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a b s t r a c t

We develop a stochastic theory for filtration of suspensions in porous media. The theory
takes into account particle and pore size distributions, as well as the random character
of the particle motion, which is described in the framework of the theory of continuous-
time random walks (CTRW). In the limit of the infinitely many small walk steps we
derive a system of governing equations for the evolution of the particle and pore size
distributions. We consider the case of concentrated suspensions, where plugging the
pores by particles may change porosity and other parameters of the porous medium. A
procedure for averaging of the derived system of equations is developed for polydisperse
suspensions with several distinctive particle sizes. A numerical method for solution of the
flow equations is proposed. Sample calculations are applied to compare the roles of the
particle size distribution and of the particle flight dispersion on the deposition profiles. It
is demonstrated that the temporal flight dispersion is the most likely mechanism forming
the experimentally observed hyperexponential character of the deposition profiles.

© 2010 Published by Elsevier B.V.

1. Introduction 1

Flows of suspensions in porous media are important for a large variety of applications [1,2] and therefore have been 2

actively studied. Themodeling studiesmay roughly be classified into studies on themicro-level, of the individual interactions 3

of the particles and the pores (see review in Ref. [3] and analysis in Ref. [4]), and those on themacro-level. On the large scale, 4

the suspension flowwith particle deposition is usually modeled by the advection-dispersion equation with deposition [5,6] 5

or its various modifications [7–9]. A few studies, based on diverse approaches, consider the interaction between the macro- 6

and microscales [10–17]. 7

A necessity for multiscale studies is caused, in particular, by the insufficiency of the standard model of filtration [5,6] to 8

explain some experimental observations. The standard theory predicts that, under pulse injection of a tracer or a suspension 9

in a porous medium, the maximum of the pulse will move with the velocity of the flow; the wash-out will be symmetric 10

with regard to maximum; and the ‘‘tails’’ will vanish rather rapidly with the distance from the maximum. This contradicts a 11

number of experimental observations [13,18,19]: in many cases, the forward tail of the distribution is much more massive 12

than its backward part, and the maximum of the concentration moves much slower than the carrying liquid. Another 13

prediction is related to the injection of a finite portion of the suspended particles followed by the pure liquid. The standard 14

theory predicts that under such injection the deposition profile will be exponential. Meanwhile, hyperexponential profiles 15
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are often observed:muchmore particles than expected stay close to the inlet of a porousmedium, and simultaneouslymany1

particles propagate further than expected [3,13,20].2

Modeling of deep bed filtration as a stochastic process has been applied in a number of different ways [13,14,16,18–22].3

Randomness is mainly related to the particle size and shape distribution; stochastic heterogeneity of the pore space and4

surface; and stochastic structure of the flow. Stochastic pore geometry and particle size distributions were first explored5

in the pore network or percolation models [10,16]. An approach based on the population balance and Boltzmann-type6

equations was developed in Refs. [23,24]. The random character of the flow on the micro-level was reproduced in the7

multiscale numerical approach, where a random particle transfer equation was solved on the pore level, and then upscaled8

to the macro-level [11,12].9

Recently a new approach to the tracer and suspension flows in porous media emerged in the framework of the10

Continuous Time RandomWalk (CTRW) theory [18,25]. The CTRWhas sufficed to explainmany of the unusual experimental11

observations [18,19]. In our works [26,27] we have shown that, in the limit of infinitely many small time and spatial steps,12

where the particle flight becomes small compared to the macroscopic scale of the problem, the CTRW approach is reduced13

to an elliptic transport equation. Compared to the standard model, this equation contains an additional term Dt∂2c/∂t214

(where c is the particle concentration), describing dispersion of the particle time step, just like the standard dispersion term15

D∂2c/∂x2 describes the spatial dispersion of the step. It was shown [27] that the solutions of the elliptic equation exhibit16

behavior similar to that previously predicted by the CTRW and are able to reproduce experimental observations about pulse17

injection, at least, qualitatively.18

To the best of our knowledge, the models developed in the framework of the CTRW have not taken into account the19

particle size distribution. Meanwhile, this is a factor of a considerable practical importance (i.e., particles of different sizes20

are filtered in different ways, and the smaller particles may penetrate deeper into a porous medium). It was shown that the21

particle size distribution may result in hyperexponential deposition profiles [13,20].22

In the present paper we develop a complete stochastic theory of filtration, accounting for the dispersion of the particle23

flight, as well as the particle and pore size distributions. We consider the case of moderately concentrated suspensions,24

where the particles filter independently (which is not always the case, cf, Ref. [16]), but their deposition affects porosity25

and permeability. A rigorous derivation of the governing equations for the particle and pore size distributions is based on26

the theory of stochastic Markov semigroups [28]. It is shown that the system of governing equations allows for averaging27

and reduction to a system of elliptic equations for concentrations of the particles of different sizes coupled with ordinary28

differential equations describing the pore plugging. A numerical method for solution of the obtained equations is developed29

and tested on a characteristic example. Comparison of the contributions of the polydispersity of the suspension and flow30

dispersion to hyperexponentiality of the deposition profiles is presented.31

In the present paper, we do not provide a detailed treatment of the physics of flow on the microlevel and particle32

retention. Our goal is to develop a consistent way for transfer from themicro- to macro-level, which would make it possible33

to obtain a macroscopic system of equations for many different microscale transport mechanisms. That is why every time34

where we discuss the flow on the level of separate particles and pores we select the simplest possible assumptions. In35

particular, the only consideredmechanism of particle deposition is size exclusion. Extensions and generalizations ontomore36

complex particle–pore interaction mechanisms are subjects for separate work.37

The paper is organized as follows. Section 2 presents the basic stochastic characteristics of the suspension and of the38

porous medium. In Section 3 the governing equations for particle and pore size distributions are derived. A reader, who39

is not interested in details of the derivations, may only refer to Sections 3.5, 3.6, where the results are summarized.40

Section 4 describes a procedure for averaging of the system of governing equations, first, for a monodisperse (similar41

to Ref. [24]), and, further, for a polydisperse suspension. Section 5 discusses a characteristic example of the bidisperse42

suspension in a monodisperse porous medium. A system of governing equations for such a system is strongly simplified43

and is brought to a dimensionless form. Characteristic dimensionless parameters governing the different effects are44

analyzed. A numerical method for solution of the resulting system is developed. Finally, sample calculations are presented,45

comparing contributions of polydispersity and temporal dispersion to the deposition profiles. The results are summarized46

in Conclusions, and the auxiliary and cumbersome details of the computations are reported in the Appendices.47

2. Basic relations and definitions48

2.1. Particle and pore size distributions49

We consider deep bed filtration of a suspension of particles in a carrying incompressible liquid flowing in direction x.50

The particles are characterized by the different radii rs. In the classical filtration theory [5,6] the equations are derived with51

regard to the particle concentration per unit porous volume, c(x, t). A more detailed characteristic [23] is the distribution52

C(rs, x, t) of the particles by sizes rs, and the corresponding distribution density f (rs, x, t). By definition,53

c(x, t) =
∫
C(rs, x, t)drs; f (rs, x, t) = C(rs, x, t)/c(x, t). (1)54

The particles move in a porous medium, which may be visualized as a multigraph [29]: an entangled network of55

pores/capillaries distributed by effective radii rp and lengths l. The distribution of the pores by radii rp was considered in56
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Ref. [23], while distribution by lengths was introduced in Ref. [27] in connection to the particle flight. Here we consider the 1

combined distribution H(l, rp, x, t). This distribution, as well as all the other distributions in this paper, is considered for a 2

representative volume containing a large number of pores. It varies with time, affected by the particle deposition. The total 3

number of pores h(x, t) and the density f (l, rp, x, t) are defined as 4

h(x, t) =
∫
H(l, rp, x, t)dldrp; f (l, rp, x, t) = H(l, rp, x, t)/h(x, t). (2) 5

As discussed in Ref. [23], values of rs and rp may not only be understood as actual (or effective) sizes, but as any kind of 6

geometric or physical parameters affecting the particle–pore interaction. For the case of geometrical capturing considered 7

here, theymay also be treated as parameters of the particle shape, if such shapes are irregular. On the contrary, by lwemean 8

exactly actual travelling distances of the particles in the pores or, rather, their projections on the flow direction x. 9

The different conditional probability densitiesmay be formed on the basis of the introduced distributions.Wewill denote 10

by f (A|B) the distribution density of A under condition B, where A, B are some sets of distributed parameters. For example, 11

f
(
l|rp, x, t

)
= f (l, rp, x, t)/f (rp, x, t); f (rp, x, t) =

∫
f (l, rp, x, t)dl. (3) 12

As usual, the words ‘‘under condition B’’ mean ‘‘under known and fixed parameters B’’. Therefore, we understand the 13

distributions at point x at the moment t as the distributions ‘‘under condition’’ x, t . 14

