM�s strategies are 
(0) = 0; 
(1) = minfK=M; 1g where
M = #i such that `i = 1; and �(0; �) = 0 = �(1; 0); �(1; 1) = 1 and �(1; �) =
maxfN� bK

M�K ; 1g where M = #i such that `i = 1 and bK = #i such that mi = 1:

PM�s interim and �nal beliefs are �Acc(0) = 0; �Acc(1) = �=b�; �(0) = 0; �(1) = 1
and �(�) = �=b�: Since �=b� � 1=2, PM�s policy choice is optimal given his beliefs.
Also, his access strategy is optimal given the IGs�lobbying strategies and his interim
beliefs; moreover, PM�s interim belifes are derived from the IGs�strategies using
Bayes Rule. Also, f = [1��(b�)] �e�(N;b�) =) �(0) = b���=1�� is optimal and also,
f < [1 � �(b�)] � e�(N;b�) + �(b�) =) �(1) = 1 is optimal. This establishes that the
strategies, and beliefs described above constitute a symmetric Nash equilibrium.
4.2.2 Consider the following strategies for the IGs: �(1) = 1; �(0) = �=1 � �;

PM�s strategies are 
(0) = 0; 
(1) = minfK=M; 1g where M = #i such that
`i = 1; and �(0; �) = 0 = �(1; 0); �(1; 1) = 1 and �(1; �) = � � maxfN� bK

M�K ; 1g
where M = #i such that `i = 1 and bK = #i such that mi = 1, where � is
chosen such that f = [1 � �(2�)] � � � e�(N; 2�): PM�s interim and �nal beliefs are
�Acc(0) = 0; �Acc(1) = 1=2; �(0) = 0; �(1) = 1 and �(�) = 1=2: Note that
given the PM�s belief �(�) = 1=2, he is indi¤erent between implementing and
not implementing reform on an issue to which he did not grant access inspite of
lobbying. Hence, his strategy to implement reforms on a fraction � of such issues
is optimal. Likewise, an IG is indi¤erent between lobbying an not lobbying in state
0 since f = [1��(2�)] �� �e�(N; 2�): This establishes that the strategies and beliefs
described above constitute a symmetric Nash equilibrium.
4.2 Underlobbying equilibrium: Suppose f > [1��(�)] �e�(N;�)+�(�): Observe

that [1��(�)] �e�(N; �)+�(�) is a continuous function of � and as � ! 0; [1��(�)] �e�(N; �)+�(�)! 1 < f: Hence, there exists b� 2 (0; �) such that [1��(b�)] �e�(N;b�)+
�(b�) = f: Consider the following strategies for the IGs: �(1) = b�=�; �(0) = 0; PM�s
strategies are 
(0) = 0; 
(1) = minfK=M; 1g where M = #i such that `i = 1;

and �(0; �) = 0 = �(1; 0); �(1; 1) = 1 and �(1; �) = maxfN� bK
M�K ; 1g where M = #i

such that `i = 1 and bK = #i such that mi = 1: PM�s interim and �nal beliefs

are �Acc(0) = �(1�b�)
�(1�b�)+(1��) ; �Acc(1) = 1; �(0) = 0; �(1) = 1 and �(�) = 1:As in

the case of truthful lobbying equilibrium, PM�s policy choice is optimal given his
beliefs. Also, his access strategy is optimal given the IGs�lobbying strategies and his
interim beliefs; moreover, PM�s interim belifes are derived from the IGs�strategies
using Bayes Rule. This establishes that the strategies and beliefs described above
constitute a symmetric Nash equilibrium.
4.3 Suppose there existed a symmetric overlobbying equilibrium for f � f(N):

Let �� 2 (�; 2�] denote the ex-ante lobbying probability in such equilibrium. It
must then be the case that [1��(��)] �� �e�(N; ��) + �(��) > f for some � 2 (0; 1];
which in turn implies that [1��(��)]�e�(N; ��)+�(��) > f: However, since [1��(�)]�e�(N; �)+�(�) is decreasing on (0; 2�], we have f(N) � [1��(�)] �e�(N;�)+�(�) >
[1� �(��)] � e�(N; ��) + �(��) > f: This gives us a contradiction.
Similarly, suppose there existed a symmetric underlobbying equilibrium for f �

f(N): Let �� 2 (0; �) denote the ex-ante lobbying probability in such equilibrium.
Such equilibrium requires that [1 � �(��)] � e�(N; ��) + �(��) = f . But given that
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[1��(�)]�e�(N; �)+�(�) is decreasing, we have [1��(�)]�e�(N;�)+�(�) � f(N) < f:
This gives us a contradiction.�
Proof of Proposition 3.
To prove this proposition we establish a series of claims.
Claim 1: For any N 2 fK; � � � ; Ig; f(N) � f(N) is positive and constant inde-

pendent of N:
To see this note that f(N)� f(N) can be broken down as

K�1X
n=0

zn(�) +
N�1X
n=K

[1� n+ 1�K
n+ 1

] � zn(�) +
I�1X
n=N

[
N

n+ 1
� N �K
n+ 1

] � zn(�)

=
K�1X
n=0

zn(�) +
I�1X
n=K

K

n+ 1
� zn(�) > 0

since each term is non-negative and at least one term is strictly positive. In fact
the expression above is ��(�) which is independent of N:
Claim 2: f(N) is an increasing function of N:
To see this note that f(N)� f(N + 1) can be broken down as

�N + 1�K
N + 1

� zN (�) +
N �K
N + 1

� zN (�) +
I�1X

n=N+1

�(N + 1�K) + (N = K)

n+ 1
� zn(�)

= �
I�1X
n=N

1

n+ 1
� zn(�) < 0:

We can also see that when N = I we have f(N) = 1 and f(N) = 1 � ��(�):
Similarly, when N = K we have f(N) = ��(�) and f(N) = 0: This establishes
Proposition 3.�
Proof of Lemma 5. We start by stating IGi�s lobbying problem. Given �i, IGi
chooses lobbying strategy �i (�i) that solves

max
�i(�i)2[0;1]

Evi (�i (�i))

where

Evi (�i (�i)) = �i (�i) [�i (1) �i (1; 1) + (1� �i (1)) �i (1; 0)� fi]
+ (1� �i (�i)) [�i (0) �i (0; 1) + (1� �i (0)) �i (0; 0)]

and the probability that IGi is granted access given lobbying decision `i 2 f0; 1g is

�i (`i) � ��i
i (`i; 1) + (1� ��i) 
i (`i; 0) :

We prove part (1) of the statement. We �rst establish the su¢ ciency of the
condition. Suppose that the condition is satis�ed. Let �i (1) = 1 and �i (0) = 0 for
each i = 1; 2. It follows that �i = �i for each i = 1; 2, and that the PM is perfectly
informed about � through the lobbying decisions. Speci�cally, �Acci (1) = 1 and
�Acci (0) = 0 for each i = 1; 2. Denoting by Xi (`i; �) the increase in the probability
that the PM will make the correct policy choice on issue i by granting access to
IGi when its lobbying decision is `i, we get Xi (`i; �) = 0 for each i = 1; 2 and each
`i = 0; 1. The PM is thus indi¤erent granting access to IG1 or IG2.
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Using the PM�s policy choice strategy described in section 3, we get(
dEvi
d�i(1)

