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Abstract Micro scale population balance equations of suspension transport in porous
media with several particle capture mechanisms are derived, taking into account the parti-
cle capture by accessible pores, that were cut off the flux due to pore plugging. The main
purpose of the article is to prove that the micro scale equations allow for exact upscaling
(averaging) in case of filtration of mono dispersed suspensions. The averaged upper scale
equations generalise the classical deep bed filtration model and its latter modifications.
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Nomenclature
C Suspended particle concentration distribution by sizes, L−4

Ct Concentration distribution for suspended particles trapped in cut-off accessible
pores, L−4

c Total suspended particle concentration, L−3

f Fractional flow function, dimensionless
H Pore concentration distribution, L−3 or L−4

h Total pore concentration (density), L−2 or L−3

j Jamming ratio, dimensionless
j0 Maximum value of jamming ratio for non-zero accessibility
k(σ ) Absolute permeability, L2

ka(σ ) Permeability of accessible part of the porous medium, L2

kna(σ ) Permeability of inaccessible porous medium, L2

kc(σ ) The total of pore accessible conductivities weighted with capture probability, L2

k1 Conductivity of a single pore, L4

l Characteristic microscopic length, L
L Length of the core, L
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P Pressure, M/LT
p(rs/rp) Overall capture probability, dimensionless
pa(rs/rp) Attachment capture probability, dimensionless
q(rp) Total flow rate in a single pore, L−3T−1

qa(rp, rs) Flow rate through accessible cross section of a single pore, L−3T−1

r Size of a particle or of a pore, L
s1 Pore cross-section, L2

t Time, T
T Fast dimensionless time
U Total velocity of the flux, LT−1

Ua Velocity of the accessible flux, LT−1

Una Velocity of the inaccessible flux, LT−1

v Concentration front velocity in 1d filtration flow, LT−1

x Coordinate, L
X Dimensionless coordinate
y Independent variable in system of differential-integral equations

Greek letters
α Critical porosity fraction, dimensionless
ε Small parameter that equals to the ratio between the injected concentration

and the critical porosity fraction
λ′(σ ) Filtration coefficient, L−1

λ(σ ) Dimensionless filtration coefficient
µ Dynamic viscosity, ML−1T−1

η Collision efficiency
ν(rs/rp) Single pore flux reduction factor, dimensionless
σ Volumetric concentration of captured particles, L−3

� Size distribution of the captured particle concentration, L−4

� Distribution of the captured particle concentration over the pore and particle
radii, L−5

τ Slow dimensionless time
φ(x, t) Porosity, dimensionless
φa(rs, x, t) Accessible porosity for a particle of the size rs , dimensionless
φna(rs, x, t) Inaccessible porosity for a particle with size rs , dimensionless
χ(rs, rp) Accessible fraction of a single pore cross-section, dimensionless

Subscripts
a Accessible
na Inaccessible
s Suspended (solid) particle
p Pore
v Volumetric
0 Initial condition
1 Single pore (cross section, conductivity)
* Lower percolation threshold corresponding to connectivity of accessible

pores

Superscripts
0 Boundary condition
* Upper percolation threshold corresponding to connectivity of inaccessible

pores
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1 Introduction

Transport of particulate suspensions and colloids in porous media is accompanied by
particle capture and consequent permeability decline. It occurs in oil reservoirs during sea- or
produced water injection, produced water disposal in aquifers with subterranean water con-
tamination, drilling fluid invasion causing formation damage, filtration of completion fluid,
fines migration during production of heavy oils in low consolidated reservoirs resulting in
productivity decline and during sand production control by gravel packs and sand screens
(Khilar and Fogler 1998; Civan 2006). The reliable prediction of these processes helps in
design of injected water treatment, in particle sizing of drilling and completion fluids, in
sizing the gravel pack and designing the sand screens.

Flow of suspensions and colloids in natural porous formations with particle capture by
matrix occurs also in environmental engineering: viruses, protozoa and bacteria are trans-
ported by subterranean water in aquifers and contaminate water resources (Elimelech et al.
1995; Logan 2001). Filtering of water and industrial liquids, membrane technologies and
size exclusion chromatography are traditional areas of chemical engineering (Mays and Hunt
2005).

Prediction of particle propagation and retention by mathematical modelling is an essential
stage during planning and design of above-mentioned industrial and environmental processes.
The classical suspension-colloid filtration theory is the most commonly used approach for
predicting particle deposition behaviour and consequent rock alterations.

The classical deep bed filtration model consists of two equations for particle balance
and for capture kinetics (Herzig et al. 1970; Payatakes et al. 1974). The model contains the
filtration coefficient that is a function of retained particle concentration. Various forms of
filtration function for different particle capture mechanisms have been presented in the liter-
ature (Herzig et al. 1970; Kuhnen et al. 2000). Several analytical solutions for different forms
of filtration coefficient are also presented in the literature (Herzig et al. 1970).

Usually the outlet suspension concentration is measured during laboratory tests on suspen-
sion flow in cores. The particle breakthrough curve allows calculation of filtration function
(Soo et al. 1986; Pang and Sharma 1994; Bolster et al. 1998; Foppen et al. 2005; Foppen and
Schijven 2006). The solution of inverse problem exists, is unique and stable with respect to
small perturbations of measured data (Alvarez et al. 2006). The solution of the direct prob-
lem using the filtration coefficient, as determined from breakthrough curve by solution of the
inverse problem, allows predicting the retention profile.

Recently several articles have presented measured retention profile together with break-
through curve during corefloods by suspensions (Bradford et al. 2002, 2003, 2004; Bradford
and Bettahar 2006; Tufenkji and Elimelech 2004; Al-Abduwani et al. 2004; Al-Abduwani
2005). It gives an opportunity to verify the classical deep bed filtration model by deter-
mination of filtration coefficient from the breakthrough curve, prediction of the retention
profile and its comparison with that measured. The authors report that it is impossible to
match simultaneously the breakthrough curve and the retention profile by tuning the filtration
function.

The explanation of the deviation phenomenon was presented for the case of electric parti-
cle attachment (Tufenkji and Elimelech 2005). The deviation was not explained for the case
of particle straining.

Disagreement between the modelled and measured deep bed filtration data makes it nec-
essary to analyse the fundamentals of the classical model for suspension transport in porous
media, including its derivation from micro scale equations and formulation of possible
generalisations.
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Another motivation for generalisation of the classical deep bed filtration model is
different breakthrough times as obtained from laboratory and mathematical modelling.
Laboratory tests on deep bed filtration exhibit the value for breakthrough time that varies from
0.4–0.8 to 10–100 pore volumes injected (Harvey and Garabedian (1991); Roque et al. 1995;
Kretzschmar et al. 1997; Chauveteau et al. 1998; Camesano et al. 1999; Veerapen et al. 2001;
Massei et al. 2002) while the breakthrough time as obtained by the classical model is equal
to unity. Introduction of porosity decrease due to particle retention into the classical model
allows predicting only less-than-unity breakthrough times (Corapcioglu and Choi 1996).

The retention rate, for the size exclusion particle capture mechanism, depends on particle
and pore sizes that widely vary in natural rocks and suspensions. The particle capture
rate, caused by the electric and molecular forces that retain the particles, is also parti-
cle-size dependent. The classical model operates with mean concentrations and does not
account for micro characteristics like size, surface energy and electric charge distribu-
tions.

Several studies have proposed to consider probabilistic distribution of filtration coefficient
to account for local variations in the particle collection efficiency (Elimelech et al. 1995;
Khilar and Fogler 1998). Distribution function was matched in order to adjust the experi-
mental data (Baygents et al. 1998; Simoni et al. 1998; Bolster et al. 1998, 1999). In particular,
the bimodal distribution can fairly well adjust several data on simultaneous breakthrough
curve and deposition profile for the cases where the data cannot be adjusted by the classical
model (Tufenkji et al. 2003; Tufenkji and Elimelech 2005).

Sharma and Yortsos (1987a,b,c) derived basic population balance equations for trans-
port of particulate suspensions in porous media. The model accounts for particle and pore
size distribution variation due to different particle capture mechanisms. It is assumed that
an overall pore space is accessible for particles and the particle population moves with the
average flow velocity of the carrier water. In the case of a porous medium with a uniform
pore size distribution, this assumption results in independent deep bed filtration of different
particle size populations. Nevertheless, during deep bed filtration with size exclusion mech-
anism, particles smaller than the pore radii should pass the rock without being captured and
particles larger than the pore radii should not enter the rock.

Introduction of accessibility and flux reduction factors into population balance equations
results in capture-free transport of smaller particles in the porous medium with single- sized
pores; large particles do not enter the medium (Santos and Bedrikovetsky 2006).

In the current article, the suspension storage in cut-off part of accessible pore volume
and varying porosity, are introduced into the micro scale population balance model of sus-
pension transport in porous media. The exact averaging is performed for the case of mono
dispersed suspension. The resulting equations generalise the classical deep bed filtration
model and its latter modifications. So, the large-scale model, for suspension transport in
rocks, was obtained from micro scale population balance model only in the case of single
size particles.