2.2. Particle flight distributions 15

We assume that the particles move in the porous space and are captured independently of each other. Motion of the 16

particles in the separate pores is determined by the distribution of the particle flights. A particle of size rs passes a pore of 17

size rp and length l during time interval τ . The particle may go through the pore or be captured in it; let p be the probability 18

of passing the pore, while 1 − p is the probability of being captured. The distribution density of one particle flight is, thus, 19

f (l, p, τ |rp, rs, x, t). It is easy to show that (cf. Eq. (3)) 20

f (l, p, τ |rp, rs, x, t) = f (p, τ |rs, l, rp, x, t)f (l|rp, x, t). (4) 21

The distribution f (l|rp, x, t) is to be found, while f (p, τ |rs, l, rp, x, t) in many cases may be considered to be known in 22

advance. Indeed, the bprobability of capturing and the time of flight are usually defined by the particle and pore sizes (or 23

other physical parameters), as well as the local flow characteristics [3,6]. For example, in the case of no deposition, the 24

distribution of local velocities in the pores umay be assumed to be proportional to themacroscale hydrodynamic interstitial 25

velocity U/φ, where U(x, t) is the superficial flow velocity of the carrying liquid, and φ is the porosity open for the particles 26

(this is the simplest possible relation between the interstitial and superficial velocities, omitting effects like channeling). In 27

other words, there is a universal distribution 28

fU(η|rs, l, rp), η = uφ(x, t)/U(x, t). 29

The distribution of the flight times is then given by 30

f (τ |rs, l, rp, x, t) = fU(φl/Uτ |rs, l, rp)
φl
Uτ 2

. (5) 31

In many cases (although not for the most general derivation) we will assume that the distribution (5) is also valid for 32

flows with deposition. 33

Another significant simplification may be achieved by allowing a strong assumption that the capturing probability is 34

independent of the flow kinetics, that is, distribution f (p|rs, l., rp, τ ) is independent of τ . Combining with (5), we obtain: 35

f (p, τ |rs, l, rp, x, t) = fU(φl/Uτ |rs, l, rp)
φl
Uτ 2

f (p|rs, l., rp) (6) 36

and, finally, 37

f (l, p, τ |rp, rs, x, t) = fU(φl/Uτ |rs, l, rp)
φl
Uτ 2

f (p|rs, l., rp)f (l|rp, x, t). (7) 38

Eq. (7) will be applied as a constituting dependence for f (l, p, τ |rp, rs, x, t) in all the examples, but not in the basic 39

derivation. 40

We will also be interested in the distribution of the particle flights regardless pore sizes rp. This distribution is given by 41

f (l, p, τ |rs, x, t) =
∫
f (l, p, τ |rs, rp, x, t)f (rp, x, t)drp, 42

or, taking in account Eq. (4), 43

f (l, p, τ |rs, x, t) =
∫
f (p, τ |rs, l, rp, x, t)f (l, rp, x, t)drp. (8) 44

Again, the first distribution under the integral in many cases may be assumed to be known a priori, while the second is 45

to be found. 46
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2.3. Integral characteristics of the particle flight1

We will need the following first and second moments of the particle flight:2

Ls(rs, x, t) =
∫
plf (l, p, τ |rs, x, t)dpdldτ (9)3

Ts(rs, x, t) =
∫
pτ f (l, p, τ |rs, x, t)dpdldτ4

L2s(rs, x, t) =
∫
pl2f (l, p, τ |rs, x, t)dpdldτ5

T2s(rs, x, t) =
∫
pτ 2f (l, p, τ |rs, x, t)dpdldτ6

LTs(rs, x, t) =
∫
plτ f (l, p, τ |rs, x, t)dpdldτ7

Ps(rs, x, t) =
∫
pf (l, p, τ |rs, x, t)dpdldτ .8

The last value, Ps(rs, x, t), is the overall probability for a particle to pass a pore without being captured. The values9

Ls(rs, x, t) and Ts(rs, x, t) are an average particle’s travel distance and flight time, correspondingly. These values take into10

account only the particles that are not captured/deposited, which is reflected by the multiplier p. The remaining values in11

Eq. (9) are the different second moments of the particle flight.12

Wewill apply a more detailed characteristic than Ps(rs, x, t): a probability for a particular particle to pass through a pore13

of a specific size:14

P(rs, l, rp, x, t) =
∫
pf (p, τ |rs, l, rp, x, t)dpdτ . (10)15

As follows from Eqs. (4), (8)16

Ps(rs, x, t) =
∫
P(rs, l, rp, x, t)f (l, rp, x, t)drpdl. (11)17

The particle flight distribution f (l, p, τ |rs, x, t), introduced in the previous subsection, is associated with operator S18

describing one ‘‘step’’ of a particle: transformation of a distribution of the particles when all of them advance on one pore.19

For an arbitrary distribution g(rs, x, t), by definition,20

Sg =
∫
pf (l, p, τ |rs, x, t)g(rs, x− l, t − τ)dldτdp. (12)21

Such a defined operator S is linear and depends on rs, x and t .22

We will consider motion of the particles in the limit of infinitely many infinitely small steps, each step corresponding23

to passage of one pore (when the macroscopic scale much exceeds the pore length). Similarly to Refs. [26,27] (see also the24

derivation below), it may be concluded that in this limit motion of the particles is described by the operator25

D = lim
1− S

Ts(rs, x, t)
. (13)26

In order to find this operator, it is necessary to expand function g(rs, x − l, t − τ) in Eq. (12) up to the second-order27

terms. Cutting the expansion exactly on the second, but not higher or lower order terms is substantiated in Refs. [26,27],28

by application of the theory of continuous stochastic semigroups. As proven in Ref. [28], such semigroups describe random29

processes with continuous trajectories only when the infinitesimal semigroup operator D is a second order differential30

operator.31

Substituting expansion32

g(rs, x− l, t − τ) ≈ (1− p)g(rs, x, t)+ pg(rs, x, t)− l
∂g
∂x
− τ

∂g
∂t
+
l2

2
∂2g
∂x2
+ lτ

∂2g
∂x∂t

+
τ 2

2
∂2g
∂t2

33

into Eq. (12), and integrating, we obtain34

D(rs, x, t)g =
∂g
∂t
+ vs

∂g
∂x
− Dxs

∂2g
∂x2
− Dxts

∂2g
∂x∂t

− Dts
∂2g
∂t2
+Λsg(rs, x, t) (14)35
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with 1

vs = lim
Ls(rs, x, t)
Ts(rs, x, t)

; Dxs = lim
L2s(rs, x, t)
Ts(rs, x, t)

; Dxts = lim
LTs(rs, x, t)
Ts(rs, x, t)

;

Dts = lim
T2s(rs, x, t)
Ts(rs, x, t)

; Λs = lim
1− Ps(rs, x, t)
Ts(rs, x, t)

.

(15) 2

Here vs is an average rate of particle transfer; Dis (i = x; xt; t) are the different dispersion coefficients;Λs is the capture 3

coefficient showing how many particles are captured per unit time. These coefficients are similar to those introduced in 4

Ref. [27] for monodisperse suspensions, and discussion of their properties, as well as expressions for them in some model 5

cases may be applied without changes. Transfer to the limit in Eq. (15) will be omitted, assuming that the values of l, τ or 6

Ls, Ts, etc. are ‘‘small enough’’. 7

As will be shown below, operator D defines a governing differential equation for distribution of the particles C(rs, x, t). 8

As follows from Eqs. (8), (9), the coefficients in this operator depend implicitly on the distribution H(l, rp, x, t). An equation 9

for the last distribution, also derived below, requires an additional limiting relation for the frequency Λ(rs, l, rp, x, t) of 10

capturing specific particles by specific pores. We define this coefficient in terms of the probability P(rs, l, rp, x, t) (see Eq. 11

(10)): 12

Λ(rs, l, rp, x, t) = lim
1− P(rs, l, rp, x, t)

Ts(rs, x, t)
. (16) 13

3. Derivation of the governing system of equations 14

3.1. Assumptions 15

The goal of this section is to derive a system of the two equations determining the particle and the pore size distributions. 16

The derivation is based on the theory of continuous time randomwalks (CTRW) [25,28]. It follows the pattern developed in 17

Refs. [26,27] and is to some extent similar to derivations presented in Ref. [18]. However, there is an important advance, in 18

that we take into account both the distribution of the particles and the varying distribution of the pore sizes. That is why we 19

present the derivation in detail. The reader who is not interested in details of the derivation can proceed from Section 3.5. 20

In order to simplify the derivation, we assume that a particle moves by jumps, staying a certain time τ at the entrance 21

of a pore and then jumping to the entrance of the next pore. The particle may be captured during the stay. A more realistic 22

representation of the particle motion would only introduce corrections of the order of a pore. 23

We consider the case of capture by size exclusion: each captured particle totally closes the pore where it is captured, 24

and this pore is excluded from the flow. The capture is irreversible. A more general case, where a captured particle does not 25

always totally close the pore, but just decreases its size, was considered in Ref. [23]. Similar considerationsmay be applied in 26

the theory developed here, by introducing a probability p(rs → r ′s, rp) that a pore of a size rs is reduced to r
′
s after capturing 27

a particle of the size rp. We do not consider incomplete capturing here for the reasons discussed in the Introduction. 28

3.2. Integral equation for the particle size distribution 29

The goal of this and of the next subsection is to demonstrate that the particle size distribution C(rs, x, t) obeys the 30

equation DC = 0, where the differential operator D is the operator determined by Eqs. (12), (14). The derivation, similar to 31

Refs. [26,27], consists in expressing C(rs, x, t) in terms of the particle step operator, and further application of the operator 32