� 0, 1� �i (0)� fi � 0
dEvi
d�i(0)

� 0, 1� �i (1)� fi � 0:

In order to minimize �i (0) and maximize �i (1), we set 
1 (1; 0) = 
2 (0; 1) = 1.
This is possible since Xi (`i; �) = 0. The two conditions above are then satis�ed if
and only if 8<: 
1 (1; 1) = [1� 
2 (1; 1)] 2

h
1� f1

�2
; f2�1

i

1 (0; 0) = [1� 
2 (0; 0)] 2

h
f2��1
1��1 ;

1�f1
1��2

i
:

Given the condition in the statement of the lemma, these two intervals are non-
empty. Moreover, the lower-bounds (resp. upper-bounds) of the two intervals are
smaller than one (resp. bigger than zero). Hence, there exists a strategy pro�le
f� (:) ; 
 (:) ; � (:)g that constitutes an equilibrium of the lobbying subgame in which
the PM gets perfectly informed about �.

We continue by establishing the necessity of the condition in the statement.
Suppose that this condition is not satis�ed. Assume by way of contradiction that
an equilibrium exists in which the PM gets perfectly informed about �. Since the
PM can grant access to only one IG, the lobbying decisions of at least one IG must
be perfectly informative. Formally, j�i (1)� �i (0)j = 1 for some i 2 f1; 2g. We
must then have �i (1) = 1 and �i (0) = 0. Moreover, �i (0) = 0 requires

dEvi
d�i (0)

� 0, �i (1) � 1� fi.

Hence it must be that �i (1) > 0 and, therefore, that 
i (1; `�i) > 0 for some
`�i 2 f0; 1g. Given that truthful lobbying by IGi implies Xi (1; �) = 0, �i (1) > 0
requires ��i (1) 6= ��i (0) and �

Acc
�i (`�i) 2 f0; 1g for some `�i. There are three

cases to consider:

(1) ��i (1) = 1 and ��i (0) 2 (0; 1). In this case, �Acc�i (0) = 0 and �
Acc
�i (1) 2

(0; 1), implying ��i (0; 0) = 0 and ��i (1) = 1. We then get dEv�i
d��i(0)

=

�f�i < 0, contradicting ��i (0) > 0.
(2) ��i (1) 2 (0; 1) and ��i (0) = 0. In this case, �Acc�i (1) = 1 and �

Acc
�i (0) 2

(0; 1), implying ��i (1; 0) = 1 and ��i (0) = 1. We then get dEv�i
d��i(1)

=

�f�i < 0, contradicting ��i (1) > 0.
(3) ��i (1) = 1 and ��i (0) = 0. In this case, we have �i (1) = 1 and �i (0) = 0

for each i, which yields a contradiction given that the condition in the
statement is not satis�ed. We can establish the contradiction by proceeding
in a way similar to the way we proceeded for establishing the su¢ ciency of
the condition.

This completes the proof since these three cases exhaust all possibilities.

We now prove part (2) of the statement. We start by identifying a series of
conditions that are necessary for the existence of an equilibrium with �i > 0 for
i = 1; 2.
First, we establish that �Acci (0) < 1=2 and, therefore, that �i (0; 0) = 0 for each

i = 1; 2. Assume by way of contradiction that �Acci (0) � 1=2 for some i. Given
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that �i < 1=2, it must be that either �i (1) = �i (0) = 1 or �i (0) > �i (1). In either
case, �i (0) > 0 and �

Acc
i (1) < 1=2. The latter implies �i (1; 0) = 0. It follows that

dEvi
d�i(0)

� �fi < 0, which contradicts �i (0) > 0.
Second, we establish that �Acci (1) � 1=2 for each i = 1; 2. Assume by way of

contradiction that �Acci (1) < 1=2 for some i. It follows that �i (1; 0) = 0 which,
together with �i (0; 0) = 0, implies dEvi

d�i(0)
= �fi < 0 and, therefore, �i (0) = 0.

Since �i > 0, we then get �i (1) > 0 and �
Acc
i (1) = 1, which contradicts �Acci (1) <

1=2.
Third, we establish that �Acc1 (1) > 1=2 and, therefore, that �1 (1; 0) = 1. We

already know from above that �Acc1 (1) � 1=2. Assume by way of contradiction
that �Acc1 (1) = 1=2. It follows that X1 (1; �) = 1=2. Given that � > 1 and

X2 (`2; �) =
h
1� �Acc2 (1)

i
� 1=2 for each `2 = 0; 1, we get X1 (1; �)� > X2 (`2; �)

for each `2 = 0; 1, implying �1 (1) = 1. It follows that dEv1
d�1(0)

= �f1 < 0 and,

therefore, �1 (0) = 0. Since �1 > 0, we get �1 (1) > 0 and �
Acc
1 (1) = 1, contradicting

�Acc1 (1) = 1=2.
Fourth, we establish that �i (0) > 0 for some i 2 f1; 2g. Assume by way of

contradiction that �i (0) = 0 for each i = 1; 2. Since �i > 0, we then get �i (1) > 0
and, therefore, �Acci (1) = 1 and �i (1; 0) = 1.
We start by showing that we must then have �i (1) 2 (0; 1) for each i = 1; 2.

Assume by way of contradiction that �h (1) = 1 for some h 2 f1; 2g. Since
�1f1+�2f2

�1�2
< 1, we know from part (1) of this lemma that we cannot have truth-

ful lobbying strategies. We must then have ��h (1) 2 (0; 1). It follows that
X�h (0; �) > 0 = Xh (0; �) = Xh (1; �) and, therefore, ��h (0) = 1. We then
have dEv�h

d��h(1)
= �fh < 0 and, therefore, ��h (1) = 0, contradicting ��h (1) 2 (0; 1).