The structure of the article is as follows. The main model parameters for porous media
and suspension (colloid) are defined in Sect. 2. Section 3 contains derivation of governing
equations. The particular case of mono dispersed suspension is discussed in Sect. 4 where
it is proven that the vacant pore concentration distribution is a function of the total vacant
pore concentration. The averaged system of suspension flow is derived in Sect. 5. Section 6
presents simplifications of the model for cases of low retention and long time. The structure
of the solution for suspension injection into the clean rock is given in Sect. 7. Analysis of
the cases, where the particle breakthrough happens before and after the injection of one pore
volume, is presented in Sect. 8.
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2 Definition of Model Parameters

In this section the parameters and variables for population balance model of suspension flow
in porous media are briefly described. With minor modifications, the description follows
Sharma and Yortsos (1987a,b,c) and Shapiro et al. (2007).

The statistical theory of suspension transport in porous media is based upon the definition
of size distribution functions for pores and particles (Sharma and Yortsos 1987a,b,c).

First we describe the porous space geometry and define rock transport and volumetric
properties.

The surface pore concentration distribution H(rp, x, t) is defined via number of pores
Hdrp with sizes varying from rp to rp + drp , and crossing the unitary cross section. This
definition is convenient since the total pore concentration is simply obtained as an integral
of the pore concentration distribution

h (x, t) =
∞∫

0

H
(
rp, x, t

)
drp (1)

Further in the text, H and h are called the pore concentration distribution and the total
pore concentration, respectively.

The surface pore concentration distribution H is used to determine porosities and fluxes.
The expression for particle retention rate uses the volumetric pore concentration distribution
Hv(pr , x, t) defined via the number of pores Hvdrp with sizes varying from rp to rp + drp
per rock volume unit. The surface and volumetric concentration distributions are assumed to
be related by equality

Hv = H

l
(2)

where l is a reference length parameter of porous media that has an order of magnitude of a
medium pore length.

Consider the porous media model consisting of a parallel bunch of capillaries alternated
by mixing chambers. Different scenarios of particle flow and capture in the model porous
media are shown in Figs. 1–4. Each particle flows in capillary with a size that exceeds the
particle size (Figs. 2, 4). Different size particles are transported to chambers via the accessible
capillaries, and complete mixing of different size particles occurs in the chambers (Fig. 2).

Two processes of particle transport and capture, occurring simultaneously in natural rocks,
are separated in the proposed model. The size exclusion particle capture occurs at the thin
pore inlet, where large particles arrive (Fig. 2). So, an inlet cross section of each parallel
capillary section acts as a sieve, i.e. large particles do not enter thin pores and are captured
at chamber outlets. The attachment particle capture occurs inside capillary (see Fig. 3).

(a) (b)  l

Fig. 1 Geometric model of porous media—bundle of parallel capillaries alternated by mixing chambers: (a)
“vertical” cross section of the rock in plane (x, z); (b) cross section of the geometric rock model in plane (y, z)
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Fig. 2 Schema of complete suspension mixing in a single chamber

rs

υq

(1-υ)q

Fig. 3 Particle retention at the pore entrance due to size exclusion and in situ the pore due to attachment

c(x,t)

h(x,t)

s1

χs1

Fig. 4 Schematic for transversal-to-flow cross-section of the geometrical model of porous media

It is assumed that the chamber volume is negligibly small if compared to the capillary
(pore) volume.

The phenomenological length parameter l for this model, (2), is the distance between
chambers (Fig. 1).
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The porosity is defined as a surface of the total pore cross-section via unitary rock cross
section

φ =
∞∫

0

s1
(
rp

)
H

(
rp, x, t

)
drp (3)

Here, s1(rp) is a cross section of a single pore. For a parallel bunch of capillaries with
mixing chambers, s1 is equal to πr2

p .
The porous space is divided into two parts: that accessible for particles with size rs and

that inaccessible for rs-particles

φ = φa + φna (4)

Introduce the fraction χ of a single pore cross-section accessible for rs particles (Fig. 4).
Further in the text, χ is called the single pore accessibility factor. It depends on both sizes
rp and rs . Since χ is dimensionless, it depends on the ratio rs/rp that is called the jamming
ratio j

j = rs/rp (5)

The accessible cross section of a single pore is equal to χs1.
Particles with size rs are transported via accessible pores and are captured by size exclu-

sion in inaccessible pores. Three upper pores in Fig. 4 are larger than particles, so the cross
sections of both accessible and inaccessible volumes are shown for these pores. Seven lower
pores are smaller than particles and, therefore, are inaccessible. Depending on maximum
pore size and shapes of pores and particles, complete and incomplete plugging of pore by
particle may occur, both cases are shown in the figure.

Let j0 be a minimum value of j for which all pores are inaccessible, i.e. χ(j) = 0 for all
j > j0. Further j0 is called the critical jamming ratio.

For the case of parallel bunch of round capillaries with mixing chambers and of spherical
particles, the single pore accessibility factor χ is

χ (j) =
{

0, j > 1
(1 − j)2 , j < 1

(6)

Overall pore cross-section is accessible for fine particles with rs << rp , so χ(0) = 1,
like in (6). The particle does not enter the smaller pore, so χ(j) = 0 for jamming ratios that
exceed the critical value j0, i.e. for j > j0 = 1, also like in (6).

If the pores are elliptic and the particles are spherical, the capture happens if the particle
size exceeds the lower axes of the ellipsis. The average pore size exceeds the lower axes of
the ellipsis, so the critical jamming ratio j0 < 1.

For the case of cylindrical pores and elliptic particles, the capture happens if the particle
low axes size exceeds the pore size. Since the particle low axes size is lower than the particle
average size, the critical jamming ratio j0 > 1.

The dependency of single pore accessibility factor χ versus jamming ratio for an ensem-
ble of non-ideal pores and particles is determined by averaging over their probability shape
distributions.

The single pore accessibility factor χ = χ(j) is a given function for fixed pore space
geometry and particle shapes. In a general case of any arbitrary pore and particle geometry,
the properties of the χ(j)-function are as follows:

– χ = 1 for fine particles with rs << rp , i.e. for j = 0;
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– χ decreases monotonically as j increases;
– for large particles, j > j0, single pore accessibility factor χ becomes zero.

The critical jamming ratio j0 can either exceed or be less than unity.
The accessible and inaccessible porosities for the model of parallel capillary with mixing

chambers (Fig. 1) are defined as

φa =
∞∫

0

s1
(
rp

)
χ

(
rs/rp

)
H

(
rp, x, t

)
drp (7)

φna =
∞∫

0

s1
(
rp

)
(1 − χ) H

(
rp, x, t

)
drp (8)

Since the chamber volume is assumed to be negligible, the formulae (7), (8) for accessible
and inaccessible porosities are the same as those for the model of the bundle of parallel
capillary.

Introduction of the single pore accessibility factor χ allows for simultaneous capture of
two effects: of the inaccessible pore volume in accessible pores with j < j0 (particle centre
cannot approach the pore wall closer than the particle radius) and of thin pores with j > j0

where larger particles cannot enter. These two effects have been reported earlier for polymer
flow in porous media (Dawson and Lantz 1972; Bartelds et al. 1997).

So, inaccessible porous space (8), can be divided in two parts: the volume of inaccessible
pores where χ = 0, and the inaccessible volume near to walls of accessible pores

φna =
rs/j0∫

0

s1
(
rp

)
H

(
rp, x, t

)
drp +

∞∫

rs/j0

s1
(
rp

)
(1 − χ)H

(
rp, x, t

)
drp,

respectively.
For the model of parallel capillaries with mixture chambers, (6), the expressions for acces-

sible and inaccessible porosities become:

φa =
∞∫

rs

H
(
rp, x, t

)
πr2

p

(
1 − rs

rp

)2

drp (9)

φna =
rs∫

0

H
(
rp, x, t

)
s1

(
rp

)
drp +

∞∫

rs

H
(
rp, x, t

)
πr2

p

[
1 −

(
1 − rs

rp

)2
]

drp (10)

Opposite to routine dependence of function on variables, which is usually denoted by
parentheses, the functional dependence (a functional operator as applied to a function) is
denoted by square brackets. Porosity depends on pore concentration distribution function,
while the accessible and inaccessible porosities depend also on particle size

φ [H ] , φa [H, rs] , φna [H, rs] (11)

It is assumed that viscous pressure losses along the capillary are much higher than those
in “small” chambers, so the rock permeability for porous space models with and without
chambers are the same.

123



Upscaling of Stochastic Micro Model for Suspension Transport

The Poiseuille-type flow is assumed for each single pore as:

q
(
rp

) = −k1
(
rp

)
µ

∂P

∂x
(12)

For cylindrical pores

k1
(
rp

) = πr4
p

8
(13)

The overall suspension flux is calculated by integrating (12)

U =
∞∫

0

q
(
rp

)
H

(
rp, x, t

)
drp (14)

Comparison between Eqs. (12, 14) and the Darcy law for the overall flux

U = − k

µ

∂p

∂x
(15)

allows obtaining the expression for absolute permeability

k [H ] =
∞∫

0

k1
(
rp

)
H

(
rp, x, t

)
drp (16)

It is assumed that pressure losses on chambers are negligibly small if compared with vis-
cous pressure losses along the capillary. Therefore, formula (16) for permeability is valid for
the bundle of parallel capillary with and without mixing chambers.