(1− S)/Ts, which in the limit of infinitely small steps gives operator D. 33

Denote the initial distribution of the particles at t = 0 by C0(rs, x, t) = C0(rs, x)δ(t), where δ(t) is the Dirac delta- 34

function. The distribution of the particles after n steps is obtained by n-wise application of operator S to the initial 35

distribution: 36

Cn(rs, x, t) = [SnC0](rs, x, t). 37

The particles can reach a fixed point x by different numbers of steps n at amoment t ′ < t and stay there until themoment 38

t . More precisely, 39

C(rs, x, t) =
∑
n

∫
t ′
{The particle came to point x at time t ′ < t after n steps} 40

×{the particle is still there and is not captured} 41

or 42

C(rs, x, t) =
∑
n

∫
∞

0
[SnC0](rs, x, t ′)B(t − t ′|rs, x, t ′)dt ′. (17) 43
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Here, we have introduced the designation B(t − t ′|rs, x, t ′) for the probability that the particle is still there and is not1

captured, which is expressed in the following way. By definition,
∫
pf (l, τ , p|rs, x, t ′)dldp is a probability density that a2

particle stays at point x during the time interval τ after time t ′ and is not captured. Correspondingly,3

B(t − t ′|rs, x, t ′) =
∫
∞

t−t ′

∫
pf (l, p, τ |rs, x, t ′)dldpdτ .4

We represent B as a difference5

B(t − t ′|rs, x, t ′) =
∫
∞

0

∫
pf (l, p, τ |rs, x, t ′)dldpdτ −

∫ t−t ′

0

∫
pf (l, p, τ |rs, x, t ′)dldpdτ .6

According to Eq. (9), the first addendum is equal to Ps(rs, x, t ′). Similarly to Ref. [27], we further introduce7

ST (T |rs, x, t) =
1

Ps(rs, x, t)

∫ T

0

∫
pf (l, p, τ |rs, x, t)dldpdτ . (18)8

The value of ST (T |rs, x, t) is a cumulative distribution function of the time interval spent by a particle in a pore, provided9

that the particle is not captured. Applying definition (9) of Ps(rs, x, t), it is easy to show that10

ST (0|rs, x, t) = 0; ST (∞|rs, x, t) = 1.11

In fact, unity is reached very fast, during a time of the order of particle flight.12

Finally,13

B(t − t ′|rs, x, t ′) = Ps(rs, x, t ′)(1− ST (t − t ′|rs, x, t ′)).14

Substituting the last expression into Eq. (17),15

C(rs, x, t) =
∑
n

∫
∞

0
[SnC0](rs, x, t ′)Ps(rs, x, t ′)(1− ST (t − t ′|rs, x, t ′))dt ′. (19)16

This is the integral equation for the particle distribution C . Following Refs. [18,25], we introduce the distribution of the17

first achievement of point x:18

W (rs, x, t ′) =
∑
n

[SnC0](rs, x, t ′). (20)19

Then the equation for C is simplified:20

C(rs, x, t) =
∫
∞

0
W (rs, x, t ′)Ps(rs, x, t ′)(1− ST (t − t ′|rs, x, t ′))dt ′. (21)21

3.3. Differential equation for the particle size distribution22

In order to transfer from the integral equation (19) to a differential equation, we apply to both sides of this equation23

operator (1− S)/Ts(rs, x, t). Operator 1− S is inverse to the sum
∑
∞

n=1 S
n and cancels this sum. As a result, we obtain:24

1− S
Ts(rs, x, t)

C(rs, x, t) =
∫ t

0
dt ′C0(rs, x, t ′)× Ps(rs, x, t ′)

1− ST (t − t ′|rs, x, t ′)
Ts(rs, x, t)

.25

Recalling that the initial distribution C0(rs, x, t ′) is equal to C0(rs, x)δ(t ′), we simplify the right-hand side in the last26

equation:27

1− S
Ts
C(rs, x, t) = C0(rs, x)Ps(rs, x, 0)

1− ST (t|rs, x, 0)
Ts

. (22)28

Now, let us consider the limit of infinitely many small steps. As discussed in Section 2.3 (see Eq. (13)), in this limit29

operator (1−S)/Ts tends to the differential operatorD determined by Eq. (14). As was demonstrated in Ref. [27], expression30

(1− ST (t|rs, x, 0))/Ts on the right-hand side of Eq. (22) tends to δ(t).1 Thus, Eq. (22) is reduced to31

D(rs, x, t)C(rs, x, t) = C0(rs, x)Ps(rs, x, 0)δ(t). (23)32

In particular, for t > 0 the right-hand side of the last equation is equal to zero, and it is reduced to (cf. Eq. (14))33

∂C
∂t
+ vs

∂C
∂x
= Dxs

∂2C
∂x2
+ Dxts

∂2C
∂x∂t

+ Dts
∂2C
∂t2
−ΛsC(rs, x, t). (24)34

Thus, we recover the equation particle transfer, the simplified version of which was discussed in Refs. [26,27].35

The right-hand side of Eq. (23) should also be discussed. It represents the initial condition for the equation for36

concentration. While C0(rs, x) is the initial particle distribution, Ps(rs, x, 0) is the ‘‘entrance probability’’: a probability that37

the particles start entering the porous medium, but are not captured at the zeroth step.38

1 If a sequence of random variables Xε with the distribution functions Fε(x) tends to a distribution concentrated at zero at ε → 0, then, in rather wide
assumptions, (1− Fε(x))/E(Xε)→ δ(x) [24].
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3.4. Equation for the number of pores 1

The coefficients of Eq. (24) depend on the distribution H(l, rp, x, t) of free pores. The goal of this section is to derive a 2

governing equation for H(l, rp, x, t), depending only on C(rs, x, t) and, thus, to obtain a closed system of equations for these 3

two functions. 4

In the assumption that each deposited particle ‘‘kills’’ a pore, and this process is irreversible, the following balance 5

equation holds: 6

H(l, rp, x, t) = H(l, rp, x, 0)−
∑
n

∫
t ′
{a particle has come to point x at some moment t ′ < t after n steps} 7

×{the particle came exactly into the pore of a radius rp} × {the particle was captured there}. 8

The first multiplier under the integral sign is the same as in the integral equation for the particle motion (see Section 3.2). 9

It is equal to Cn(rs, x, t ′) = [SnC0](rs, x, t ′). The second multiplier is equal to f (l, rp, x, t), by definition of this function. The 10

thirdmultiplier is 1−P(rs, l, rp, x, t ′), since P(rs, l, rp, x, t ′) is a probability that the particle of a size rs passes a pore of (l, rp). 11

Finally, the expression for H(l, rp, x, t) assumes the form of 12

H(l, rp, x, t) = H(l, rp, x, 0)−
∑
n

∫ t

0
dt ′
∫
drs[SnC0](rs, x, t ′)× f (l, rp, x, t ′)(1− P(rs, l, rp, x, t ′)). 13

Recalling definition (20) of the functionW (rs, x, t), 14

H(l, rp, x, t) = H(l, rp, x, 0)−
∫ t

0
dt ′
∫
drsW (rs, x, t ′)× f (l, rp, x, t ′)(1− P(rs, l, rp, x, t ′)). 15

Differentiating by t , 16

∂H(l, rp, x, t)
∂t

= −f (l, rp, x, t)
∫
drsW (rs, x, t)(1− P(rs, l, rp, x, t)). (25) 17

This equation, still, does not express H(l, rp, x, t) in terms of H and C . It is necessary to exclude functionW (rs, x, t). This 18

task is resolved by application of Eq. (21), at the limit of the infinitely many small steps. Divide Eq. (25) by f (l, rp, x, t): 19

1
f (l, rp, x, t)

∂H(l, rp, x, t)
∂t

= −

∫
drsW (rs, x, t)(1− P(rs, l, rp, x, t)) (26) 20

and apply to both its parts the integral operator
∫ t
0 Ps(rs, x, t

′)
1−ST (t−t ′|rs,x,t ′)

Ts(rs,x,t ′)
(◦)dt ′. It should be noted that this operator tends 21

to the unity operator in the limit of small steps. Indeed, probability Ps(rs, x, t ′) tends to unity, otherwise coefficient Λs in 22

Eq. (15) would be infinite. Meanwhile 1−ST (t−t
′
|rs,x,t ′)

Ts(rs,x,t ′)
→ δ(t), as discussed above. Thus, the left-hand side of Eq. (26) in the 23

limit of infinitely small steps remains unchanged, while the right-hand side is transformed to 24

−

∫ t

0

∫ {
W (rs, x, t ′)(1− ST (t − t ′|rs, x, t ′))Ps(rs, x, t ′)

} 1− P(rs, l, rp, x, t ′)
Ts(rs, x, t ′)

drsdt ′. (27) 25

In the last expression, the fraction (1 − P(rs, l, rp, x, t ′))/Ts(rs, x, t ′) tends to Λ(rs, l, rp, x, t ′) (see definition (16)). It is 26

possible to substitute in it t ′ by t , since, due to multiplier (1− ST (t − t ′|rs, x, t ′)), integration over dt ′ is carried out over the 27

last time step. The remaining expression under the integral (27) (in braces) coincides with a similar expression in Eq. (21). 28