We continue by observing that �i (1) 2 (0; 1) and �i (0) = 0 for each i = 1; 2 has
two implications. First, we have Xi (0; �) > 0 = Xi (1; �) for each i = 1; 2, which
implies 
1 (0; 1) = 
2 (1; 0) = 1. It follows that �i (0) � �i (1) for each i = 1; 2.
Second, it must be that (

dEvi
d�i(1)

= 0, �i (0) = 1� fi
dEvi
d�i(0)

� 0, �i (1) � 1� fi;

implying �i (1) � �i (0) for each i = 1; 2. We get from these two implications that
�i (1) = �i (0) for each i = 1; 2. Since 
1 (0; 1) = 
2 (1; 0) = 1, it must then be that

i (1; 1) = 1 and 
i (0; 0) = 0 for each i = 1; 2, a contradiction.
Fifth, we establish that �i (0) > 0 for each i = 1; 2. Assume by way of contradic-

tion that �i (0) = 0 for some i 2 f1; 2g. This has two sets of implications. One set
of implications is that �i (1) > 0, �

Acc
i (1) = 1, �i (1; 0) = 1 and Xi (1; �) = 0. The

other set of implications is that ��i (0) > 0 (from above). Since �
Acc
�i (1) � 1=2 and

��i < 1=2, it must be that ��i (1) > ��i (0) and X�i (1; �) > 0. It follows from
these two sets of implications that X�i (1; �) > 0 = Xi (1; �) and, therefore, that

�i (1; 1) = 1.
We continue by showing that we must have ��i (1) = 1. Given that �i (0) = 0,

we have
dEvi
d�i (0)

� 0, �i (1) � 1� fi,
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implying �i (1) > 0. Given that 
�i (1; 1) = 1, it must be that 
i (1; 0) > 0 (where

i (`i; `�i)) and, therefore, that Xi (1; �)�i � X�i (0; �)��i. Since Xi (1; �) = 0, it
must then be that X�i (0; �) = 0 and, therefore, that ��i (1) = 1.
We further show that we must have �i (1) 2 (0; 1). Given that ��i (0) 2 (0; 1),

we have
dEv�i
d��i (0)

= 0, [1� ��i (1)] ��i (1; 0) = f�i,

implying ��i (1) < 1. Given that 
�i (1; 1) = 1, it must then be that 
�i (0; 1) < 1
and, therefore, that Xi (0; �)�i � X�i (1; �)��i. Since X�i (1; �) > 0, it must then
be that Xi (0; �) > 0 and, therefore, that �i (1) < 1.
We continue by observing that Xi (0; �) > 0 = Xi (1; �) and X�i (0; �) = 0 <

X�i (1; �) imply 
i (0; 0) = 
�i (1; 1) = 1. Moreover, �i (1) 2 (0; 1) and �i (0) = 0
require (

dEvi
d�i(1)

= 0, �i (0) = 1� fi
dEvi
d�i(0)

� 0, �i (1) � 1� fi;
implying �i (1) � �i (0). Since 
i (0; 0) = 1 and 
i (1; 1) = 0, it must then be
that 
i (1; 0) = 1 and 
i (0; 1) = 0. But then, we have ��i (1) = 1 and, therefore,
dEv�i
d��i(0)

= �f�i < 0, contradicting ��i (0) > 0.
Sixth, we establish that �2 (1) = 1. Assume by way of contradiction that �2 (1) <

1. It follows that 1 > �2 (1) > �2 (0) > 0, which requires(
dEv2
d�2(1)

= 0, �2 (1)� �2 (0) + (1� �2 (1)) �2 (1; 0) = f2
dEv2
d�2(0)

= 0, (1� �2 (1)) �2 (1; 0) = f2;

implying �2 (0) = �2 (1) < 1. Moreover, we have X2 (`2; �) > 0 for each `2 = 0; 1.
Also, recall from above that �1 (1; 0) = 1 and �1 (0) 2 (0; 1), the latter requiring

dEv1
d�1 (0)

= 0, �1 (1) = 1� f1.

We shall establish the contradiction in two steps, �rst for �1 (1) = 1 and then
for �1 (1) < 1.
Suppose �1 (1) = 1. Since �1 (0) 2 (0; 1), we then have �Acc1 (0) = 0, which

implies �1 (0; 0) = 0 and X1 (0; �) = 0. Given that X2 (`2; �) > 0 for each `2 = 0; 1,
we then have X2 (`2; �) > X1 (0; �)� and, therefore, 
2 (0; 0) = 
2 (0; 1) = 1. The
latter implies 
2 (1; 0) = 
2 (1; 1) = f1 2 (0; 1), the �rst equality since �2 (0) =
�2 (1) and the second equality since �1 (1) = 1� f1. For 
2 (1; `2) 2 (0; 1), it must
be that X2 (`2; �) = X1 (1; �)�. Now, observe that X2 (0; �) = �

Acc
2 (0) < 1=2. It

follows that X2 (1; �) < 1=2, which is true only if �Acc2 (1) > 1=2 and, therefore,
�2 (1; 0) = 1. We then get from

dEv2
d�2(0)

= 0 that �2 (1) = 1� f2 and, therefore, that

f2 = �1 (1� f1), �1 (0) =
1

1� �1

�
f2

1� f1
� �1

�
.

Hence the contradiction since �1f1+�2f2
�1�2

< 1 implies �1 (0) < 0.
Now, suppose �1 (1) < 1. It follows that 1 > �1 (1) > �1 (0) > 0, which requires

dEv1
d�1 (1)

= 0, �1 (0) = 1� f1.

Recall from above that �1 (0) 2 (0; 1) implies �1 (1) = 1 � f1. It follows that
�1 (0) = �1 (1) = (1� f1) 2 (0; 1).
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We consider two cases:

(1) �Acc2 (1) > 1=2. We then have �2 (1; 0) = 1 and, therefore, �2 (0) = �2 (1) =
(1� f2). It follows that IG1 is granted access with probability (1� f1) and
IG2 with probability (1� f2). Since these two probabilities must sum to
1, we have f1 + f2 = 1, which contradicts

�1f1+�2f2
�1�2

< 1.

(2) �Acc2 (1) = 1=2. We then have X2 (1; �) = 1=2 > �Acc2 (0) = X2 (0; �).
For �1 (`1) 2 (0; 1) for each `1 = 0; 1, it must then be that X2 (1; �) �
X1 (`1; �)� � X2 (0; �) for each `1 = 0; 1. We show that the two inequalities
are strict.
Assume by way of contradiction that X2 (1; �) = X1 (`1; �)� > X2 (0; �)

for some `1 2 f0; 1g. It follows that 
1 (`1; 0) = 1 and, since �1 (`1) < 1,
that 
1 (`1; 1) < 1. The latter implies �2 (0) = �2 (1) > 0. This, together
with 
1 (`1; 0) = 1, implies 
2 (� `1; 0) > 0 and, therefore, X2 (0; �) �
X1 (� `1; �)�. It follows that X2 (1; �) > X1 (� `1; �)�, which implies

2 (� `1; 1) = 1. The latter, together with 
2 (`1; 1) > 0 and 
2 (`1; 0) = 0,
implies �2 (1) > �2 (0), which contradicts �2 (1) = �2 (0).
Assume by way of contradiction that X2 (1; �) > X1 (`1; �)� = X2 (0; �)

for some `1 2 f0; 1g. It follows that 
2 (`1; 1) = 1 and, since �2 (1) < 1,
that 
2 (� `1; 1) < 1. The latter implies X1 (� `1; �)� � X2 (1; �). It
follows that X1 (� `1; �)� > X2 (0; �), which implies 
2 (� `1; 0) = 0. This,
together with 
2 (`1; 1) = 1 and �2 (1) = �2 (0), implies 
2 (`1; 0) = 1 and

2 (`1; 1) = 0. We then get �1 (`1) = 0 and �1 (� `1) = 1, which contradicts
�1 (`1) = �1 (� `1).
Thus, we have X2 (1; �) > X1 (`1; �)� > X2 (0; �) for each `1 = 0; 1. It

follows that �2 (1) = 1 and �2 (0) = 0, which contradicts �2 (0) = �2 (1).