From (12, 14) and (15) follows the expression for flux through given size pores, via the
overall suspension flux U

q
(
rp

) = k1
(
rp

)
k

U (17)

The overall flux is divided into that via accessible pore cross-sections and that via inac-
cessible surface

U = Ua + Una (18)

Introduce the flux qc(rs, rp) in a single pore that carries particles with size rs , i.e. water
flux via accessible fraction of pore cross-section. The fraction ν

qa

(
rp, rs

) = νq
(
rp

)
(19)

is called the single pore flux reduction factor. It depends on both sizes rp and rs . Since ν is
dimensionless, it depends on the jamming ratio rs/rp .

Figure 3 shows the structure of the overall flux in accessible pore. The particle, transported
by the accessible flux νq, passes the pore throat (exit of the mixing chamber) and enters the
capillary. The inaccessible flux (1 − ν)q does not transport particles.

Consider Poiseuille velocity profile in each pore for parallel bunch of round capillaries
with mixing chambers and spherical particles:

v (r) = − r2
p − r2

4µ

∂p

∂x
(20)
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Calculation of flux via an overall pore cross-section and via its accessible fraction

q =
rp∫

0

2πrv (r) dr, qa =
rp−rc∫

0

2πrv (r) dr (21)

results in single pore flux reduction factor ν

ν (j) =
{

0, j > 1
(1 − j)2 (

1 + 2j − j2
)
, j < 1

; j = rs/rp (22)

The single pore flux reduction factor ν is equal to unity for particles with negligibly small
size—ν(0) = 1; it monotonically decreases as jamming ratio increases and becomes zero
for large particles—ν(j) = 0, j > j0. The critical jamming ratio j0 is the same for the flux
reduction factor ν and for the accessibility factor χ—both factors are zero for j > j0, i.e. χ

and ν are vanish where large particle cannot enter the fine pore.
By definitions, the flux reduction factor in single pore is analogous to fractional flow of

non-wetting phase with two-phase displacement, and the accessibility factor is analogous to
non-wetting phase saturation (Lake 1989; Bedrikovetsky 1993).

In a large pore with j < j0, the particle centres move via the central parts of pore being
carried by ν-th flux fraction, while particle-free water moves near to pore walls with the flux
which equals the (1 − ν)-th fraction of the overall flux in the pore.

The accessible flux is a flux via accessible cross sections of all pores:

Ua =
∞∫

0

ν
(
rs/rp

)
q

(
rp

)
H

(
rp, h

)
drp (23)

Comparing (12) and (23) with the Darcy‘s law for an accessible flux

Ua = −ka

µ

∂P

∂x
(24)

allows obtaining the expression for accessible permeability

ka [rs,H ] =
∞∫

0

ν
(
rs/rp

)
k1

(
rp

)
H

(
rp, h

)
drp (25)

The expressions for inaccessible flux and permeability are obtained in the same way as
those (23) and (25)

Una =
∞∫
0

(1 − ν) q
(
rp

)
H

(
rp, h

)
drp

kna [rs,H ] =
∞∫
0

(1 − ν) k1
(
rp

)
H

(
rp, h

)
drp

(26)

The inaccessible flux of particle-free water consists of those via fine inaccessible pores
and via dead volumes of accessible pores:

Una =
rs/j0∫

0

q
(
rp

)
H

(
rp, h

)
drp +

∞∫

rs/j0

(1 − ν) q
(
rp

)
H

(
rp, h

)
drp
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Division of the overall suspension flux into its accessible and inaccessible parts permits
introduction of fractional flow via accessible pore space

Ua = f U, Una = (1 − f ) U (27)

The expression for fractional flow function follows from (25) and (27):

f =

∞∫
o

ν
(
rs/rp

)
k1

(
rp

)
H

(
rp, x, t

)
drp

∞∫
0

k1
(
rp

)
H

(
rp, x, t

)
drp

= f [H, rs] (28)

The fractional flow (28) is analogous to that for non-wetting phase with two-phase dis-
placement, and the accessible porosity is analogous to non-wetting phase saturation. The
fractional flow formulae for bundle of parallel capillary with and without mixing chambers
are the same.

Now we describe the populations of particles in suspensions (colloids) in porous media.
The particles are present in porous media as those suspended and retained. The total con-

centrations for suspended and retained particles are denoted as c(x, t) and σ(x, t), respec-
tively. The definition of size distribution for suspended particles C(rs, x, t) is such that
C(rs, x, t)drs is the number of particles per unitary volume, with particle radii between rs
and rs + drs , located in point x at time t . The retained particle size distribution �(rs, x, t) is
also defined via the number of retained particles �(rs, x, t)drs with radii varying between
rs and rs + drs .

The total concentration is a sum of concentrations distributed by particle size

c (x, t) =
∞∫

0

C (rs, x, t) drs (29)

σ (x, t) =
∞∫

0

� (rs, x, t) drs (30)

The retained concentration is also distributed by the size of pores where the particle is
captured

� (rs, x, t) =
∞∫

0

�
(
rp, rs, x, t

)
drp (31)

Retained particles plug the pores and cause the decrease of the accessible pore volume.
For each moment, the suspended particles with size rs are present in the current accessi-

ble pore volume and also in the fraction of initial accessible pore volume cut off the flux by
plugging. The cut off porosity is equal to the difference between the initial and the current
accessible porosities

φa

[
H

(
pp, x, 0

)
, rs

] − φa

[
H

(
pp, x, t

)
, rs

]
(32)

The suspended concentration distribution in cut off accessible volume is denoted as
Ct(rs, x, t).

Consider an individual interaction between pore and particle that already entered the
pore. Following Shapiro et al. (2007), let us introduce the probability p(rs/rp) of particle to
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be captured by the pore, and the attachment probability of particle capture inside the pore
pa(rs/rp). The attachment probability is proportional to so called collision efficiency η from
the classical filtration theory (Elimelech et al. 1995).

Introduction of the attachment probability pa allows describing both size exclusion and
attachment mechanisms of particle retention (Fig. 3). The capture probability depends not
only on the jamming ratio j = rs/rp but also on the ionic strength of the aqueous solution,
its pH, mineralogical composition of grain surface, temperature, etc.

Figure 3 shows that straining occurs at the pore inlet while the attachment takes place
inside the pore body (Siqueira et al. 2003). The particle can either pass or be captured by size
exclusion at the entrance to the pore body. Being passed, it may be attached in the pore or
pass via the pore exit entering the next mixing chamber.

Let us calculate the overall particle capture probability p by either straining or attachment.
The probability for particle to be strained at the pore entrance is 1 − ν, see (19). Here, we
assume that if the particle just “touches” the wall, it would be attached by low-range attraction
DLVO forces (Derjagin and Landau 1941; Landau and Lifshitz 1980).

The probability that particle enters the accessible pore volume is equal ν, see (19). The
attachment probability pa is a conditional probability for particle that already entered the
pore.

The overall capture probability is given by the Bayes’ theorem

p = 1 − ν + νpa (33)

In inaccessible pores, where the flux reduction factor is equal zero, p = 1, i.e. all particles
that arrive to smaller pores are captured.

Figure 5 exhibits several dependencies p = p(rs/rp).
If the pores are elliptic, the spherical particle passes if its radius is lower than the low axes

of the ellipsis. Since the pore size rp is an average determined from the pore cross-section
area and is larger than its low axes size, the critical jamming ratio j0 < 1.

For the case of cylindrical pores and elliptic particles, the capture happens if the parti-
cle low axes size exceeds the pore size. The particle size rs is an average calculated from
the particle volume and exceeds the low ellipsis size. Therefore, the critical jamming ratio
j0 > 1.

For irregular shapes of pores or particles, the critical jamming ratio j0 can either be less or
more than unity (continuous lines in Fig. 5). Very small particles do not retain by straining,
so probability p is equal pa for small j -values in case of size exclusion.

0 11/31/7

1

j

p

pa

Spherical particles
cylindrical pores

Elliptic particles
cylindrical pores

Elliptic 
spherical 

pores 
particles

Multiple
shapes

Fig. 5 Dependence of the particle capture probability p on the jamming ratio j = rs/rp for different particle
and pore shapes
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If there is a variation of irregular pore and particle shapes, capture probability is an
S-shaped function which is equal pa for small j -values and to unity for large j .

The continuous curve in Fig. 5 corresponds to “one-third one-seventh” rule of the filtra-
tion theory (van Oort et al. 1993). The “rule of thumb” criterion in filtration theory says that
particles smaller than one-seventh of the pore size flow in the filter without being captured
by straining, particles larger than one-third of the pore size are captured at the filter inlet and
do not enter the filter, and the intermediate size particles perform deep bed filtration with
non-zero probability to be captured. The bulk of the probability change, from pa to unity,
occurs between jamming ratios 1/7 and 1/3.

The continuous curve corresponding to the “one-third one-seventh” rule can be approxi-
mated by step-function, where the shock occurs at some intermediate value of jamming ratio
j0 (the case j0 = 1 corresponding to spherical particles and cylindrical pores is shown in
Fig. 5). In this case, j0 becomes a phenomenological parameter, which can be used for the
model tuning.

3 System of Governing Equations

In this section, the population balance equations accounting for pore space accessibility and
particle flux reduction, if compared with carrier water flux, are derived. The effect of sus-
pension storage in plugged accessible pores is introduced in the model. It results in loss of
the conservation law form for the particle balance equation.

3.1 Conservation Law for Particles

Let us derive mass balance equation for particles accounting for the effect of dead end pore
plugging and the particles which remain in cut-off pore space and do not participate in the
flow after plugging (Fig. 6).