Thus, in the limit of small steps we may rewrite Eq. (26) in the form of 29

∂H(l, rp, x, t)
∂t

= −f (l, rp, x, t)
∫
Λ(rs, l, rp, x, t)C(rs, x, t)drs. (28) 30

This is the desired equation for the pore size distribution. 31

3.5. Mass conservation law for the carrying fluid 32

Eqs. (24), (28) form a system of two equations for the two distributions C(rs, x, t), H(l, rp, x, t). Since the number 33

of equations is equal to the number of unknowns, the system is formally closed. However, may implicitly depend on 34

macroscopic characteristics of the flow, like the flow rate U and porosity φ (cf. Eq. (6)). This is not important for very dilute 35

suspensions, where these values may be considered as invariable. However, if the deposition changes the parameters of the 36

porous medium, the porosity and the flow velocity vary correspondingly. Let us consider these changes in more detail. 37

A natural assumption is incompressibility of the solid and of the liquid and additivity of their volumes. The 38

incompressibility equation for liquid has the form of 39

∂φ(1− Cv)
∂t

+
∂(1− Cv)U

∂x
= −Il. (29) 40
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Here Cv is the overall volumetric concentration of the particles in the flow, Il describes transfer of the liquid into an1

inactive state. Inactive liquid is contained in the pores, which are excluded from the flowby the captured particles, and forms2

a ‘‘dead porosity’’ φi [6]. We have assumed that an event of capture of a particle excludes a pore from the flow. The particle3

volume, vs(rs), may be different from the volume of the pore, vp(l, rp). For example, for a cylindrical pore and a spherical4

particle, vp(l, rp) = π lr2p and vs(rs) = 4πr
3
s /3. The remaining volume (in the simplest assumptions, vp(l, rp) − vs(rs)) is5

occupied by liquid, which becomes separated from the flow. The part of the space occupied by this liquid is exactly the6

‘‘dead volume’’, or inactive porosity, φi:7

∂φi

∂t
= Il. (30)8

The part of space 1 − φ − φi belongs to the immobile solid, consisting of the rock and the precipitated particles. Its9

evolution is described by the equation10

∂(1− φ − φi)
∂t

= Is. (31)11

Finally,12

∂φ

∂t
= −Iφ = −(Il + Is). (32)13

Let us determine the different values entering these equations in terms of themicroscopic distributions introduced above.14

The volumetric concentration Cv is, obviously,15

Cv =
∫
vs(rs)C(rs, x, t)drs. (33)16

In order to determine the different porosities from themicrostructure of the porous medium, it is necessary to introduce17

a more detailed distributionΣ(rs, l, rp, x, t): the number of particles of size rs captured in pores of sizes (l, rp). Obviously,18

H(l, rp, x, t) = H0 −
∫
Σ(rs, l, rp, x, t)drs.19

An equation for Σ(rs, l, rp, x, t) may be derived by application of the procedure from the previous subsection, and the20

result is similar to Eq. (28):21

∂Σ(rs, l, rp, x, t)
∂t

= f (l, rp, x, t)Λ(rs, l, rp, x, t)C(rs, x, t). (34)22

The initial condition for this equation isΣ = 0 at t = 0. Thus,Σ(rs, l, rp, x, t)may, in principle, be determined, provided23

that C(rs, x, t) and H(l, rp, x, t) (and, therefore, f (l, rp, x, t)) are already found. On the basis of this function, the different24

porosities may be found:25

1− φ − φi = 1− φ0 +
∫
vs(rs)Σ(rs, l, rp, x, t)drsdrpdl;

φi =

∫
(vp(l, rp)− vs(rs))Σ(rs, l, rp, x, t)drsdrpdl;

φ = φ0 −

∫
vp(l, rp)Σ(rs, l, rp, x, t)drsdrpdl,

(35)26

or27

φ =

∫
vp(l, rp)H(l, rp, x, t)drpdl. (36)28

Here φ0 is an initial porosity of the porous medium. The source terms in Eqs. (30) to (32) may also be found by proper29

integration of the right-hand side of Eq. (34). For example,30

Il =
∫
f (l, rp, x, t)Λ(rs, l, rp, x, t)C(rs, x, t)(vp(l, rp)− vs(rs))dldrpdrs. (37)31

If the kernels and coefficients are determined in terms of U , φ, as in the model (6), then the system of Eqs. (24), (28)32

should be completed by the porosity equation (36) and the continuity equation (29), in which the volumetric concentration33

and the source term are determined from Eqs. (33), (37). The four equations, (24), (28), (29), (36) form a closed system of34

four equations for the four unknowns C(rs, x, t), H(l, rp, x, t), φ(x, t), and U(x, t). Then porosity φi may be found by solving35

Eq. (34) and integrating according to Eq. (35). For more sophisticated pictures of flow and capture on the microlevel Eq. (34)36

may become a part of the total system or be considered instead of Eq. (28).37
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For examples presented below we will use a simplified version of Eq. (29). We will assume that the suspension is dilute, 1

Cv � 1, although it stillmay affect porosity, and that the inactive porositymay be neglected: Il ≈ 0.With these assumptions, 2

Eq. (29) is reduced to 3

∂φ

∂t
+
∂U
∂x
= 0. (38) 4

The equation for porosity (36) will be applied without further simplifications. 5

3.6. Discussion 6

We have derived the basic system for evolution of the particle and pore size distribution. For convenience, we reproduce 7

this system again. It consists of the equation for evolution of the particle size distribution (24): 8

∂C
∂t
+ vs

∂C
∂x
= Dxs

∂2C
∂x2
+ Dxts

∂2C
∂x∂t

+ Dts
∂2C
∂t2
−ΛsC(rs, x, t), (39) 9

and of equation for evolution of the pore size distribution (28) (where f (l, rp, x, t) is expressed in terms of H(l, rp, x, t) by 10

Eq. (2)): 11

∂H(l, rp, x, t)
∂t

= −f (l, rp, x, t)
∫
Λ(rs, l, rp, x, t)C(rs, x, t)drs. (40) 12

These equations are connected. The coefficients in Eq. (24) depend on f (l, rp, x, t), as follows from Eqs. (15), (9) and the 13

equations of Section 2.2. This dependence reflects the fact that deposition changes the structure of the porous medium, 14

which results in a change of its transport properties. Coefficient Λ(rs, l, rp, x, t) in Eq. (40) also depends on f (l, rp, x, t) 15

(cf. Eqs. (16), (10)) and on C(rs, x, t). Additionally, if the distributions for the particle flights are related to the global flow 16

characteristics, this system should be completed with the equation for porosity evolution and the continuity equation for 17

the carrying liquid, as discussed in the previous subsection. 18

Eq. (39) resembles a standard ‘‘advection-dispersion-reaction’’ equation, which is commonly used for description of the 19

deep bed filtration [6]. The fact that the particles are distributed by sizes does not affect the structure of this equation. It may 20

be considered as a series of themodified advection-dispersion equations for the particles of each size rs. Interaction between 21

the particles of different sizes is only reflected in the coefficients of this equation. The different particles ‘‘compete’’ to be 22

deposited in the same pores, and in this indirect way the coefficients in an equation for a particular size rs are dependent on 23

the particles of other sizes. For the dilute suspensions, the equations for the different radii become independent. Generally, 24

Eqs. (39), (40) are linear with regard to concentration C(rs, x, t), but they are highly nonlinear with regard to the pore size 25

distribution H(l, rp, x, t). 26

The main distinctive feature of Eq. (39) is that along with the standard terms it contains new terms Dxts∂2C/∂x∂t + 27

Dts∂2C/∂t2 on the right-hand side. These terms are responsible for the dispersion of the time step and mixed dispersion, 28

like the common diffusion term Dxs∂2C/∂x2 is responsible for the dispersion of the spatial step. The new terms and physical 29

meanings of the new transport coefficients are discussed in detail in Refs. [26,27]. Below we will show in the numerical 30

examples that the term with the temporal derivative is responsible for the hyperexponential deposition profiles. 31

Eq. (40) is a natural generalization of the capture equation from the classical filtration theory onto the case of distributed 32

particles and pores. Nontriviality of this equation is hidden in the dependence of the capture coefficient Λ(rs, l, rp, x, t) on 33

the distribution f (l, rp, x, t), as formulated in Section 2. With the help of Eq. (15), Eq. (16) for the capture coefficient may be 34

represented as (omitting the limit) 35

Λ(rs, l, rp, x, t) =
1− P(rs, l, rp, x, t)

Ls(rs, x, t)
vs(rs, x, t) 36

and, similarly, 37

Λs(rs, x, t) =
1− Ps(rs, x, t)
Ls(rs, x, t)

vs(rs, x, t). 38

Hence, as in the standard filtration theory [6], the capture frequencies may be treated as amounts proportional to the 39

particle velocities, with the proportionality coefficients being the capturing probabilities per unit length. 40

For the particular case described by Eqs. (6), (7), it is shown in Appendix A that 41

vs =
U
φ
V (rs, x, t); Dxs =

U
φ
RD(rs, x, t); Dxts = Dxts(rs, x, t);

Dts =
φ

U
Rt(rs, x, t); Λs =

U
φ
λs(rs, x, t); Λ(rs, l, rp, x, t) =

U
φ
λ(rs, l, rp, x, t).