This completes the proof since these two cases exhaust all possibilities.
Seventh, we establish �Acc2 (1) = 1=2 and �2 (0) = �2

1��2 . Assume by way of

contradiction that �Acc2 (1) > 1=2 and, therefore, that �2 (1; ;) = 1. It follows that
�2 (0) 2 (0; 1) requires �2 (1) = 1 � f2. At the same time, we already know that
�1 (0) 2 (0; 1) requires �1 (1) = 1 � f1. Moreover, 1 = �2 (1) > �2 (0) > 0 implies
X2 (0; �) = 0. At the same time, �1 (1) > �1 (0) > 0 implies X1 (1; �) > 0. It
follows that X1 (1; �)� > X2 (0; �) and, therefore, that 
1 (1; 0) = 1.
All the above imply

�1 (1) = 1� f1 , 
1 (1; 1) = 1�
f1
�2

and

(�) �1 (1) + f1 = �2 (1) + f2 , 1 =
�1f1
�2

+ (1� �1) 
2 (0; 1) + f2:

There are two cases to consider:

(1) �1 (1) = 1. In this case, X1 (0; �) = 0 and, therefore, 
2 (0; 1) = 1 (since
X2 (1; �) > 0). Plugging the value of 
2 (0; 1) into (�) gives �1f1+�2f2

�1�2
= 1,

which contradicts �1f1+�2f2
�1�2

< 1 and �i > �i for each i = 1; 2.
(2) �1 (1) < 1. In this case, X1 (0; �) > 0 and, therefore, 
1 (0; 0) = 1 (since

X2 (0; �) = 0). Moreover, �1 (1) 2 (0; 1) requires
dEv1
d�1 (1)

= 0, �1 (0) = 1� f1,
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which implies 
2 (0; 1) =
f1
�2
(since 
1 (0; 0) = 1). Plugging the value of


2 (0; 1) into (�) gives f1
�2
+ f2 = 1, which contradicts �1f1+�2f2

�1�2
< 1 and

�2 > �2.
Hence �Acc2 (1) = 1=2. This, together with �2 (1) = 1, implies �2 (0) = �2

1��2 .
To sum up, we have shown that in any equilibrium with �i > 0 for i = 1; 2, we

must have 8>>>><>>>>:
1 � �1 (1) > �1 (0) > 0
�2 (1) = 1 and �2 (0) = �2

1��2
�Acc1 (1) > �Acc2 (1) = 1

2 > �
Acc
1 (0) � �Acc2 (0) = 0

X2 (0; �) = 0 and X2 (1; �) = 1=2
�1 (1; 0) = 1 and �1 (0; 0) = �2 (0; 0) = 0.

Hence, there are two possible types of equilibria with �i > 0 for i = 1; 2, namely,
those where �1 (1) = 1 and those where �1 (1) < 1.
We start by considering those equilibria where �1 (1) = 1. Proceeding as in the

proof of lemma 1, we can establish: 1) such equilibria exist given �1f1+�2f2
�1�2

< 1;
and 2) the equilibrium strategies and beliefs are the same as in part (2) of lemma 1,
except for 
i (0; 0) which can take any value in [0; 1] and must satisfy the condition
that

P2
i=1 
i (0; 0) = 1. These equilibria di¤er only in 
i (0; 0).

It remains to consider the possibility of equilibria where �1 (1) < 1. We now
establish that: 1) such equilibria exist if and only if 2�1� > 1; and 2) if this
condition is satis�ed, then there is a unique such equilibrium.
We know from above that in any equilibrium with �1 (1) < 1, we have�

1 > �1 (1) > �1 (0) > 0
1 = �2 (1) > �2 (0) > 0.

These inequalities imply that X1 (`1; �) > 0 = X2 (0; �) for each `1 = 0; 1 and,
therefore, that 
1 (`1; 0) = 1. It follows that8<: �1 (1) = 1� 2�2
2 (1; 1)

�1 (0) = 1� 2�2
2 (0; 1)
�2 (0) = 0.

Also, 1 > �1 (1) > �1 (0) > 0 requires(
dEv1
d�1(1)

= 0, �1 (0) = 1� f1
dEv1
d�1(0)

= 0, �1 (1) = 1� f1:

These two inequalities, together with the expressions for �1 (0) and �1 (1) ob-
tained above, imply that 
2 (1; 1) = 
2 (0; 1) =

f1
2�2

2 (0; 1). In turn, the latter
equalities imply �2 (1) = f1=2�2.
Since 
2 (1; 1) 2 (0; 1), it must be thatX1 (1; �)� = X2 (1; �). Likewise, 
2 (0; 1) 2

(0; 1) requires X1 (0; �)� = X2 (1; �). Given that X1 (0; �) = �
Acc
1 (0), X1 (1; �) =

1��Acc1 (1) and X2 (1; �) = 1=2, we obtain fromX1 (0; �)� = X1 (1; �)� = X2 (1; �)
that (

�1 (1) =
(2�1��1)(2��1)
4�(��1)�1

�1 (0) =
4�1��1

4�(��1)(1��1) :

Simple algebra establishes that 1 > �1 (1) > �1 (0) > 0 if and only if 2�1� > 1.
Using the expressions for �1 (1) and �1 (0) just obtained, we get �

Acc
1 (1) =

2��1
2� 2

�
1
2 ; 1
�
and �Acc1 (0) = 1

2� 2
�
0; 12

�
.
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Finally, �2 (0) 2 (0; 1) requires
dEv2
d�2 (0)

= 0, (1� �2 (1)) �2 (1; 0) = f2.

Given the expression for �2 (1) obtained above, we get �2 (1; 0) =
2�2f2
2�2�f1 2 (0; 1).

(Observe that �2 (1) > �2 (0) and dEv2
d�2(0)

= 0 imply dEv2
d�2(1)

> 0, which is consistent
with �2 (1) = 1.)
Finally, we have �i (`i; 1) = �i (`i; 1) = �i for each `i = 0; 1 and each i = 1; 2. �

Proof of Proposition 4. We start by considering the case where (1��1)f1+(1��2)f21��1�2 >

1. We know from part (1) of lemma 1 that an equilibrium with truthful lobbying
exists when the PM has no subpoena power. We also know from part (1) of lemma 5
that in no equilibrium is the PM perfectly informed about � when he has subpoena
power. Hence EUsub < EUnosub = �+ 1.
We continue by considering the case where �1f1+�2f2

�1�2
� 1 � (1��1)f1+(1��2)f2

1��1�2 .
We know from part (1) of lemma 1 and part (1) of lemma 5 that an equilibrium exists
in which the PM gets perfectly informed about �, whether the PM has subpoena
power or not. Hence, EUsub = EUnosub = �+ 1.
It remains to consider the case where �1f1+�2f2

�1�2
< 1. We know from part (2) of

lemma 1 that a unique equilibrium exists in the game without subpoena power. In
this equilibrium, the PM�s ex ante expected payo¤ is given by

EUnosub = (�+ 1)� 2�1�2�
2�� 1 .