The number of particles in a unitary volume, is equal to the total of suspended particles in
accessible pore volume φaC, of suspended particles in cut off accessible volume (φa0−φa)Ct

and of retained particles �(rs, x, t). The rs-particles are transported by accessible flux.
The diffusive (dispersive) fluxes that are proportional to concentration gradients are

ignored in large scale approximation, since they are negligibly smaller than the advective par-
ticle fluxes. The resulting model has discontinuous solutions with shock concentration fronts.
The shock fronts can be “smoothened” by introduction of diffusion (dispersion) near to front
and by matching the asymptotic expansions (Barenblatt et al. 1991; Bedrikovetsky 1993).

φa

t+∆tt

C
C

Ct Ct

Ct

φa

φ φ

φa0

φna0

Fig. 6 Schema of particle storage in accessible pores, cut off from the suspension stream by plugged particles
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Accounting for local concentration gradients is a separate complex problem of suspension
flow in rocks (see Kechagia et al. 2002; Altoe et al. 2006) and is outside the scope of the
current article.

The mass balance equation can be written for size distribution functions of suspended and
retained particles as (Sharma and Yortsos 1987a,b,c)

∂

∂t
[φaC (rs, x, t)+ (φa0−φa) Ct (rs, x, t)] + ∂

∂x
[C (rs, x, t) Ua] =−∂� (rs, x, t)

∂t
(34)

Now let us derive the kinetics of particle exchange between the accessible and cut-off
accessible volumes due to pore plugging. The dead-end pore with entrance plugged at some
moment is an example of cut-off volume—the particles “left” in the pore must be accounted
for in mass balance equation. Discuss the accessible and cut-off accessible pore volumes for
moments t and t + t (Fig. 6). During the particle retention process, the retained concen-
tration increases, cut-off pore volume increases; the total porosity decreases along with its
accessible fraction. The accessible pore volume that was cut off during the period t is

{
φa

[
H

(
pp, x, 0

)
, rs

] − φa

[
H

(
pp, x, t + t

)
, rs

]} − {
φa

[
H

(
pp, x, 0

)
, rs

]
−φa

[
H

(
pp, x, t

)
, rs

]} = φa

[
H

(
pp, x, t + t

)
, rs

] − φa

[
H

(
pp, x, t

)
, rs

]

The particles, suspended at the moment t in the fraction of the accessible volume that was
cut-off during the period t , become cut off the conductive pore cluster at the moment t +t

C (rs, x, t) {(φa0 − φa (t + t)) − (φa0 − φa (t))}
= (φa0 − φa (t + t)) Ct (rs, x, t + t) − (φa0 − φa (t)) Ct (rs, x, t)

The kinetics of particle capture due to cutting off the accessible pore volume can be
obtained by tending t to zero in the previous equation, that is

∂

∂t
[(φa0 − φa)Ct (rs, x, t)] = C (rs, x, t)

∂ (φa0 − φa)

∂t
(35)

The mass exchange (35) is caused by change of pore space geometry. This term is
analogous to that for kinetics of oil ganglia saturation during miscible WAG flooding
(Bedrikovetsky 2003), and for kinetics of polymer adsorbed during polymer solution injec-
tion in pores filled by oil, during the production stage with huff-n-puff conformance control
process (Holleben et al. 1997).

The term of suspended concentration distribution in front of the accumulation term in
right hand side of (35) means that particles “enter” into cut-off volume from suspension
with its own concentration distribution C(rs, x, t) in the moving suspension. In the case of
retained particle release, the cut-off particles enter the suspension from the cut-off volume
with concentration distribution Ct(rs, x, t) in cut-off volume; this term appears in right hand
side of (35) in front of the accumulation term. So, the upscaled model contains the hysteretic
term.

The geometry-change-induced kinetics (35) does not have the conservation law form.
Therefore, the resulting mass balance equation does not have a conservation law form either.

Substitution of (35) into (34) results in exclusion of unknown concentration distribution
Ct from the system of governing equations, that is

∂

∂t
[φaC (rs, x, t)] + ∂

∂x
[C (rs, x, t) Ua] = −∂� (rs, x, t)

∂t
+ C (rs, x, t)

∂φa

∂t
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Performing derivation in accumulation term in the left hand side of mass balance equation
results in disappearing of the particle storage term in right hand side

φa

∂

∂t
[C (rs, x, t)] + ∂

∂x
[C (rs, x, t) Ua] = −∂� (rs, x, t)

∂t
(36)

The difference between mass balance equation with and without the cut-off-volume
effect is placing the porosity outside and inside the accumulation term, respectively. Usually,
accounting for extra physics phenomenon in mathematical model results in introduction of
a new coefficient (function). In the case of accounting for cut-off volume, it results in the
change of term placement without introduction of new coefficients.

3.2 Kinetics for Particle Capture and Pore Plugging

The derivations of the kinetic equations for particle capture and pore plugging are based on
the above-mentioned geometric porous medium model of parallel capillaries alternated by
mixing chambers (Figs. 1–4). The complete mixing in chambers corresponds to the assump-
tion, that the particles coming to the pores at the chamber outlet are being distributed among
them, independently of relations between the particle sizes and the pore sizes, and the pre-
history of the pore filling (Fig. 3). Before “collision” between the particles and the pores, their
behaviour is totally uncorrelated. The assumption is similar to the Boltzmann‘s assumption
about “molecular chaos” (Landau and Lifshitz 1980, 1999).

On this assumption, the number of rs-particles arriving to pores with size rp per unit of
rock volume during time t is equal to

q
(
rp

)
Hv

(
rp

)
C (rs, x, t) t

So, p-th fraction of these particles is captured by the rock

∂�
(
rs, rp, x, t

)
∂t

= [
1 − ν

(
rs/rp

) + νpa

]
q

(
rp

)
Hv

(
rp

)
C (rs, x, t) (37)

The plugging of one pore by one particle can be interpreted as chemical reaction with
unitary stoichiometric coefficients. So, kinetics Eq. 37 can be interpreted as active mass law
(Yortsos 1990; Fogler 1998).

The retention rate for particles with size rs is obtained by integration of (37) in rp

∂� (rs, x, t)

∂t
=

∞∫

0

[
1 − ν

(
rs/rp

) + νpa

]
q

(
rp

)
Hv

(
rp

)
C (rs, x, t) drp

=
∞∫

0

[
1 − ν

(
rs/rp

) + νpa

] k1
(
rp

)
k

UHv
(
rp

)
C (rs, x, t) drp (38)

Finally, the expression for retention rate of rs-particles is

∂� (rs, x, t)

∂t
= UC (rs, x, t)

lk

∞∫

0

[
1 − ν

(
rs/rp

) + νpa

]
k1

(
rp

)
H

(
rp

)
drp (39)
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One captured particle plugs one pore. It allows deriving the kinetics of pore plugging

∂H
(
rp, x, t

)
∂t

= l
∂HV

(
rp, x, t

)
∂t

= −l

∞∫

0

∂
∑ (

rs, rp, x, t
)

∂t
drs

= −
∞∫

0

[
1 − ν

(
rs/rp

) + νpa

]
q

(
rp

)
H

(
rp

)
C (rs, x, t) drs

Finally, the expression for rp-pore plugging rate is

∂H
(
rp, x, t

)
∂t

= −k1
(
rp

)
k

UH
(
rp

) ∞∫

0

[
1 − ν

(
rs/rp

) + νpa

]
C (rs, x, t) drs (40)

For pure straining case pa = 0, and the kinetics rate (39) for retained particles becomes

∂� (rs, x, t)

∂t
= UC (rs, x, t)

lk

∞∫

0

[
1 − ν

(
rs/rp

)]
k1

(
rp

)
H

(
rp

)
drp = UnaC (rs, x, t)

l

(41)

The retention rate (41) is proportional to inaccessible flux.

3.3 Closed System of Two Equations

Substitution of the capture kinetics (39) into particle balance (36) excludes the retained
concentration distribution from the model

φa [H, rs]
∂

∂t
[C (rs, x, t)] + U

∂

∂x
[C (rs, x, t) f [H, rs]]

= −UC (rs, x, t)

lk

∞∫

0

[
1 − ν

(
rs/rp

) + νpa

]
k1

(
rp

)
H

(
rp

)
drp (42)

Finally, the population balance model consists of two equations of particle balance (42)
and of pore plugging kinetics (40). The unknowns in the system of integro-differential equa-
tions (40, 42) are suspended particle and vacant pore concentration distributions, C and H ,
respectively.