(41) 42
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With application of the dependences (41), Eqs. (39), (40) may be represented in the form of1

φ
∂C
∂t
+ UV

∂C
∂x
= URD

∂2C
∂x2
+ φDxts

∂2C
∂x∂t

+
φ2Rt
U

∂2C
∂t2
− UλsC (42)2

∂H(l, rp, x, t)
∂t

= −f (l, rp, x, t)
U
φ

∫
λ(rs, l, rp, x, t)C(rs, x, t)drs. (43)3

Here coefficients RD, Rt ,Dxts have the dimension of a distance; the coefficient of velocity reduction V is dimensionless;4

and the capture coefficients λs, λ possess the dimension of inverse distance. All these coefficients depend on the distribution5

f (l|rp, x, t). If the effect of the particle deposition on f (l|rp, x, t) is negligible, these coefficients are geometric properties of6

the porous medium. This is the case of diluted suspensions considered in Ref. [27].7

Coefficients RD, Rt ,Dxts have themeaning of different correlation lengths of the porousmedium, andmay vary in different8

ranges (from micrometers to centimeters) depending on the microscale heterogeneity. In many cases they may be treated9

as constants, although expressions for themmay be rather nontrivial (see discussion in Appendices and especially Eq. (81)).10

It is important to mark dependence of the transport coefficients on the flow velocity. While the convective dispersion11

coefficient Dxs increases with velocity, as usual for convective diffusion, the temporal dispersion coefficient Dts is inversely12

proportional to velocity. Thus, while convective diffusion is important for fast flows, the temporal dispersion prevails for13

slow flows.14

Correction to velocity V in Eq. (42) was discussed in detail in Refs. [23,24,27]. It is caused by the two effects. First, the15

pore space is micro-tortuous, and the particles do not always select a straight path between the two points. This may lead to16

a certain slowing down of the particles compared to the flow. On the other hand, the particles, due to their finite sizes, move17

close to the centers of the capillaries, that is, where the flow velocity is larger than the average. This may lead to an increase18

of the particle velocity: V > 1. Other reasons for the different values of V are also possible (stagnant zones, vortices [3], or,19

inverse, fast conducting channels, which most of the particles ‘‘select’’). The fact that the porosity φ considered above is not20

the complete porosity of the system, but only its part accessible for the particles, also contributes to V .21

The filtration theory expressed by Eqs. (42), (43) is reduced to the standard filtration theory for (effectively)monodisperse22

supensions; when the temporal and mixed dispersions may be neglected (e.g. at high filtration rates); and when the23

correction V to the particle flow velocity is equal to unity.24

4. Averaging of the system of equations25

The system of equations obtained in the previous section combines integral and partial differential operators. Its26

full solution would require development of special numerical methods. Direct modeling of the propagation of a particle27

population in a stochastic porous medium is possible [10], but it will probably require a very large particle ensemble and28

very long simulation times in order to avoid dispersion and to approach real solutions of the systems (42) and (43). Averaging29

of the system should overcome these difficulties, reducing it to a system of partial differential equations for a number of30

practically important characteristics.31

It was shown in Ref. [24] for a similar system of equations that it allows for averaging/upscaling for a monodisperse32

suspension. In this paper we transfer the procedure developed in Ref. [24] onto system Eqs. (42), (43). Then we extend these33

methods onto polydisperse systems containing the particles of n distinct sizes.34

The derivations below are only applicable to the system Eqs. (42), (43), but not to themore general system Eqs. (39), (40).35

In other words, they are valid only if the particle deposition is determined by geometric or force factors, but is not affected36

by kinetics of the flow. As established in Appendix A, in this case kernel λ(rs, l, rp, x, t)may be factorized and represented37

in the form of38

λ(rs, l, rp, x, t) =
p(rs, l, rp)
ρ(rs, x, t)

. (44)39

The probability of capturing p(rs, l, rp) is depends only on the particle and pore sizes, while the characteristic distance40

ρ(rs, x, t)may depend on the current size distribution of the pores available for the flow.41

4.1. Averaging for a monodisperse suspension42

If all the sizes rs of the particles are the same and equal to a fixed value Rs, the particle distribution has the form of43

C(rs, x, t) = c(x, t)δ(rs − Rs).44

Correspondingly, Eq. (43) accounting for Eqs. (2), (44), is reduced to45

∂H(l, rp, x, t)
∂t

= −
H(l, rp, x, t)
h(x, t)

c(x, t)
U(x, t)p(l, rp)
φ(x, t)ρ(x, t)

. (45)46

Remark that for this case a more detailed distribution Σ(rs, l, rp, x, t) for this case coincides with H(l, rp, x, t) and,47

therefore, Eq. (34) is also reduced to Eq. (45).48
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Integrating the last equation over l, rp, we obtain 1

∂h(x, t)
∂t

= −
c(x, t)
h(x, t)

U(x, t)
φ(x, t)ρ(x, t)

∫
p(l, rp)H(l, rp, x, t)dldrp. (46) 2

An idea proposed in Ref. [24] is to substitute independent variable t by h. Since variables l, rp, x in Eqs. (45), (46) do not 3

participate in differentiation, we may divide one equation by another, to obtain 4

∂H(l, rp, x, h)
∂h

= −
p(l, rp)H(l, rp, x, h)∫
p(l, rp)H(l, rp, x, h)dldrp

. 5

An advantage of the last equation is that it is a closed equation with regard to H , being independent of c. Moreover, this 6

equation may be solved. The denominator in its right-hand side is a function of x, h: 7

n(x, h) =
∫
p(l, rp)H(l, rp, x, h)dldrp. (47) 8

Therefore, the equation may be reduced to the form 9

dH
dN
= −p(l, rp)H (48) 10

where 11

N(x, h) =
∫ h

h0(x)

dh′

n(x, h′)
. (49) 12

A solution of Eq. (48) is 13

H = H0(l, rp, x) exp[−p(l, rp)N(x, h)]. (50) 14

If h0(x) is the initial pore concentration, then H0(l, rp, x) is the initial pore distribution at a macroscopic point x. Eq. (50) 15

determines dependence H(l, rp, x, h) within an unknown function N(x, h). The last function may be found in the following 16

way. First Eq. (49) is represented as an equation for h(x,N): at constant x 17

dh
dN
= n(x, h). 18

Expressing now n(x, h) from Eq. (47), we obtain: 19

dh
dN
=

∫
p(l, rp)H0(l, rp, x) exp[−p(l, rp)N]dldrp. (51) 20

That is, 21

h(x,N) = h0(x)+
∫ N

0
dN ′

{∫
p(l, rp)H0(l, rp, x) exp[−p(l, rp)N ′]dldrp

}
. (52) 22

The limits of integration and the initial value are selected in agreement with Eq. (49), since N = 0 at h = h0(x). It should 23

be noted that for practical purposes numerical solution of the differential equation (51) may be more advantageous than a 24

solution determination of the dependence N(h, x) by inversion of the algebraic equation (52). 25

With a known dependence H(l, rp, x, h), porosity φ also becomes a known function of x and h, since, by definition, H is 26

the concentration of pores per unit volume, as follows from Eq. (36): 27

φ(x, h) =
∫
v(l, rp)H(l, rp, x, h)dldrp. (53) 28

The value of ρ(x, t) also becomes ρ(x, h), due to Eq. (82) of Appendix A. Now Eq. (46) becomes: 29

∂h(x, t)
∂t

= −c(x, t)U(x, t)Φ(h, x),

Φ =
1

hφ(x, h)ρ(x, h)

∫
p(l, rp)H(l, rp, x, h)dldrp.

(54) 30

Let us now consider the equation for concentration (42), which, for amonodisperse suspension, is reduced to an equation 31

for concentration c(x, t). As follows from Appendix A, the coefficients in this equation depend on distribution f (l|rp, x, t), 32

which, according to Eqs. (2), (3), is expressed in terms of H(rp, l, x, t). The procedure above shows existence of a universal 33

dependence H(rp, l, x, h). Thus, the coefficients in the modified Eq. (42) depend on x and h: 34

φ
∂c
∂t
+ UV (x, h)

∂c
∂x
= URD(x, h)

∂2c
∂x2
+ φDxts(x, h)

∂2c
∂x∂t

+
φ2Rt(x, h)
U

∂2c
∂t2
− Uλs(x, h)c. (55) 35

Eqs. (54), (55), (53) coupledwith the continuity equations (38) form a closed systemof equations for the fourmacroscopic 36

functions: c(x, t), U(x, t), φ(x, t) and h(x, t). The closing relations for these equations are presented in this section and in 37

Appendix A. 38
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4.2. Averaging for a polydisperse suspension1

Averaging of the system (42), (43) for a polydisperse system is generally similar to averaging of a monodisperse system,2

although some steps are nontrivial. We consider flow of a suspension where the particles possess n distinct sizes R1, . . . , Rn.3

The particle size distribution C(rs, x, t) is expressed in terms of the concentrations ci(x, t) of the particles of individual sizes:4

C(rs, x, t) =
n∑
i=1

ci(x, t)δ(rs − Ri).5

Correspondingly, Eq. (43) assumes the form of6

∂H(l, rp, x, t)
∂t

= −
H(l, rp, x, t)
h(x, t)

U(x, t)
φ(x, t)

n∑
i=1

pi(l, rp)
ρi(x, t)

ci(x, t) (56)7

with8

pi(l, rp) = p(Ri, l, rp); ρi(x, t) = ρ(Ri, x, t). (57)9

Similarly to the case of a monodisperse system, we will look for the solution of Eq. (56) in the form of H(l, rp, x, t) =10