We know from part (2a) of lemma 5 that similar overlobbying equilibria exist in the
game with subpoena power. In each of these equilibria, the PM�s ex ante expected
payo¤ is equal to EUnosub. We can infer that, in this case, EUsub � EUnosub.
It remains to show that this inequality is actually an equality. This is necessarily
the case if 2�1� � 1 since part (2) of lemma 5 establishes that there is no other
equilibrium in which �i > 0 for i = 1; 2. If 2�1� > 1, part (2b) of lemma 5
establishes that other equilibria exist in the game with subpoena power. In these
equilibria, the PM�s ex ante expected payo¤ is equal to

EU = (�+ 1)� �1�f1 + 2�2 (�� 1)
2 (�� 1) .

Since 2�1� > 1 and �1 < 1=2, simple algebra establishes that EU < EUnosub.
Hence we have EUsub = EUnosub.
This completes the proof since these three cases exhaust all possibilities. �

The next lemma describes IGs�organization strategies in the game where the set
of IGs is endogenous. Let �i denote IGi�s organization strategy, where �i 2 [0; 1] is
the probability that IGi organizes.

Lemma 1. IG1�s organization strategy is given by

�1

8<: = 1 if �1 (1� f1) > c1
2 [0; 1] if �1 (1� f1) = c1
= 0 if �1 (1� f1) < c1:

IG2�s organization strategy is as follows:
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(1) When N = 2,

�2

8<: = 1 if �2 (1� f2) > c2
2 [0; 1] if �2 (1� f2) = c2
= 0 if �2 (1� f2) < c2

if �1f1+�2f2�1�2
� 1, and

�2

8>>>>>><>>>>>>:

= 1 if �2

�
1� �1�1

�
2�+(��1) f1�2

2��1 � �1f1+�2f2
�1�2

�
� f2

�
> c2

2 [0; 1] if �2

�
1� �1�1

�
2�+(��1) f1�2

2��1 � �1f1+�2f2
�1�2

�
� f2

�
= c2

= 0 if �2

�
1� �1�1

�
2�+(��1) f1�2

2��1 � �1f1+�2f2
�1�2

�
� f2

�
< c2

if �1f1+�2f2�1�2
< 1.

(2) When N = 1,

�2

8<: = 1 if �2 [1� �1 (1� f2)� f2] > c2
2 [0; 1] if �2 [1� �1 (1� f2)� f2] = c2
= 0 if �2 [1� �1 (1� f2)� f2] < c2

if f2 > 1� �1, and

�2

8<: = 1 if �2 [1� �1�1 � f2] > c2
2 [0; 1] if �2 [1� �1�1 � f2] = c2
= 0 if �2 [1� �1�1 � f2] < c2

if f2 � 1� �1.

Proof of Lemma 6. Observe that if IGi does not organize, the PM�s belief about
�i is given by �i < 1=2. In this case, the PM chooses pi = 0, and IGi�s expected
payo¤ is Evi (ni = 0) = 0, where Evi (ni) denotes IGi�s equilibrium expected payo¤
given its organization decision ni 2 f0; 1g.

We know from the proof of proposition 2 that IG1�s expected payo¤ if it organizes
is given by

Ev1 (n1 = 1) = �1 (1� f1)� c1.
Consider now IG2�s expected payo¤ when it organizes. There are three cases to

consider:

(1) N = 1 and f2 > 1� �1. If IG1 is organized (which occurs with probability
�1), IG2 will abstain from lobbying. The PM will then believe �2 = 1

with probability �Acc2 (0) = �2 < 1=2 and will then choose p2 = 0. In this
case, IG2�s expected payo¤ is equal to zero. If IG1 is not organized, IG2
will lobby truthfully and the PM will choose p2 = �2. In this case, IG2�s
expected payo¤ is equal to �2 (1� f2). To sum up, IG2�s expected payo¤
if it organizes is here given by

Ev2 (n2 = 1) = (1� �1)�2 (1� f2)� c2.

(2) Either N = 1 and f2 � 1 � �1, or N = 2 and �1f1+�2f2
�1�2

� 1. In either
of these two cases, any organized IG lobbies truthfully (by lemma 1 and
lemma 2) and the PM chooses p2 = �2, unless the two IGs are organized
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and � = (1; 1), in which case the PM chooses p = (1; 0). IG2�s expected
payo¤ if it organizes is here given by

Ev2 (n2 = 1) =

�
�2 (1� f2)� c2 if N = 2
�2 [�1 (1� �1) + (1� �1)� f2]� c2 if N = 1.

(3) N = 2 and �1f1+�2f2
�1�2

< 1. If IG1 is not organized, IG2 will lobby truth-
fully. In this case, IG2�s expected payo¤ is equal to �2 (1� f2). If IG1 is
organized, both IGs will overlobby (by lemma 1). We know from the proof
of proposition 2 that, in this case, IG2�s expected payo¤ is equal to

�2

(
1� �1

"
� (2�2 � f1)� �2

�1
(2�� 1) f2

�2 (2�� 1)

#
� f2

)
.

To sum up, IG2�s expected payo¤ if it organizes is here given by

Ev2 (n2 = 1) = �2

(
1� �1�1

"
� (2�2 � f1)� �2

�1
(2�� 1) f2

�2 (2�� 1)

#
� f2

)
� c2.

Thus, IGi organizes if Evi (ni = 1) > Evi (ni = 0) = 0, and only if Evi (ni = 1) �
Evi (ni = 0) = 0. �

We can make three observations relative to lemma 6.
First, �i < 1=2 implies that if it does not organize, IGi gets pi = 0. Moreover,

an IG lobbies truthfully in the equilibrium of the subgame where it is the only
organized IG. This means that the di¤erence in organization incentives between
the N = 1-game and the N = 2-game is associated with the subgame where the
two IGs are organized.
Second, IG1�s organization strategy does not depend on N . This is because

the PM prioritizes issue 1 when IG1 is organized and lobbies. When �1 = 1, IG1
lobbies and gets p1 = 1 with probability one. When �1 = 0, IG1 does not lobby
or it randomizes between lobbying and not lobbying; in either case IG1 gets zero
expected payo¤. Thus, whether �1 = 1 or �1 = 0, IG1�s expected payo¤, and
therefore its organization strategy, is independent of N .
Third, IG2�s organization strategy depends on N (if and only if IG1 organizes

with positive probability). To understand why, we partition the parameter space
into the same three regions as in proposition 1 and consider subgames where IG1 is
organized (since, as argued in observation 1 above, the di¤erences between N = 1
and N = 2 occur only in the subgame where the two IGs are organized).