The system of Eqs. 40, 42 describes suspension transport in porous media modelled by
system of parallel capillary alternated by mixing chambers (Fig. 1). The empirical functionals
φa and f are given by formulae (7) and (28), respectively. For any arbitrary rock geometry,
the functionals of accessible porosity and fractional flow must be determined from laboratory
tests or from micro modelling data.
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For the case of cylindrical pores and spherical particles, particle balance Eq. 42 becomes

⎡
⎣

∞∫

rs

H
(
rp, x, t

)
πr2

p

(
1 − rs

rp

)2

drp

⎤
⎦ ∂C (rs, x, t)

∂t

+U
∂

∂x

⎡
⎢⎢⎢⎣C (rs, x, t)

∞∫
rs

ν
(
rs/rp

)
r4
pH

(
rp, h

)
drp

∞∫
0

r4
pH

(
rp, h

)
drp

⎤
⎥⎥⎥⎦

= −UC (rs, x, t)

l

rs∫
0

r4
pH

(
rp

)
drp +

∞∫
rs

[
1 − (1 − pa) ν

(
rs/rp

)]
r4
pH

(
rp

)
drp

∞∫
0

r4
pH

(
rp, h

)
drp

(43)

where accessibility factor ν is given by formula (22).
Equation (43) differs from that presented by Santos and Bedrikovetsky (2006), by the

accessible porosity term, which is outside the time derivative of the accumulation term in
left hand side of equation, expressing cutting the suspended particles in the accessible pores
plugged off the bulk suspension. The model (43) also captures the effect of varying porosity;
it contains the term φa in left hand side, while the model by Santos and Bedrikovetsky (2006)
assumes constant porosity and contains the fraction φa/φ in the accumulation term of the
particle balance equation.

The capture rate term in right hand side contains two different terms showing that all
particle that enter smaller pores are captured, while just the fraction of particles in larger
pores is captured.

Another important difference between the models is: introduction of particle capture prob-
ability pa allows description of both, size exclusion and attachment mechanisms, for particle
capture, for the case of “infinite” rock capacity to attach particles.

The problem of suspension injection into a clean bed corresponds to initial and boundary
conditions for system (42, 40)

t = 0 : C (rs, x, 0) = 0, H
(
rp, x, 0

) = H0
(
rp, x

)
(44)

x = 0 : C (rs, 0, t) = C0 (rs, t) (45)

where H0 is an initial pore size distribution and C0 is a particle size distribution in the injected
suspension.

The initial-boundary value problem (44, 45) has a Goursat type: while both unknowns
are fixed at t = 0, only C = C0 is given at x = 0; unknown H is found from ordinary-
differential-integral equation

dH
(
rp, 0, t

)
dt

= −k1
(
rp

)
k

UH
(
rp, 0, t

) ∞∫

0

[
1 − ν

(
rs/rp

) + νpa

]
C0 (rs, t) drs

which is obtained from (40) by substitution of C = C0 from boundary condition (45).
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3.4 Overall Conservation for Particles and Pores

Let us calculate the total retention rate. Accounting for (1, 37, 39) we obtain

∂σ (x, t)

∂t
=

∞∫

0

∂� (rs, x, t)

∂t
drs =

∞∫

0

∞∫

0

∂�
(
rs, rp, x, t

)
∂t

drpdrs

=
∞∫

0

⎡
⎣

∞∫

0

∂�
(
rs, rp, x, t

)
∂t

drs

⎤
⎦drp =

∞∫

0

[
−∂Hv

(
rp, x, t

)
∂t

]
drp = −∂h (x, t)

∂t

The obtained conservation of the sum for concentrations of retained particles and vacant
pores

σ (x, t) + h (x, t) = g (x)

follows from the model assumption that one pore is plugged by one retained particle, and
vice versa. The constant in right hand side of the previous equality can be calculated from
initial conditions

σ (x, t) + h (x, t) = h0 + σ0 (46)

4 Transport of Mono Dispersed Suspensions

In this section we discuss the flow of single-size dispersed suspensions as a particular case
of poly dispersed suspension transport, discussed in the previous section.

Consider transport of a single size particle suspension in porous media with pores distrib-
uted over size

C (rs, x, t) = c (x, t) δ (rs − r0) (47)

where r0 is a particle size.
Let us find the simplified form of the system of governing Eqs. 40, 42 for filtration of

mono sized suspension.
Substituting the form of solution (47) into particle population balance Eq. 42 and inte-

grating both parts in rs yields:

φa [H, r0]
∂

∂t
[c (x, t)] + U

∂

∂x
[c (x, t) f [H, r0]]

= −Uc (x, t)

lk [H ]

∞∫

0

[
1 − ν

(
rs/rp

) + νpa

]
k1

(
rp

)
H

(
rp

)
drp (48)

Kinetics equation for single particle size suspension is obtained by substitution of (47)
into (40)

∂H
(
rp, x, t

)
∂t

= −k1
(
rp

)
lk

UH
(
rp

)
c (x, t)

[
1 − ν

(
r0/rp

) + νpa

(
r0/rp

)]
(49)

The unknowns in system (48, 49) are total suspension concentration c(x, t) and pore
concentration distribution H(rp, x, t).
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Lemma For governing system (48, 49) subject to uniform initial conditions for pore size
distribution

t = 0 : h = h0, H
(
rp, x, t

) = H0
(
rp

)
(50)

the solution is given by the formula

H
(
rp, x, t

) = H̃
(
rp, h

)
(51)

where H̃(rp, h) is the solution of an ordinary-differential-integral equation.

Proof Calculate kinetics of total vacant pore concentration by integration of kinetics Eq. 49
in rp:

∂h (x, t)

∂t
=

∞∫

0

∂H
(
rp, x, t

)
∂t

drp

= −Uc (x, t)

lk

∞∫

0

H
(
rp

) [
1 − ν

(
r0/rp

) + νpa

(
r0/rp

)]
k1

(
rp

)
drp (52)

Equations (49) and (52) does not contain x-derivatives. So, co-ordinate x can be con-
sidered in (49, 52) as a scalar parameter, and time partial derivative can be substituted by
ordinary derivative

dH
(
rp, x, t

)
dt

= −k1
(
rp

)
lk

UH
(
rp

)
c (x, t)

[
1 − ν

(
r0/rp

) + νpa

(
r0/rp

)]
(53)

dh (x, t)

dt
= −Uc (x, t)

lk

∞∫

0

H
(
rp

) [
1 − ν

(
r0/rp

) + νpa

(
r0/rp

)]
k1

(
rp

)
drp (54)

Let h(x, t) be the solution of system (53, 54) subject to initial conditions (50). The
total vacant pore concentration monotonically decreases with time, so the variable t can
be expressed via h and x by the inverse function:

t = t (x, h) (55)

Let us use h instead of t as a parameter along each h-characteristic x = const. Substituting
(55) into (53) accounting for (54) yields:

dH
(
rp, x, h

)
dh

= k1
(
rp

)
H

(
rp

) [
1 − ν

(
r0/rp

) + νpa

(
r0/rp

)]
∞∫
0

H
(
rp

) [
1 − ν

(
r0/rp

) + νpa

(
r0/rp

)]
k1

(
rp

)
drp

(56)

Initial condition (50) becomes:

h = h0 : H
(
rp, x, 0

) = H0
(
rp

)
(57)

The ordinary integro-differential equation (56) with initial data (57) allows for unique
solution. Since right hand side of Eq. 56 and initial conditions (57) are independent of x, the
solution also does not depend on x, and formula (51) follows.

Let us illustrate this statement by the example of porous media with discrete pore sizes

H
(
rp, x, t

) =
n∑

i=1

hi (x, t)δ
(
rp − ri

)
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Substitution of the solution form into Eq. 53 and initial conditions (54) and integration of
the resulting expressions into rp result into following Caushy problem for system of ordinary
differential equations:

dhi (x, h)

dh
= k1 (ri) [1 − ν (r0/ri) + νpa (r0/ri)] hi

n∑
i=1

k1 (ri) [1 − ν (r0/ri) + νpa (r0/ri)] hi

(58)

h =
n∑

i=1

hi0 = h0 : hi = hi0 (59)

The solution of Cauchy problem (58, 59)

hi = hi (h) (60)

provides with solution (51) for this particular case. ��
Proof that with n tending to infinity and simultaneously ri − ri−1 tending to zero, the

solution (55) tends to solution of the problem (56, 57)

H
(
rp, x, t

) = H̃
(
rp, h

)

is outside the scope of this work.
Form of the function H̃

(
rp, h

)
depends on empirical model functions k1(rp), p(j), ν(j)

and on initial pore size distribution H0(rp).
Equation (56) can be integrated exactly allowing for implicit expression for solution (51).

Let us find it.
Consider system of two integral-ordinary-differential equations

dH

dy
= −k1

(
rp

)
H

(
rp

) [
1 − ν

(
r0/rp

) + νpa

(
r0/rp

)]
(61)

dh

dy
= −

∞∫

0

H
(
rp

) [
1 − ν

(
r0/rp

) + νpa

(
r0/rp

)]
k1

(
rp

)
drp (62)

subject to initial conditions

y = 0 : h = h0, H = H0
(
rp

)
(63)

Introduction of parameter h instead of y reduces system (61, 62) to Eq. (56).
Separation of variables in (61) accounting for initial conditions (63) leads to solution

H
(
y, rp

) = H0
(
rp

)
e−k1(rp)[1−ν(r0/rp)+νpa(r0/rp)]y (64)

Substituting solution (64) into Eq. (62)

dh

dy
= −

∞∫

0

H
(
rp

) [
1 − ν

(
r0/rp

) + νpa

(
r0/rp

)]
k1

(
rp

)
drp

= −
∞∫

0

H0
(
rp

)
e−k1(rp)[1−ν(r0/rp)+νpa(r0/rp)]y [

1 − ν
(
r0/rp

) + νpa

(
r0/rp

)]
k1

(
rp

)
drp
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and then integrating the result in y yields:

h (y) = h0 −
y∫

0

dy

⎡
⎣

∞∫

0

H0
(
rp

)
e−k1(rp)[1−ν(r0/rp)+νpa(r0/rp)]y [1 − ν + νpa] k1

(
rp

)
drp

⎤
⎦

= h0 −
∞∫

0

H0
(
rp

)
e−k1(rp)[1−ν(r0/rp)+νpa(r0/rp)]ydrp

Finally, pore concentration distribution H(rp, h) is given by formula (64) where y(h) is
implicitly expressed from equation

h (y) = h0 −
∞∫

0

H0
(
rp

)
e−k1(rp)[1−ν(r0/rp)+νpa(r0/rp)]ydrp (65)

as an inverse function.
Formulae (64), (65) form implicit analytical solution (51) for system (48, 49) of mono

dispersed filtration in porous media.