H(l, rp, x, h1, . . . , hn), where unknown functions hi(x, t) are determined from the equations11

∂hi(x, t)
∂t

= −
U(x, t)ci(x, t)

h(x, t)φ(x, t)ρi(x, t)
= −

U(x, t)ci(x, t)
h(x, h1, . . . , hn)φ(x, h1, . . . , hn)ρi(x, h1, . . . , hn)

(i = 1, . . . , n). (58)12

The last equality is valid, since h, φ and ρi become functions of h1, . . . , hn due to Eqs. (2), (36), (82), as far as dependence13

H(l, rp, x, h1, . . . , hn) is determined (which we do later). Unlike the value of h for a monodisperse system, functions hi do14

not have a meaning of the total number of pores, but, rather, of the amounts on which this number decreases due to the15

deposition of particles of size Ri. Therefore, it is reasonable to set initial conditions16

hi(x, 0) = 0. (59)17

By the chain rule,18

∂H(l, rp, x, h1, . . . , hn)
∂t

=

n∑
i=1

∂H
∂hi

∂hi
∂t
.19

Comparison of this equation to Eqs. (56), (58) shows that it is possible to define20

∂H
∂hi
= pi(l, rp)H.21

This equation is consistent, since it follows from it that ∂2H/∂hi∂hj = ∂2H/∂hj∂hi. Its solution, taking in account the22

initial condition (59), is23

H(l, rp, x, h1, . . . , hn) = H0(l, rp, x) exp

[
n∑
i=1

pi(l, rp)hi

]
. (60)24

The last formula generalizes solution (50) formonodisperse suspensions. Further upscaling is similar to themonodisperse25

case. In particular, equations for the concentrations ci(x, t) of the particles of the different radii assume the form of26

φ
∂ci
∂t
+ UVi(x, {hj})

∂ci
∂x
= URDi(x, {hj})

∂2ci
∂x2
+ φDxtsi(x, {hj})

∂2ci
∂x∂t

+
φ2Rti(x, {hj})

U
∂2ci
∂t2
− Uλsi(x, {hj})ci. (61)27

Eqs. (58), (61) coupledwith the continuity equation (38) form a closed system of (2n+1) equations for (2n+1) variables28

hi, ci,U , in which porosity is determined from Eqs. (36), (60).29

It is seen that the complexity of the averaged system increases with the polydispersity of the suspension. The number of30

equations is proportional to the number of the distinct radii. Numerical methods are required for solution of the system, as31

demonstrated in the example below.32

5. Example: a bidisperse suspension in a monodisperse porous medium33

The goal of the present section is to illustrate the developed formalism on a representative example. This example is34

designed to be, on one hand, as simple as possible, but on the other hand, to demonstrate specific behavior of themodel and35

characteristic difficulties arising at the numerical solution.36
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5.1. Simplified system of equations 1

Let us consider a suspension where all the particles may have only two possible radii: Rs1 and Rs2 (the case of a 2

monodisperse suspension was considered in Refs. [24,27]). All the pores of the porous medium, where filtration occurs, 3

have the same radius Rp. We assume additionally that, in spite of the fact that the pore lengths are somehow distributed, 4

the capturing probabilities pi are independent of them. A similar formalism is obtained under the assumption that the 5

pore radii are also distributed, but this does not influence the capture probabilities. For example, this assumption may be 6

reasonable if the pore sizes are much larger than the particle sizes, and deposition is caused by the surface forces. The last 7

statement formally contradicts the above assumption that capture occurs by size exclusion. However, as mentioned above, 8

this assumption has only been introduced for simplicity of the derivation, and the basic results are valid for other capture 9

mechanisms. 10

The porous medium is assumed to be initially homogeneous, so that initial distributions are independent of x. However, 11

these distributions may vary with time. 12

Under the assumptions above solution (60) is reduced to 13

H(l, x, h1, h2) = H0(l) exp(p1h1 + p2h2). (62) 14

Correspondingly, the porosity and the number of particles are expressed as 15

h(x, h1, h2) =
∫
H(l, h1, h2)dl = h0 exp(p1h1 + p2h2), (63) 16

φ(x, h1, h2) =
∫
vp(l)H(l, h1, h2)dl = φ0 exp(p1h1 + p2h2). (64) 17

Additionally, as shown in Appendix B, the values of ρi are constants, as well as the coefficients Vi, RDi,Dxtsi, Rti, λsi in Eq. 18

(61). Moreover, as shown in this Appendix, Eq. (84), λsi = pi/ρi. 19

A complete system of equations for this case consists of the continuity equations and the simplified Eqs. (58), (61): 20

∂φ(h1, h2)
∂t

+
∂U
∂x
= 0; (65) 21

∂hi(x, t)
∂t

= −
U(x, t)ci(x, t)

h0φ0ρi exp(2p1h1 + 2p2h2)
(i = 1, 2); (66) 22

φ
∂ci
∂t
+ UVi

∂ci
∂x
= URDi

∂2ci
∂x2
+ φDxtsi

∂2ci
∂x∂t

+
φ2Rti
U

∂2ci
∂t2
− U

pi
ρi
ci (i = 1, 2). (67) 23

Further simplification of this system is possible. The two equations for h1, h2 may be substituted by a single equation for 24

porosity φ. Differentiating Eq. (64) with regard to t and substituting dhi/dt from Eq. (66), after obvious transformations we 25

obtain 26

∂φ

∂t
= −

φ0U
h0φ

(
p1
c1
ρ1
+ p2

c2
ρ2

)
. (68) 27

This equation may also be combined with the continuity equation (38), to obtain 28

∂U
∂x
=
φ0U
h0φ

(
p1
c1
ρ1
+ p2

c2
ρ2

)
. (69) 29

Eqs. (68), (69), coupled with equations for the concentrations (67), form the closed system of equations for variables 30

φ,U, c1, c2. All the coefficients in this system are constants. 31

In a similar way, we obtain a general system of equations for transfer of polydisperse suspensions in a monodisperse 32

porous medium (or in a porous medium where the rules of deposition are independent of the pore radii). Under the 33

assumptions listed above this system is reduced to (n+ 2) equations: 34

φ
∂ci
∂t
+ UVi

∂ci
∂x
= URDi

∂2ci
∂x2
+ φDxtsi

∂2ci
∂x∂t

+
φ2Rti
U

∂2ci
∂t2
− U

pi
ρi
ci (i = 1, . . . , n) 35

∂φ

∂t
= −

φ0U
h0φ

n∑
i=1

pi
ρi
ci 36

∂U
∂x
=
φ0U
h0φ

n∑
i=1

pi
ρi
ci. 37
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5.2. Initial and boundary conditions1

Let us specify initial and boundary conditions for system (67) to (69). Consider a problem of injection of a finite portion2

of suspension pushed by pure liquid, which corresponds to a typical deep bed filtration experiment [13,14]. First, the initial3

porosity and the injection velocity should be specified:4

φ(x, t = 0) = φ0; (70)5

U(x = 0, t) = U0. (71)6

The boundary conditions at the injection and at the production ends may be posed as usual conditions for an advection-7

dispersion equation. If a finite portion of the suspension is injected during time T0 and is pushed by a pure liquid afterwards,8

then9

ci(x = 0, t) = c0i (0 ≤ t ≤ T0);
ci(x = 0, t) = 0 (t ≥ T0);
∂ci
∂x
(x = L, t) = 0.

(72)10

In the following calculations we assume that the injection time T0 is comparable to the characteristic convective times11

UVi/L and, thus, represents the characteristic time scale of the problem. Generalizations onto incomparable timesmay easily12

be obtained (although may lead to numerical difficulties).13

Eqs. (67) contain the second time derivative of the concentrations. As was discussed in Refs. [26,27], this requires, apart14

from a usual initial condition, an additional initial condition for ci, or a condition at another time. Specification of the two15

initial conditions at the same timewould lead to an instable elliptic problem. It is physically evident, on the other hand, that16

specifying the only initial concentration would be sufficient:17

ci(x, t = 0) = c0,i. (73)18

It was proven in Refs. [26,27] that, instead of the second condition, a condition of limitedness of the solution at infinity19

may be posed. However, this is inconvenient for numerical computations.20

For the considered problem, the following solution may be suggested. Let us consider a large time interval, T1 = αT0,21

after which (almost) all the free particles are either captured, or removed from the porous medium by the pure injected22

liquid. It is possible to set the following ‘‘final’’ condition:23

ci(x, t = T1) = 0. (74)24

Ideally, T1 should tend to infinity. However, numerical tests show that the concentration decreases rather rapidly after25

pure water is injected. In our calculations we used α = 5. This has shown to be large enough: further increase of time T126

did not lead to significant modification of the solution in the practically interesting period 0 ≤ t ≤ 2.5T0, after which both27

forward and backward concentration fronts have been passed. Of course, other situations are possible, where α should be28

increased, and for any particular case this question needs further numerical study.29

5.3. Dimensionless form30

It is convenient to solve the system of equations above in the dimensionless variables, since this makes it possible to31

exclude the parameters of the order of unity and to study dependence of the system on the key dimensionless complexes.32