(1) f2 > 1� �1: When N = 1, IG2 does not want to organize. This is because
it anticipates that IG1 will lobby truthfully and, then, that it, IG2, will not
lobby at all. IG2�s expected payo¤will then be equal to zero. When N = 2,
IG2 anticipates truthful lobbying and positive expected payo¤. Thus, IG2
is (weakly) more likely to organize when N = 2 than when N = 1.

(2) f2 2
h
�1

�
1� f1

�2

�
; 1� �1

i
: IG2 anticipates truthful lobbying whetherN =

1 or N = 2. In this case, IG2�s expected payo¤ is bigger when N = 2 than
when N = 1 since IG2 does not have to bear the agenda constraint cost
when N = 2, in contrast to when N = 1. It follows that, as in the �rst
region, IG2 is more likely to organize when N = 2 than when N = 1.
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(3) f2 < �1
�
1� f1

�2

�
: In contrast to what happens in the other two regions of

the parameter space, here IG2 can be more likely to organize when N = 1
than when N = 2. This happens when, as discussed in section 5.3, the
overlobbying externality cost exceeds the agenda constraint cost. In that
case, IG2�s expected payo¤ is bigger when N = 1 than when N = 2.

Proof of Proposition 5. We start by establishing the su¢ ciency of the three
conditions in the statement.
Condition (1) implies that �N=11 = �N=21 = 1 (lemma 6), and IG1�s expected

payo¤ is given by EUN=11 = EUN=21 = �1 (1� f1)� c1.
Together, condition (3) and � > 1 imply �1f1+�2f2

�1�2
< 1, and case (3) in lemma

6 then applies. When N = 1, condition (2) implies �N=12 = 1 and EUN=12 =
�2 (1� �1 � f2) � c2 > 0. Moreover, �N=11 = �N=21 = 1 implies EUN=1PM = � +
(1� �1�2). When N = 2, two cases are possible:

(1) IG2 organizes. In this case, condition (3) implies EUN=12 � EUN=22 .
Moreover, given the equilibrium strategies (case (2) in lemma 1), we get
EUN=2PM = (�+ 1)� 2�1�2�

2��1 < EUN=1PM .
(2) IG2 does not organize. In this case, EUN=22 = 0 < EUN=12 . Moreover, the

PM gets informed on issue 1 and, given �2 < 1=2, chooses p = (�1; 0). The
PM�s expected payo¤ is then given by EUN=2PM = �+ (1� �2) < EUN=1PM .

To sum up, we have EUN=11 = EUN=21 , EUN=12 � EUN=22 and EUN=1PM >
EUN=2PM .

We now establish the necessity of each of the three conditions in the statement.
Suppose EUN=1k � EUN=2k for each player k 2 f1; 2; PMg, with at least one
inequality strict.
First, it must be that c1 � �1 (1� f1), so that �N1 > 0 (by lemma 6). To see this,

assume by way of contradiction that c1 > �1 (1� f1). We then have �N1 = 0 for
each N 2 f1; 2g. It follows that EUN=11 = EUN=21 = 0. Moreover, we know from
lemma 6 that EUN=12 = EUN=22 . Finally, the PM chooses p1 = 0, implying that
an agenda constraint will not be binding and, therefore, that EUN=1PM = EUN=2PM .
Hence EUN=1k = EUN=2k for every player k 2 f1; 2; PMg, a contradiction.
Second, it must be that �1f1+�2f2

�1�2
< 1. This is because otherwise case (1) or

case (2) of lemma 6 would apply, and IG2 would have the strongest incentives to
organize when N = 2. If IG2 were to organize when N = 2, we would then have
EUN=22 > EUN=12 , a contradiction. If IG2 were to not organize when N = 2, it
would not organize either when N = 1, and we would have EUN=2k = EUN=1k for
each player k 2 f1; 2; PMg, a contradiction.
Third, it must be that ��1f1+(2��1)�2f2

�1�2
� 1. The argument is the same as in

the proof of proposition 2. (Observe that this restriction implies �1f1+�2f2
�1�2

< 1.)
Finally, it must be that c2 � �2 (1� �1 � f2), so that �N=12 > 0 (by lemma 6).

To see this, assume by way of contradiction that c2 > �2 (1� �1 � f2). We would
then have �N=12 = 0 and, as mentioned above, �N=22 = 0. We would have again
that EUN=2k = EUN=1k for every player k 2 f1; 2; PMg, a contradiction. �
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Details of Example 1

In this section we present the main qualitative results of our model by means
of an illustrative example. In particular, we show that, for a range of parameters,
an agenda constraint results in better information transmission in equilibrium. We
also show that the introduction of an agenda constraint can generate a Pareto
improvement, the equilibrium outcome of the game with agenda constraint (N = 1)
Pareto-dominating the equilibrium outcome of the game without agenda constraint
(N = 2).
We start by characterizing equilibrium access and policy choice strategies in the

subgame following truthful lobbying. We say that lobbying is truthful if each IG
lobbies when and only when it has favorable evidence (�i = 1); formally, �i(0) = 0
and �i(1) = 1 for each i = 1; 2.1 Consistency requires that the beliefs of the PM at
the access stage must be �Acci (0) = 0 and �Acci (1) = 1 for each i = 1; 2, i.e., the PM
must believe that an IG has favorable information if and only if that IG lobbies.
Under these beliefs, any feasible access strategy (
1; 
2) is optimal since there is
no further information to be gained; through lobbying decisions, the PM is already
perfectly informed about �.
Let�s look at the optimal policy choice under truthful lobbying. When IGi does

not lobby, the optimal policy choice is straightforward: keep the status quo on issue
i, i.e., pi = 0. When only IGi lobbies, the policy choice is pi = 1 if and only if IGi
reveals �i = 1. When both IGs lobby, the PM�s interim beliefs imply that, absent
further information, he gets a positive payo¤ from implementing reform on either
issue. If there is no agenda constraint (N = 2), he chooses p = (1; 1), unless he
grants access to IGi and �nds �i = 0. If there is an agenda constraint (N = 1),
the PM will �prioritize�reform on issue 1 since this issue is more important to him
(� > 1), i.e., he will implement reform on issue 1 (p = (1; 0)), unless he grants
access to IG1 and �nds �1 = 0:2 Hence, the PM�s optimal policy strategy when both
IGs lobby can be summarized as follows:

: CASE 1: N = 2. Implement reform on both issues unless IGi was granted
access and revealed �i = 0; in which case implement reform only on issue
�i.

: CASE 2: N = 1. Implement reform on issue 1 unless IG1 was granted
access and revealed �1 = 0; in which case implement reform on issue 2.

We continue by considering a speci�c numerical example. Let parameters take
the following values:

� � = 2, i.e., the PM �nds issue 1 twice as important as issue 2;
� �1 = �2 = 2=5, i.e., the PM is ex ante biased against reforms; and
� the lobbying cost for each IG is f = 1=20.