Remark 1 If for initial conditions for the ordinary-differential-integral equation (56)

h = h0 : H
(
rp, x, t

) = H0
(
rp

)
takes place the equality

h0 =
∞∫

0

H0
(
rp

)
drp

it also takes place for the solution at any h > h0:

h =
∞∫

0

H
(
rp, h

)
drp

The above equality is obtained by integration of both parts of Eq. 56 in h.
In other words, if a formal independent parameter h in (54) is an overall pore concentration

at the moment t = 0, it remains the overall concentration for any t > 0.
Let us denote the solution (51) as

H
(
rp, h

) = H̄
[
rp, h, h0, H0

(
rp

)]
(66)

in order to show that the solution depends on initial conditions.

Remark 2 The solution of governing system (48, 49) with non-uniform initial data

t = 0 : h = h0 (x) , H
(
rp, x, 0

) = H0
(
rp, x

)
can be expressed as a function of the total retention concentration

H
(
rp, x, t

) = H̃
(
rp, h

)
if and only if

H0
(
rp, x

) = H̄
[
rp, h0 (x) , h0 (x0) ,H0

(
rp, x0

)]
(67)
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Previous equation means that the initial distribution H0
(
rp, x

)
is already a solution of

ordinary-differential-integral equation (56) with initial data at some reference point x0. The
initial pore concentration distribution in point x, where the total retention concentration
equals h0(x), is equal to solution (51) with initial data at point x0, where the total retention
concentration equals h0(x0).

The solution of the problem with non-uniform initial data h0(x) is given by formula

H
(
rp, x, t

) = H̄
[
rp, h + h (x0) , h (x0) ,H0

(
rp, x0

)]

5 Derivation of Upscaled System for Mono Dispersed Suspension

The fact that the vacant pore concentration distribution H(rp, x, t) can be expressed as a
function of the total vacant pore concentration h(x, t), H(rp, x, t) = H̃ (rp, h), derived in
the previous section, allows for excluding H from all terms in governing system (48, 49) and
for exact averaging of the micro scale system with distributed concentrations and derivation
of the closed system on the macro scale. This is the subject of the current section and the
main purpose of the current article.

Substituting (51) into (3) and (7) we obtain that the total and accessible porosities are
functions of h

φa = φa (h) , φ = φ (h)

Fractional flow function (28) is also h-dependent.
The conservation law (46) for the sum of particle and pore concentrations allows express-

ing the total pore concentration via the total retained concentration

h (x, t) = h0 + σ0 − σ (x, t) (68)

and concluding that the fractional flow and porosities are functions of the total retained
concentration

φa = φa (σ ) , f = f (σ ) , φ = φ (σ) (69)

The above derivations were performed for mono dispersed particles, so the functions (69)
depend also on particle size

φa = φa (r0, σ ) , φ = φ (r0, σ ) , f = f (r0, σ )

The closed averaged system for suspension transport in porous media is obtained by
substituting the functions (69) into Eqs. 48 and 52:

φa (σ )
∂c

∂t
+ U

∂

∂x
[cf (σ )] = −∂σ

∂t
(70)

∂σ

∂t
= 1

l

kc (σ )

k (σ )
Uc

kc (σ ) =
∞∫

0

[
1 − ν

(
r0/rp

) + νpa

(
r0/rp

)]
k1

(
rp

)
H

(
rp

)
drp

=
∞∫

0

p
(
r0/rp

)
k1

(
rp

)
H

(
rp

)
drp (71)
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Equation for capture rate (71) has the same form as that in the classical filtration model—
the rate is proportional to particle flux, and the filtration function is

λ′ (σ ) = p′

l
, p′ = kc (σ )

k (σ )
(72)

where p′ is a probability for particle to be captured during its motion over the unit trajectory.
Let us consider the physics meaning of the filtration coefficient (72) for different particular

cases.
Substituting (71) into (72) and accounting for expression (28) for fractional flow function,

we obtain

kc (σ )

k (σ )
= 1 − f +

∞∫
0

[
νpa

(
r0/rp

)]
k1

(
rp

)
H

(
rp

)
drp

∞∫
0

k1
(
rp

)
H

(
rp, x, t

)
drp

Therefore, capture kinetics Eq. 71 for straining capture where pa = 0 takes the form:

∂σ

∂t
= 1

l
(1 − f ) Uc (73)

So, for size exclusion case, the retention rate becomes proportional to flux via inaccessible
pores.

In case of constant attachment probability, the retention rate expression takes the form

kc (σ )

k (σ )
= 1 − f (σ ) + paf (σ ) (74)

and

∂σ

∂t
= 1 − f (σ ) + paf (σ )

l
Uc (75)

The expression for capture probability follows from comparison between (75) and (72):

p′ = 1 − f (σ ) + paf (σ ) (76)

Fractional flow f can be interpreted as a probability for particle to get into accessible
pore volume. Formula (76) becomes Bayes’ theorem for particle in porous media: the cap-
ture probability is the probability to enter inaccessible volume plus the probability to enter
accessible volume times conditional probability to be captured inside the pore.

So, the Bayes’ theorem is valid for a pore scale (5) and is obtained for the rock scale (76)
after averaging.

Comparing (73) with the retention rate expression proposed by Santos and Bedrikovetsky
(2006)

∂σ (x, t)

∂t
= λ0 [1 − f (rs, σ )] Uc (x, t) (77)

we obtain the filtration coefficient for size exclusion capture

λ0 = 1

l
(78)

Introduction of the “suspension saturation”

s = ϕa/ϕ (79)
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transforms Eq. 67 to the fractional flow form

φ (σ) s (σ )
∂c

∂t
+ ∂σ

∂t
+ U

∂

∂x
[cf (σ )] = 0 (80)

The function f = f (s) as obtained from two parametric dependencies f (σ ) and s(σ ) is
a fractional flow function defined for two-phase flow in porous media.

Darcy’s law (15, 16) for the overall flux completes the governing system for suspension
transport in porous media.

Finally, the fractional flow model for mono dispersed suspension flow in porous media con-
sists of equations for particle balance, for particle capture kinetics and Darcy’s law accounting
for permeability damage:

φ (σ) s (σ )
∂c

∂t
+ ∂σ

∂t
+ U

∂

∂x
[cf (σ )] = 0 (81)

∂σ

∂t
= λ′ (σ )Uc (82)

U = −k (σ )

µ

∂P

∂x
(83)

System (81–83) contains four empirical functions: accessible porosity φa(σ ), fractional
flow function f (σ ), filtration function λ′(σ ) nd absolute permeability k(σ ). For the case of
constant attachment probability pa , the filtration function is expressed via fractional flow
function and two constants −pa and dispersivity l.

Since none of the mentioned empirical functions depend on pressure, Eqs. 81, 82 separate
from Darcy’s eqs. (83). System (81, 82) determines two unknowns—total suspension and
retained concentrations, c(x, t) and σ(x, t), respectively. The pressure P(x, t) is determined
from (83) where concentrations c(x, t) and σ(x, t) are already known from solution of eqs.
(81, 82).

Now discuss the limitations of the model (81–83) and where is can be applied.
It is important to emphasize that, according to the lemma, the model (81–83) is valid,

strictly speaking, just for mono dispersed suspensions. In the case of distribution by size
particles, the above described upscaling procedure is not valid.

The model (81–83) was derived for porous space of a parallel capillary bundle alternated
by mixing chambers. Nevertheless, Eq. 81 is particle mass balance accounting for particles
cut off the flux by retained particles which is valid for any pore space geometry.

Equations of particle capture kinetics (82) and of momentum conservation (83) are also
valid for any rock. Therefore, system of governing Eqs. 81–83 for suspension transport can
be applied for any rock, and four empirical functions φa(σ ), f (σ ), λ′(σ ) and k(σ ) must
be determined from laboratory tests with this rock. For particular case of the pore space
geometry shown in Fig. 1, the functions can be calculated using micro scale formulae (7, 28,
16) with further upscaling using procedures (64, 65). Numerical network modelling can be
used to calculate the empirical functions for more complex pore space geometries (Sahimi
and Imdakm 1991; Siqueira et al. 2003). For network models with small pore size variation,
the effective medium formulae can be applied (Chen et al. 2003). Percolation formulae can
be applied for networks with high variation of pore sizes (Seljakov and Kadet 1996).

Another restriction is either uniform initial pore size distribution mentioned in the lemma,
or the specific initial non-uniform pore size distribution derived in Remark 2. If the initial
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values for (48, 49) provide different x-dependent initial conditions for system of ordinary-
differential-integral equations (56), the solution H is also x-dependent, and the equality (51)
is not valid any more. In the case where the conditions (66, 67) are violated, the particles
may be displaced into finite clusters of accessible pore volume, i.e. they will be captured
instead of being transported by the accessible flux, and the flow is not described by the model
(81–83) anymore. It may result in non-unique determination of upscaled functions φa(σ ),
f (σ ), λ′(σ ) and k(σ ) and in appearance of hysteresis.