Let us introduce the following dimensionalization:33

φ = φ0Φ, ci = c0Ci, U = U0u,34

x = LX, t = (Lφ0/U0)T ,35

RDi = aLrDi, Dxtsi = aLrxti, Rti = aLrti,36

ρi = Lγ0γi, pi = p0Pi.37

Hereφ0, c0, U0, L, γ0, p0 are characteristic values possessing the dimensions of the corresponding dimensional values38

(φ0 and γ0 are dimensionless); the variables Φ, Cα, u, X, T , rDα, rxtα, rtα, γα, Pα are dimensionless and are supposed39

to be of the order of unity — otherwise the corresponding terms in the transport equations may be neglected. The value of a40

is the inverse Peclet number, expressing the characteristic ratio of the dispersion and advection terms. There are two other41

characteristic dimensionless numbers:42

b =
p0
γ0
; A =

c0

h0
.43

The value of b is responsible for the characteristic frequency of particle entrapment related to the linear scale of the44

problem. The value of A compares the amount of injected particles with the initial amount of the available pores.45
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Fig. 1. Particle concentration dependences on space and time for the four cases: (a) a = 0.05, b = 0.1; (b) a = 0.5, b = 0.1; (c) a = 0.05, b = 1;
(d) a = 0.5, b = 1. Here a is the inverse Peclet number (dispersion to advection ratio); b is the particle capture frequency ratio. Parameter A (initial
concentration of particles to pores) is equal to 0.02 in all the calculations.

In dimensionless variables, the system of transport equations is 1

Φ
∂Ci
∂T
+ uVi

∂Ci
∂X
= a

(
urDi

∂2Ci
∂X2
+ Φrxti

∂2Ci
∂X∂T

+
Φ2rti
u

∂2Ci
∂T 2

)
− bu

Pi
γi
Ci (75) 2

∂u
∂X
= Ab

u
Φ

n∑
i=1

Pi
γi
Ci

∂φ

∂T
= −Ab

u
Φ

n∑
i=1

Pi
γi
Ci.

(76) 3

It is also important to consider the equation for accumulation of the entrapped particles. Denoting by σi the accumulated 4

amounts of the particles of the type i, from equations of Section 3.5 we obtain 5

∂σi

∂t
= U

pi
ρi
ci (i = 1, . . . , n). 6

The dimensionless accumulated amounts Si are introduced by σi = c0Si (i = 1, . . . , n). A dimensionless equation for 7

them is 8

∂Si
∂T
= φ0bu

Pi
γi
Ci (i = 1, . . . , n). (77) 9

We also calculate the total accumulation σ as a sum of σi and, correspondingly, S =
∑
Si. 10

5.4. A method for numerical solution 11

Direct discretization of the system of equations (75), (76) leads to a system of nonlinear algebraic equations for each 12

point on a rectangular grid, which requires iterative methods for its solution. A simpler solution procedure may be obtained 13
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Fig. 2. Dependences of (a) porosity, and (b) velocity on x and t . Parameters for calculation: a = 0.5, b = 0.1, A = 0.2.

if Eqs. (76) for (Φ, u) are solved separately from the Eqs. (75) for Ci. Each time, solving the equations for (Φ, u), we assume1

the concentrations to be known. Then we solve the equations for concentrations, taking porosity and flow rate from the2

previous iteration. The iterative solution procedure may be schematized as3

Φ(0), u(0) → C (0)i → Φ(1), u(1) → · · · → C (n)i → · · · (78)4

until convergence.5

Under known C (α−1)i , Eqs. (76) forΦ(α), u(α) are solved by direct integration. Afterwards Eqs. (75) for C (α)i are solved, with6

the coefficients taken at Φ(α), u(α), by usual discretization methods. In this paper, we apply numerical differences, taking7

the central differences when possible. Iterations (78) are repeated until convergence.8

In our calculations, reproduction of the velocity and porosity fields with an accuracy of 0.1% was usually achieved9

after 3–4 iterations for low dispersion (low parameter a) and after 5–7 iterations for high dispersion. This indicates a10

reasonable robustness and rapidness of the proposed numerical procedure. Care should be taken for the cases of high particle11

concentrations, where complete plugging of a porousmediummay be achieved and the porosity becomes zero at some step.12

Special problems may arise, for example, in the cases where the porosity Φ(α) becomes zero at an intermediate iteration,13

but this is not the right final answer. In the computations below, we select the initial conditions avoiding complete plugging.14

5.5. Sample calculations15

Asmentioned in the Introduction, one of the observed effects, which cannot be explained by the classical filtration theory,16

is hyperexponential distribution of the entrapped particles along a porous medium. The classical ‘‘homogeneous’’ theory17

predicts that under boundary conditions (72) the final dependence of ln S on X will be linear. However, many experiments18

contradict this prediction [3,13]. It was suggested [13,14,20] to explain the hyperexponentiality by the different sizes of the19

particles and (or) to the differentways of their entrapment.We have pointed out [27] that the time dispersion termmay also20

result in a non-standard particle distribution. Temporal dispersion means that more particles than expected stay near the21

entrance and, simultaneously, more particles move further away. The model developed above makes it possible to compare22

the relative roles of the two mechanisms.23
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Fig. 3. Logarithms of the retention profiles for (a) low dispersion-advection ratio (a = 0.05); (b) high dispersion-advection ratio (a = 0.5). Other
parameters: b = 0.1, A = 0.02. The retention profiles are (almost) exponential for case (a) and hyperexponential for case (b).

We have obtained a series of numerical solutions of the system of equations (75), (76), for injection of a suspension of 1

particles of two different sizes (n = 2). A SciLab-based numerical implementation of the procedure outlined in the previous 2

section was created. 3

The basic parameters for calculations were selected in such a way that they are representative for realistic conditions, 4

where the dispersion effects may be observed. The inverse Peclet number a for convective dispersion is equal to the ratio 5

of the correlation length of the medium to the characteristic scale of the problem. In the computations the basic value was 6

0.05, and we used a high value of 0.5 for comparison. Even at a = 0.05 (that is, for the correlation length of 5 cm with the 7

filter size of 1 m) contribution of the dispersive mechanisms is significant. Smaller values of a were also explored, but in 8

some cases they caused numerical instabilities of the selected discretization. The particle-to-pore ratio A varied from 0.02 9

to 0.2. It affected the rate of plugging, but not the fact of hyperexponentiality of the deposition profiles. The same is true for 10

the dimensionless entrapment rate b varying from 0.1 to 1. Other coefficients were set to unity, apart from rxti = 0. 11

Typical concentration dependences on time and space are presented in Fig. 1, at the two different dispersion-advection 12

ratios a and the two different entrapment ratios b. Within the range of the parameters under study, the particle–pore ratio 13

A does not affect the shapes of the dependences. The behavior of concentrations in Fig. 1 is as expected. The particles are 14

injected with the dimensionless concentrations C0i = 1 at times between 0 and T0 = 1. Afterwards pure liquid is injected, 15

pushing the suspension forward. At this stage the particle concentration decreases due to capturing and dispersion. Higher 16

values of a result in higherwashout of the concentration profile,while higher b leads to a faster decrease of the concentration. 17

A characteristic evolution of porosity and velocity is shown in Fig. 2. Porosity decreases with time, since more particles 18

are deposited. The decrease of the porosity slows down when pure liquid is injected. Porosity increases with the spatial 19

coordinate, since fewer particles reach the ‘‘far end’’ of the porous medium and deposit there. Velocity behaves non- 20

monotonously. This behavior is explained on the basis of Eq. (38).While the decrease of the porosity slows down, the velocity 21

becomes more uniformly distributed along the porous medium. 22

Our goal was to analyze behavior of the distribution of the retained particles. The deposition profiles are plotted in semi- 23

logarithmic coordinates, so that the ‘‘classical’’ exponential behavior is represented by a straight line. In all our calculations, 24

the main influential parameter determining the type of this dependence has turned to be the dispersion parameter a. 25

Hyperexponential behavior was observed for cases of high dispersions. Comparative behavior of the deposition profiles 26

for the cases of low and high dispersions is presented in Fig. 3. The deposition profiles for the case of low dispersion are 27
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Fig. 4. Comparison of the impacts of the spatial and temporal dispersion on the hyperexponentiality of the retention profiles. Dimensionless ratios:
a = 0.5, b = 0.1, A = 0.2. (a) Low temporal dispersion for the second component: rt,2 = 0.1, while rt,1 = rx,1 = rx,2 = 1. (b) Low spatial dispersion for
the second component: rx,2 = 0.1, while rx,1 = rt,1 = rt,2 = 1.