Game without agenda constraint (N = 2). In this section, we characterize the set
of equilibria for the game without agenda constraint (N = 2).
We start by showing that there is no equilibrium in which the PM is always

perfectly informed about �. To see this, assume by way of contradiction that such
an equilibrium were to exist. In this case lobbying must be truthful, as we show

1The opposite strategies, i.e., lobby if and only if it has unfavorable information cannot be
part of an equilibrium since lobbying is costly.

2This does not happen on the equilibrium path but is part of the description of the optimal
strategy of the PM.
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in section 5.3 Let b
i 2 [0; 1] denote the equilibrium probability with which IGi is
granted access when both IGs lobby, with the restriction that b
1+b
2 = 1. Given the
optimal policy choice strategy as described above, an IG which lobbies and is not
granted access gets its reform adopted. IGi�s expected policy payo¤ from lobbying
when �i = 0 is then equal to 2=5 � b
�i, which corresponds to the probability that
IG�i lobbies and is granted access: For IGi to not deviate and lobby when �i = 0,
it must be that 2=5 � b
�i � 1=20, i.e., the expected policy gain from lobbying must
not exceed the lobbying cost. This inequality is satis�ed for each i = 1; 2 only ifb
i � 1=8 for i = 1; 2, which contradicts b
1 + b
2 = 1. Thus, in equilibrium the PM
does not get fully informed about �.
We continue by characterizing the equilibrium set for the game without agenda

constraint. As we show in the next section, the equilibrium of this game is unique
and corresponds to the following strategies and beliefs:

(1) The lobbying strategies are given by �i(1) = 1 for each i = 1; 2, �1(0) = 2=9
and �2(0) = 2=3, i.e., IGi always lobbies when it has favorable information
and randomizes between lobbying and not lobbying when it has unfavorable
information.

(2) The access strategy is such that when both IGs lobby, 
1(1; 1) = 15=16
and 
2(1; 1) = 1=16, i.e., the PM gives access priority to IG1. When only
one IG lobbies, it is granted access with probability one. When neither IG
lobbies, the PM cannot grant access to any IG.

(3) The policy strategy is such that the PM chooses p1 = 1 when IG1 lobbies
and is not granted access. The PM chooses p2 = 1 with probability 1/10
when IG2 lobbies and is not granted access. Finally, pi = 0 when IGi does
not lobby, and pi = �i when IGi lobbies and is granted access.

(4) PM�s beliefs at the access stage are obtained from the lobbying strategies
using Bayes�rule: �Acci (0) = 0 for each i = 1; 2, �Acc1 (1) = 2=5

2=5+(3=5)�(2=9) =

3=4 and �Acc2 (1) = 2=5
2=5+(3=5)�(2=3) = 1=2.

We now verify that these strategies and beliefs constitute an equilibrium.
First, it is clear from the description of the policy stage in section 3 that the

policy strategy maximizes the PM�s expected payo¤. The exact randomization on
p2 when IG2 lobbies and is not granted access justi�es IG2�s randomization over its
lobbying decision when �2 = 0.
Second, consider the PM�s access decision when both IGs lobby. The PM believes

�1 = 1 with probability 3=4 and �2 = 1 with probability 1=2.

(1) If the PM grants access to IG1, he learns �1 and chooses the correct p1,
while randomizing on p2 and choosing the correct p2 with probability 1/2.
The PM�s expected payo¤ is equal to 2 + 1=2 = 5=2.

3Intuitively, both IGs must be lobbying with (su¢ ciently high) positive probability. Moreover,
at least one of the two IGs must be lobbying truthfully since the PM can grant access to only
one IG, thereby requiring lobbying decisions to be perfectly informative for at least one issue. If
only one IG lobbies truthfully, the PM will necessarily choose to grant access to the �untruthful�
IG when this IG lobbies since the value of the information obtained by granting access to the
�untruthful� IG is greater than the value of the information obtained by granting access to the
�truthful� IG (where no information is to be gained). This implies that the �truthful� IG has an
incentive to deviate and lobby when it has unfavorable evidence, since it has a su¢ ciently high
probability of not being awarded access and, therefore, of not having to reveal its information and
getting its reform adopted.



16

(2) If the PM grants access to IG2, he learns �2 and chooses the correct p2,
while choosing p1 = 1, which is the correct choice with probability 3=4.
The PM�s expected payo¤ is equal to (3=4) 2 + 1 = 5=2.

Thus, when the two IGs lobby, the PM is indi¤erent between granting access to
IG1 and granting access to IG2. The exact randomization justi�es IG1�s lobbying
randomization when �1 = 0.
Third, consider IGs�lobbying strategies. We start by observing that if IGi does

not lobby, the PM believes �i = 0 and chooses pi = 0. IGi�s payo¤ is then equal to
zero.
We continue by checking that IG1�s lobbying strategy is an equilibrium strategy.

(1) When �1 = 1, IG1 is strictly better o¤ lobbying. If this IG lobbies, the PM
adopts p1 = 1, independently of whether or not he awards access to IG1.
IG1�s payo¤ is thus equal to 1� 1=20 = 19=20 > 0, which is strictly bigger
than if IG1 were not lobbying.

(2) When �1 = 0, IG1 is indi¤erent between lobbying and not lobbying. If
IG1 lobbies, the PM chooses p1 = 1 if and only if he does not grant access
to IG1; otherwise, IG1 must reveal �1 = 0 and the PM chooses p1 = 0.
This event happens if and only if IG2 lobbies and is the one to be granted
access, which occurs with probability [2/5+(3/5)�(2/3)]�(1/16)=1/20. IG1�s
expected payo¤ is thus equal to 1

20 �
1
20 = 0, which corresponds to the

probability p1 = 1 minus the lobbying cost. Thus, IG1 gets zero expected
payo¤whether it lobbies or not. The exact randomization justi�es the PM�s
access randomization when both IGs lobby.

It remains to check that IG2�s lobbying strategy is an equilibrium strategy.

(1) When �2 = 1, IG2 is strictly better o¤ lobbying. If this IG lobbies, the PM
adopts p2 = 1 with probability 11/20 (viz. with probability 1 if he grants
access to IG2 and with probability 1/10 if IG1 lobbies and is granted access).
IG2�s expected payo¤ is equal to 11

20 �
1
20 = 1=2 > 0, which is strictly bigger

than if IG2 were not lobbying (which would be equal to zero).
(2) When �2 = 0, IG2 is indi¤erent between lobbying and not lobbying. If

this IG lobbies, the PM chooses p2 = 1 if and only if he awards access to
IG1 and randomizes in favor of p2 = 1. This event happens with proba-
bility [2/5+(3/5)�(2/9)]�(15/16)�(1/10)=1/20, i.e., the probability that IG1
lobbies, is granted access, and the PM chooses p2 = 1 when IG2 lobbies
but is not granted access. IG2�s expected payo¤ from lobbying is equal to
1
20 �

1
20 = 0. Thus, IG2�s expected payo¤ is equal to zero whether it lobbies

or not. The exact randomization justi�es the PM�s policy randomization
over p2 when IG2 lobbies but is not granted access.