The model (81–83) is obtained for continuous injection corresponding to boundary condi-
tions (44, 45). Sequential injection of suspension and production from the same well, which
takes place during drilling and well clean-up, is an example where the model (81–83) is not
valid.

For continuous injection of mono dispersed suspension in clean bed, the particles occupy
the accessible part of porous space, i.e. infinite cluster of pores which are larger than the
particles. The same takes place during primary displacement of wetting phase by non-wet-
ting phase, where the non-wetting fluid enters the pores in order of increasing capillary
pressure, i.e. in order of decreasing of the pore size (Lake 1989; Barenblatt et al. 1991;
Dullien 1992). Transport properties (relative phase permeabilities, electrical conductivity
and capillary pressure) for primary drainage are calculated using an infinite cluster of pores
accessible for non-wetting phase (Larson et al. 1981; Seljakov and Kadet 1996). Therefore,
the process of mono dispersed suspension injection is analogous to primary drainage for two-
phase flow, and the fractional flow function for primary drainage can be used for preliminary
qualitative analysis of the deep bed filtration model (81–83).

The micro model (40, 42) and, consequently, the upscaled macro model (81–83), were
derived for diluted suspensions. So, it was assumed that the suspension concentration var-
iation does not cause change of suspension density and viscosity. Therefore, the overall
suspension flux is conserved, and the term U can be taken out of square brackets in the
suspended particles flux term in left hand side of Eq. 42. In the case of highly concentrated
suspensions, the Amagat law of the volume additivity with mixing can be violated, and the
total suspension flux can be not conserved. The total suspension flux U(x, t) becomes another
unknown in the system of governing equations.

For medium concentrated suspensions, viscosity µ in Darcy’s law (83) becomes func-
tion of the total suspended concentration c. The high concentration suspension may become
non-Newtonian liquid resulting in non-linear dependency of suspension flux versus pressure
gradient.

6 Dimensional Analysis

Different scales for time and for retention concentration result in different asymptotic models
for suspension transport in natural rocks. These models are described in the current section.

Introduction of the following dimensionless variables and parameters

X = x

L
, C = c

c0 , φ = φ′

φ0
, λ = λ′L, ε = c0

α
(84)

T = Ut

φ0L
(85)

S̄ = σ

αφ0
(86)
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into Eqs. 81, 82 results in dimensionless form of the governing system

φ
(
S̄
)
s
(
S̄
) ∂C

∂T
+ ∂

∂X

[
Cf

(
S̄
)] = −λ

(
S̄
)
C

∂S̄

∂T
= ελ

(
S̄
)
C (87)

Here, α is the critical porosity fraction, showing which fraction of the porous space is
filled by particles up to the end of particle motion; the vacant pores does not form an infinite
cluster any more where the retained concentration is equal to α (Pang and Sharma 1994).
Usually α varies between 0.03 and 0.4 (da Silva et al. 2004) while injected concentration
varies between 0.1 and 1,000 ppm. So, the ratio ε = c0/α is often significantly less than
unity, ε � 1, and may be considered in (87) as a small parameter.

Small parameter ε was introduced by Marchesin et al. (2002), in the numerical model for
deep bed filtration.

The small parameter ε appears in system (87) in the expression for retention rate. Neglect-
ing the retention rate and accounting for zero initial condition (no retained particles in the
rock before the injection) allows concluding, that the retention concentration remains zero.
So, during the retention of a small amount of particles, all volumetric and transport coef-
ficients in first Eq. 87 are constant; the accessible volume does not change and the storage
term in right hand side of (87) disappears. Finally, system (87) degenerates into one linear
hyperbolic equation for suspended concentration:

φ (0) s (0)
∂C

∂T
+ f (0)

∂C

∂X
= −λ (0) [1 − f (0)] C (88)

Consider the slow time τ = εT . From (85) follows that

τ = εT = c0Ut

αϕL
, (89)

which is the volume of injected particles divided by critical pore volume that should be filled
in order to stop the particle transport.

Introduction of slow time (89) into governing system (81, 82) instead of fast time (85)
yields

εφ
(
S̄
)
s
(
S̄
) ∂C

∂τ
+ ∂

∂X

[
Cf

(
S̄
)] = −λ

(
S̄
)
C

∂S̄

∂τ
= λ

(
S̄
)
C (90)

allowing omitting accumulation and storage terms in mass balance equation:

∂

∂X

[
Cf

(
S̄
)] = −λ

(
S̄
)
C

∂S̄

∂τ
= λ

(
S̄
)
C (91)

Herzig et al. (1970) neglected the accumulation term based on observation of laboratory
and numerical modelling data.

Consider dimensionless time T measured in pore volumes injected (85) and dimensionless
retained concentration normalised by injected particle concentration per rock volume unit c0

instead of (86):

S = σ

c0φ0
(92)
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The system (81, 82) yields:

φ (S) s (S)
∂C

∂T
+ ∂

∂X
[Cf (S)] = − ∂S

∂T
∂S

∂T
= λ (S)C (93)

The obtained averaged particle balance Eq. 93 generalises the model for deep bed filtra-
tion, which accounts for flux reduction and accessibility factors (Santos and Bedrikovetsky
(2006)), by the effect of suspended particle storage in the cut-off fraction of accessible pore
space, and also by the term of varying porosity φ(σ). Introduction of the suspended particle
storage in the cut-off fraction of accessible pore space changes the form of mass balance
equation—it is not a conservation law any more. The accounting for a new effect does not
introduce any additional constitutive empirical function into the governing system (93), it still
contains the same functions of accessible porosity φa(σ ), fractional flow f (σ ) and filtration
function λ(S).

7 Structure of the Analytical Model for Clean Bed Suspension Injection

Assumptions of no accessibility and flux reduction factors, s = f = 1, and of constant
porosity φ = φ0 transforms the particle balance Eq. 93 into that for the classical deep bed
filtration model (Herzig et al. 1970; Payatakes et al. 1974)

∂ (C + S)

∂T
+ ∂C

∂X
= 0 (94)

The retention rate is governed by any arbitrary filtration function in the classical deep bed
filtration model

∂S

∂T
= λ (S) C (95)

It is worth mentioning that for the case of straining (pa = 0) and complete accessibility
(f = 1), as it follows from (73), no retention occurs for size exclusion particle capture. The
corresponding physics schema is as follows: the particle cannot pass thin pore throat and
cannot stick to the rock matrix due to short range repulsion forces; the particle remains until
it will be taken out by small flux fluctuation and will join the suspension flux.

Nevertheless, the classical model (94, 95) is applied for straining capture. So, the classical
deep bed filtration model (94, 95) is not a particular case for the averaged size exclusion
model of suspension transport in porous media (81, 82).

For the general particle capture case, the retention rate expressions (82) and (95) coincide.
The classical deep bed filtration model (84, 85) is a particular case of the averaged model
(83) for the general case of particle capture.

Let us consider the initial-boundary value problem for suspension injection into a parti-
cle-free rock

T = 0 : C = S = 0 (96)

X = 0 : C = 1 (97)

and investigate the solution structure.
The Goursat problem (85, 87) allows deriving formula for retained concentration at the

core inlet X = 0, without solving the whole problem (94–97) (see Tikhonov and Samarskii
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1990). Accounting for the inlet boundary condition (97) in eq. (85) yields:

dS (0, T )

dT
= λ (S) (98)

Separation of variables in ordinary differential equation (98) leads to

T =
S(0,T )∫

0

dy

λ (y)
(99)

which is an implicit expression for retained concentration at the core inlet C(0, T ).
Performing first differentiation of the advective term in left hand side of first Eq. 90 and

then substituting the retention rate kinetics into the result yields:

∂

∂T
[φ (S) s (S)C] + ∂

∂X
[Cf (S)] = ελ [1 − f (S)] C2 [φ (S) s (S)]′

−λ [1 − f (S)] C (100)

Discuss characteristics of quasi-linear hyperbolic partial differential equation (100) which
start at axes T = 0. The differential condition on characteristics for Eq. 100 is an ordinary
differential equation. As it follows from zero-value initial condition (96), suspended con-
centration along each characteristic is also zero. From (95) follows that if C = 0 along
all characteristics which start at axes T = 0, S is zero too. All transport and volumetric
coefficients in (100) become constant, including dimensionless porosity (φ(0) = 1), which
simplifies Eq. 100:

∂C

∂T
+ f (0)

s (0)

∂C

∂X
= −λ

[1 − f (0)]

s (0)
C

{
1 − ε [φ (S) s (S)]′ (0) C

}
(101)

Since, as it follows from (95), function S(X, T ) is continuous, the retained concentration
is equal zero along the concentration front X=vT, v=f(0)/s(0). The suspended concentra-
tion behind the front is given by an ordinary differential equation, which is the differential
condition for Eq. 100 along the front:

dC

dT
= λ

[1 − f (0)]

s (0)
C

{
ε [φ (S) s (S)]′ (0) C − 1

}
, C(0) = 1 (102)

The solution of ordinary differential equation (102) is obtained by separation of variables

C (T ) = N exp (−MT )

1 + N − exp (−MT )
, M = λ

[1 − f (0)]

s (0)
, N = − [

ε [φ (S) s (S)]′ (0)
]−1

This formula shows how suspended concentration behind the front decreases from unity
on injector up to zero when time tends to infinity.