(almost) exponential, with the deviations at X = 1 caused by the specific boundary condition. The profiles corresponding1

to high dispersion show the clearly pronounced hyperexponential behavior. Similar effects were observed in our previous2

paper [27], as well as in other papers based on the CTRW approach (e.g. Ref. [18]).3

Parameter a rescales both spatial and temporal dispersion coefficients. In order to distinguish the contributions of the two4

dispersions, we have run the two numerical simulations. In the first simulation the coefficient rt,2was set to 0.1, while all the5

other coefficients rt,i and rx,i were set to unity. Thus, in this case the temporal dispersion was high for the first component6

and low for the second component, while spatial dispersions were equal. In the second simulation, the temporal dispersions7

were equal (and high) for both components, while the spatial dispersion for the second component was set to rx,2 = 0.1.8

We also set different initial concentrations, in order to make the components distinguishable on the plots.9

The sets of deposition profiles for the two cases are presented in Fig. 4. It is seen from Fig. 4a that the deposition profile10

for component 1 (with high temporal dispersion) is strongly hyperexponential, while the profile for component 2 is almost11

exponential, apart from the least points. Meanwhile, as follows from Fig. 4b, variation of the spatial dispersion does not12

affect hyperexponentiality of the deposition profiles.13

It has been suggested in the literature [13,20] that the main mechanism for hyperexponentiality is that particles of14

different types are capturedwith different probabilities. The goal of the next series of simulationswas to compare the effects15

of the temporal dispersion and of the unequal capture probabilities onto the deposition profiles. The results are shown in16

Fig. 5. The basic case (Fig. 5a) corresponds to the low temporal dispersion and to the equal capture probabilities. In this17

case the deposition profiles are almost exponential. Selection of high temporal dispersion (Fig. 5b) results in the clearly18

hyperexponential distribution. The final simulation, shown on Fig. 5c, corresponds to low temporal dispersion, as for Fig. 5a,19

but to the different capture probabilities for the two kinds of particles: p2 = 0.2p1. For this case the distributions of the20

concentration logarithms become less linear, but the difference from the basic case on Fig. 5a is only slight. Thus, at least21

for this case, the contribution of the temporal dispersion is more significant than the contribution of the difference in the22

capture probabilities.23

It should be noticed that both the temporal dispersion and the dispersion of the capture probability lead to24

hyperexponential profiles, while ‘‘hypoexponential’’ deposition profiles have not been observed in our simulations. The25
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Fig. 5. Impact of different temporal dispersions compared to the impact of the different capture probabilities on the hyperexponentiality of the retention
profiles. For all cases, b = 0.1, A = 0.2. For cases (a), (b) the capture probabilities are equal: p1 = p2 = 1, but the advection-dispersion ratios are different:
(a) a = 0.05, (b) a = 0.5. Case (c): Low a = 0.05, and the different pi: p1 = 1, p2 = 0.2.

effects of particle size distribution and of the temporal dispersion on the deposition profiles are competing, and cannot be 1

directly distinguished on the plots. 2

Conclusions 3

We have developed a complete semi-microscopic stochastic theory of filtration of polydisperse suspensions in a porous 4

medium characterized by a pore size distribution. The theory covers the gap between the microscopic mechanisms of 5

filtration of polydisperse suspensions and macroscopic equations describing their flow. 6
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The components of the developed scheme are: A complete stochastic system of transport equations for the particle1

concentration distributed by the particle sizes, and for the pore distribution by the pore sizes and lengths; a method for2

their averaging and reduction to a system of hydrodynamic equations for particles of different sizes; and an approach to3

numerical solution of the resulting system of equations.4

Sample calculations demonstrate that the theory is able to predict the effect of ‘‘hyperexponential’’ behavior of the5

deposition profiles, which has previously been discussed in the literature. It is demonstrated that themain effect responsible6

for such a behavior of the profiles is a new effect of the temporal dispersion. This effect plays the same role for the temporal7

coordinate as diffusion plays for the spatial coordinate. Numerical simulations demonstrate that the temporal dispersion8

leads to a stronger nonlinearity of the logarithms of the deposition profiles than the commonly considered effect of the9

different retentions of particles of different sizes.10
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Appendix A14

The goal of this appendix is to study in detail the transport coefficients in Eqs. (39), (40) for the specific case where the15

distribution of one step is given by Eq. (7), that is, when the flows in the separate pores are rescaled together with the16

overall flow, and when the kinetics does not affect the particle entrapment. We start with the evaluation of the moments17

(9). Substituting distribution (7) into the expression for Ls, we obtain:18

Ls(rs, x, t) =
∫
plfU(φl/Uτ |rs, l, rp)

φl
Uτ 2

f (p|rs, l., rp)f (l|rp, x, t)dpdldτ .19

After introduction of the new integration variable u = l/Uτ this expression is reduced to20

Ls(rs, x, t) =
∫
plfU(η|rs, l, rp)f (p|rs, l., rp)f (l|rp, x, t)dpdldη.21

That is, Ls is independent of U , as might be expected. In a similar way we obtain for other moments (9):22

Ts(rs, x, t) =
φ

U

∫
pl
u
fU(η|rs, l, rp)f (p|rs, l., rp)f (l|rp, x, t)dpdldη. (79)23

- inversely proportional to U/φ;24

L2s(rs, x, t) =
∫
pl2fU(η|rs, l, rp)f (p|rs, l., rp)f (l|rp, x, t)dpdldη25

- independent of U/φ;26

LTs(rs, x, t) =
φ

U

∫
p
l2

u
fU(η|rs, l, rp)f (p|rs, l., rp)f (l|rp, x, t)dpdldη27

- inversely proportional to U/φ;28

T2s(rs, x, t) =
φ2

U2

∫
p
l2

u2
fU(η|rs, l, rp)f (p|rs, l., rp)f (l|rp, x, t)dpdldη29

- inversely proportional to (U/φ)2;30

Ps(rs, x, t) =
∫
pfU(η|rs, l, rp)f (p|rs, l., rp)f (l|rp, x, t)dpdldη31

- independent of U/φ, and finally,32

P(rs, l, rp, x, t) =
∫
pfU(η|rs, l, rp)f (p|rs, l, rp)dpdη (80)33

- independent of U/φ and, moreover, of x and t .34
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Referring now to Eqs. (15) for the transport coefficients, we recover relations (41). In these relations, 1

V (rs, x, t) =

∫
plfU(u|rs, l, rp)f (p|rs, l., rp)f (l|rp, x, t)dpdldu∫
p lu fU(u|rs, l, rp)f (p|rs, l., rp)f (l|rp, x, t)dpdldu

(81) 2

RD(rs, x, t) =

∫
pl2fU(u|rs, l, rp)f (p|rs, l., rp)f (l|rp, x, t)dpdldu∫
plfU(u|rs, l, rp)f (p|rs, l., rp)f (l|rp, x, t)dpdldu

3

Dxts(rs, x, t) =

∫
p l
2

u fU(u|rs, l, rp)f (p|rs, l., rp)f (l|rp, x, t)dpdldu∫ pl
u fU(l/Uτ |rs, l, rp)f (p|rs, l., rp)f (l|rp, x, t)dpdldu

4

Rt(rs, x, t) =

∫
p l
2

u2
fU(u|rs, l, rp)f (p|rs, l., rp)f (l|rp, x, t)dpdldu∫ pl

u fU(l/Uτ |rs, l, rp)f (p|rs, l., rp)f (l|rp, x, t)dpdldu
. 5

Additionally, since P(rs, l, rp, x, t) is independent of x and t , it follows from Eqs. (lambda), (79) and (80) that (omitting 6

the limit) Q1 7

Λ(rs, l, rp, x, t) =
U
φ

p(rs, l, rp)
ρ(rs, x, t)

. 8

Here 9

p(rs, l, rp) = 1− P(rs, l, rp);

ρ(rs, x, t) =
∫
pl
u
fU(u|rs, l, rp)f (p|rs, l., rp)f (l|rp, x, t)dpdldu.

(82) 10

Appendix B. Coefficients in the transport equations for special cases 11

The goal of this subsection is to determine coefficients in the transport equations derived in Section 4.1 for filtration of a 12

bidisperse suspension in a monodisperse porous medium. In view of monodispersity, all the distributions are independent 13

of rp. Further, it follows from Eq. (62), (63), that the distribution of the pore lengths l remains invariable: 14

f (l, x, t) = f0(l) = H0(l)/h0. 15

Distribution fU(u|rs, l, rp) is equal to fU1(u|l) if rs = Rs1 and fU2(u|l) if rs = Rs2. Correspondingly, ρ(rs, x, t) is either 16

ρ(Rs1, x, t) or ρ(Rs2, x, t). We denote these values by ρi(x, t) (i = 1, 2). According to Eq. (82) and the previous analysis, 17

ρi(x, t) =
∫
pl
u
fUi(u|l)δ(p− pi)f0(l)dpdldu = (const)i. (83) 18

Thus, the values of ρi are independent of x, t . Similar analysis is possible for other coefficients. Consider, for example, 19

V (rs, x, t). Similarly to coefficient ρ, it is reduced to Vi(x, t) (i = 1, 2). According to the transformed equation (81), 20

Vi =

∫
plfUi(u|l)δ(p− pi)f0(l)dpdldu∫
p lu fUi(u|l)δ(p− pi)f0(l)dpdldu

= (const)i. 21

Hence, these coefficients are also independent of x, t . In other words, the coefficients in Eq. (61) become constants, since 22

these coefficients depend on x, t via f (l|rp, x, t), and this function remains invariable in our case. 23

Further, if Pi = P(Ri, l, rp) are constants, then it follows from Eq. (11) that Psi = Ps(Ri, x, t) are also constants equal to Pi. 24

Therefore, psi = 1− Psi = pi, and, as follows from the last Eq. (15), Eq. (16) (and taking into account re-norming transferring 25

Ts into the values of ρi), 26

λsi =
pi
ρi
. (84) 27
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