Equilibrium ex ante expected payo¤s of the three players are equal to

EvN=21 = � (1� f) + (1� �) 0 = 19
50

EvN=22 = �
�
1�

�
� + (1� �) � 29

�
�
�
15
16

�
�
�
9
10

�
� f

	
+ (1� �) � 0 = 1

5
EUN=2 = �

�
1� (1� �) � 29 �

�
� + (1� �) � 23

�
� 116

	
+ 1�

��
� + (1� �) � 29

�
� 1516 �

�
� � 910 + (1� �) �

2
3 �

1
10

�	
= 209

75 ;

for IG1, IG2 and the PM, respectively.
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Game with agenda constraint (N = 1). In this section, we characterize the set of
equilibrium outcomes for the game with agenda constraint (N = 1). In particular,
we show that the PM gets perfectly informed about �.
Consider the access strategy where the PM grants access to IG1 when both IGs

lobby, i.e., 
1(1; 1) = 1. This access strategy, the policy choice strategy described
above, and truthful lobbying strategies are part of an equilibrium. Moreover, as we
show in section 5, any equilibrium in this parameter region has truthful lobbying,
and all equilibria are outcome and payo¤ equivalent. This contrasts with the ab-
sence of an equilibrium of the N = 2�game where the PM always gets perfectly
informed about �. This illustrates our result that an agenda constraint can lead to
better information transmission (Proposition 1).
To show that these strategies are part of an equilibrium, it remains only to

establish that truthful lobbying is an equilibrium strategy. Observe that issue i
never gets reformed when �i = 0, implying that IGi has no incentive to deviate and
lobby in this state. When �1 = 1, IG1 gets payo¤ 1� 1=20 = 19=20 from lobbying
(i.e., it gets p1 = 1 and must bear lobbying cost f = 1=20). When �2 = 1, IG2 gets
expected payo¤ 3=5�1=20 = 11=20 from lobbying (i.e., it gets p2 = 1 when �1 = 0,
which happens with probability 3/5, and must bear lobbying cost f = 1=20). Since
each IG gets zero payo¤ if it does not lobby (pi = 0 since �

Acc
i (0) = 0), neither IGi

wants to deviate and not lobby when �i = 1.
To sum up, through lobbying decisions the PM gets perfectly informed about

�. He always chooses the correct p1. He also chooses the correct p2 unless � =
(1; 1), in which case the agenda constraint is binding and the PM reforms issue 1,
while keeping the status quo for issue 2. Thus, equilibrium expected payo¤s are
EUN=1 = �+1��2 = 71=25 for the PM, EvN=11 = � �(1� f) = 19=50 for IG1;and
EvN=12 = � � (1� � � f) = 11=50 for IG2.

Pareto improvement. Comparing equilibrium expected payo¤s in the two games,
we get

EvN=21 =
19

50
= EvN=11

EvN=22 =
1

5
<
11

50
= EvN=12

EUN=2 =
209

75
<
71

25
= EUN=1:

Thus, IG1 is ex ante as well o¤ in the N = 1-game as in the N = 2-game, while IG2
and the PM are each ex ante strictly better o¤ in the former than in the latter. This
illustrates our second result that, from an ex ante point of view, the introduction
of an agenda constraint can generate a Pareto improvement (Proposition 2).
To understand this result, observe that the introduction of an agenda constraint

has a depressing e¤ect on the PM�s expected payo¤ by preventing him from re-
forming both issues. For the introduction of an agenda constraint to increase the
PM�s expected payo¤, it must then be that the PM gets better informed about �
with than without agenda constraint. This is made possible by the fact that the
agenda constraint allows the PM to use his access strategy to �discipline�the lob-
bying behavior of IGs, something he cannot do without agenda constraint. More
speci�cally,
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(1) in the N = 1-game, the PM can proceed �lexicographically�, prioritizing
issue 1 by awarding access to IG1 whenever it lobbies, and adopting p =
(1; 0) if and only if IG1 reveals �1 = 1. This strategy induces both IGs
to lobby truthfully: IG1 because it knows it will be granted access if it
lobbies; IG2 because it knows its lobbying decision will matter for the policy
outcome if and only if �1 = 0, in which case IG1 will not lobby and IG2
will necessarily be granted access if it lobbies.

(2) in the N = 2-game, the PM can no longer �discipline�IGs by prioritizing
issue 1. Even if the PM were to prioritize issue 1, IG2�s lobbying decision
would still matter since the PM can reform both issues. It follows that if
IGs were to lobby truthfully, when IG2 lobbies and is not granted access,
the PM would believe �2 = 1 and would choose p2 = 1. If lobbying is
not too costly, as it is the case in this example, IG2 would then want to
deviate and lobby when �2 = 0, hoping that it will not be granted access.
In other words, the fact that the PM can reform both issues while he can
grant access to only one IG creates an incentive for IGs to overlobby. We
say that IGi overlobbies if it lobbies more often than it would if it were
to lobby truthfully (viz. �i(1) = 1 and �i(0) > 0). In equilibrium IGs
overlobby up to the point where they are indi¤erent between lobbying and
not lobbying when they have unfavorable information, i.e., up to the point
where, in expectation, all the rent from overlobbying is exhausted and the
expected payo¤ in state �i = 0 is equal to zero whether IGi lobbies or not.

IG1 gets the same expected payo¤ in both games. This is because the PM
prioritizes issue 1 in the N = 1- game and IG1 overlobbies in the N = 2-game.
IG2 gets a higher expected payo¤ in the N = 1-game than in the N = 2-game.

To see this, observe that when �2 = 0, IG2 gets zero expected payo¤ in both
games. This is because IG2 lobbies truthfully in the N = 1-game and exhausts, in
expectation, the rent from overlobbying in the N = 2-game. When �2 = 1, IG2
bene�ts from the relaxation of the agenda constraint: in the N = 2-game, IG2 can
get its reform adopted even when �1 = 1, which is not possible in the N = 1-game
since the PM prioritizes issue 1. At the same time, IG2�s overlobbying in state
�2 = 0 generates a negative externality on IG2�s �2 = 1-self, by undermining the
PM�s belief that �2 = 1 when IG2 lobbies but is not granted access. The latter
induces the PM to adopt p2 = 1 with probability less than one. Given the parameter
values in this example, the overlobbying externality cost exceeds the bene�t from
the relaxation of the agenda constraint, implying that IG2 is ex ante strictly better
o¤ in the N = 1-game than in the N = 2-game.
Finally, the PM gets a higher expected payo¤ in the N = 1-game than in the

N = 2-game. On the one hand, the PM bene�ts from the relaxation of the agenda
constraint by being able to reform both issues. On the other hand, overlobbying
implies that the PM is lesser informed in the N = 2-game than in the N = 1-
game. For the parameter values in this example, the informational bene�t from the
introduction of the agenda constraint exceeds the cost from the agenda constraint.