The structure of the flow pattern is shown in Fig. 7. The concentration front propagates
with speed v. Both concentrations are zero ahead of the front.

8 Prediction of Breakthrough Time

The breakthrough moment is calculated from the concentration front speed (see (101)):

Tbr = 1

v
= s (rs, 0)

f (rs, 0)
(103)
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0

T

T =1/vbr

X=1

C=S=0

C=S=0

S(0,T)

C=1

X=vT
C=C (T)-

Fig. 7 Structure of the flow pattern during suspension injection into a particle-free rock

Since in system (94, 95) s = f = 1, the classical deep bed filtration model predicts that
the breakthrough time is equal to unity.

Yet, several authors report different breakthrough times that vary from 0.3–0.5 up to 100
pore volumes injected, p.v.i. (Harvey and Garabedian 1991; Roque et al. 1995; Kretzschmar
et al. 1997; Chauveteau et al. 1998; Camesano et al. 1999; Veerapen et al. 2001; Bolster et al.
1998,1999; Massei et al. 2002). It is important to notice that breakthrough times, presented
in the literature, always exceed 0.3 p.v.i. and can reach whatever high value like 100 p.v.i. and
even more. Roque et al. (1995) and Chauveteau et al. (1998) emphasise that these are large
particles that exhibit high breakthrough times.

Corapcioglu and Choi (1996) introduced the porosity reduction due to particle deposi-
tion into classical model (94, 95). The obtained equations are equivalent to those (93) with
accessibility factor (s < 1) but without flux reduction, f = 1. This only explains an early
breakthrough of particles observed in laboratory tests—from (93) it follows that v > 1 and
Tbr < 1.

Introduction of both factors s and f explains the breakthrough times that are either less
or exceed unity. Below we show that both cases can be explained by S-shape of fractional
flow function f (s).

As it was mentioned above, the model (93) is valid only for filtration of equal size parti-
cles, and the particle size r0 is a model parameter. Consider the dependencies of saturation
(fractional flow) on particle size, and express f (s) parametrically.

The form of the fractional flow function (28) as calculated for the bundle of parallel cap-
illaries accounting for inaccessibility of thin pores and for accessible volume inside large
pores (15, 25, 28) is shown in Fig. 8. The fractional flow function is convex, f ′′ < 0. For a
given porous space geometry, both saturation and fractional flow are determined by particle
size rs , so each size particle corresponds to a point on the fractional flow curve. The increase
of the particle size from zero to minimum pore radius corresponds to “remaining” in point
s = f = 1. The particle size increase from rpmin up to rpmax is shown in Fig. 8 as the point
motion from the upper right point of the fractional flow curve up to point f = s = 0. Particles
larger than rpmax remain in point (0,0). The function f (s) is concave, so the tangent f/s

always exceeds unity. The larger is the particle, the higher is its velocity in each capillary,
and the lower is the breakthrough time. The parallel capillary model always predicts an early
breakthrough.
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Fig. 8 Fractional flow function for a bundle of parallel capillaries alternated by mixing chambers
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Fig. 9 Fractional flow function for network model of the porous space

Now consider more realistic network structure of the rock. Typically, percolation and
effective medium models predict the S-shaped fractional flow functions for network models
of porous media (Fig. 9) (Larson et al. 1981; Dullien 1992; Bedrikovetsky 1993; Seljakov
and Kadet 1996). The typical form of fractional flow as determined from corefloods is also
S-shaped (Lake 1989; Barenblatt et al. 1990). Strict definition of pore size distributions and
network geometries resulting in S-shaped fractional flow functions is outside the scope of
this work.

Consider any arbitrary S-shaped fractional flow curve (Fig. 9).
Zero-sized particles percolate via all pores, so s = 1, f = 1 and breakthrough time also

equals unity. The same takes place when particle size increases up to the minimum pore
size. Some further increase of the particle size results in creation of some inaccessible pore
volume, i.e. s becomes less than unity. Nevertheless, flux via inaccessible pores remains
zero until the saturation reaches the first threshold value where the inaccessible pore cluster
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Fig. 10 Path tortuosity increase for large particles

becomes infinite. The corresponding pore radius and threshold saturation are denoted as r∗
and s∗, respectively. For larger particles, the suspension moves via accessible pore space, and
the particle-free water moves via inaccessible part of the pore space. At some large particle
radius, the accessible pore cluster density reaches its threshold value, and clusters for larger
particles become finite, i.e. there is no transport via accessible pores any more. It corresponds
to f = 0 for some positive saturation s < s∗ that is called the second threshold.

Increase of the particle size from zero to second threshold value r∗ corresponds to move-
ment of the point on fractional flow curve from the position (1,1) to that (s∗, 0). The break-
through time decrease, while the increase of the particle size from zero to some value that
exceeds the first threshold r∗, is explained by increase of particle velocity in each pore due to
inaccessible volume near to pore walls (so called velocity enhancement factor, see Bartelds
et al. 1997).

When the particle size increases, its probability to enter a pore decreases, the probabil-
ity for particle to take a tortuous path increases, and the mean path becomes more tortuous
(Fig. 10). Furthermore, when rs approaches the second threshold r∗, the accessible cluster
density tends to zero, and its tortuosity tends to infinity (Seljakov and Kadet 1996). There-
fore, the breakthrough time tends to infinity too. This is what is observed at low values of
fractional flow (Fig. 9): when s tends to s∗, the interstitial particle speed f/s tends to zero.

The intermediate part of the fractional flow curve is a result of competition between these
two factors—increase of flow velocity in each pore and increase of path tortuosity, both with
increase of the particle size. The tortuosity factor is equal to unity for parallel capillaries, so
just the velocity enhancement factor is in play, which explains the convex shape of fractional
flow function (Fig. 8).

Depending on the form for relative phase permeabilities, the frontal velocity for immis-
cible fluids with the same viscosity, as calculated from the tangent to Buckley–Leverett
function, usually varies between 1.5 and 3 (Lake 1989; Bedrikovetsky 1993). It agrees with
the fact that the lowest found in the literature breakthrough time is equal 0.3.

The concentration front speed f/s tends to zero for large particles, Fig. 9. It agrees with
high values of breakthrough times, presented in the literature.
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9 Discussion

The population balance model for suspension flow in porous media, which accounts for par-
ticle and pore size distributions and for particle storage in accessible pores cut off the flow
by pore plugging, allows for exact upscaling in the case of a single-particle-size suspension
filtration.

Introduction of the effect of particle storage in cut off accessible pores results in loss of
the conservation form for averaged particle balance equation.

The obtained averaged equations generalise the classical model for suspension flow in
porous media and its latter modifications. The generalised averaged model shows that in
particular case of pure particle straining, the retention rate is proportional to inaccessible
flux. So, the straining retention rate equals zero in the case of complete accessibility, while
the filtration coefficient is not zero in the classical model, i.e. the averaged straining model
is not a particular case of the classical deep bed filtration model.

The generalised model has a fractional flow form.
The breakthrough time in bundle of parallel capillaries is less than unity, which is explained

by velocity enhancement and pore accessibility. The larger is the particle, the faster it appears
at the core outlet.

For the porous medium with a network pore structure, the path for large particles is
tortuous, and the larger is the particle, the more tortuous is the path and the higher is the
breakthrough time. This effect competes with the velocity enhancement effect resulting in
non-monotonous dependency of breakthrough time versus particle size in rocks with network
pore structure.

The fractional flow model explains the acceleration and slowing down of the particles in
porous media and the breakthrough times which, as it was observed in laboratory, can be
either more or less than one pore volume injected. Experimentally observed breakthrough
times, which are higher than 0.3 p.v.i. and can be as high as 100 p.v.i., agree with typical
shapes of fractional flow function.

Nevertheless, widely laboratory observed deviation of retention profile from classical
colloid filtration theory cannot be explained by the proposed model.

The classical model (94, 95) contains single empirical function—the filtration coefficient
λ(σ ). As it was mentioned above, the filtration coefficient is constant for the case of low con-
centrated suspensions. The filtration coefficient λ can be calculated from the breakthrough
concentration. Then the deposition profile σ (x,t) can be calculated. The comparison between
the predicted and measured deposition profiles allows validating the theory.

Numerous works report on significant deviation of the deposition profile as predicted by
the breakthrough-concentration-tuned model and that measured by computer tomography.

The deviation was explained by heterogeneity of the rock surface charge in the case of elec-
tric attachment of particles (Tufenkji and Elimelech 2005). The deviation was not explained
in case of size exclusion particle capture (Bradford et al. 2002, 2003, 2004; Bradford and
Bettahar 2006).

The laboratory tests by Bradford have been performed with mono-sized particles. The
majority of tests exhibit unity breakthrough time, so the fractional flow effects—accessi-
bility and flux reduction—are negligible. As it is proven in the current article, transport of
mono-sized particles in rock with varying pore sizes is described by large scale Eqs. 93 which
degenerate into the classical model for the case of complete pore accessibility. Therefore,
the modified model (93) does not explain deviation of modelling data from those obtained
experimentally.
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