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Abstract Exact solution is derived for axisymmetric flow during water injection with fine
particles detachment, migration, attachment and straining. The solution contains the so-called
erosion front described as a weak discontinuity, behind which the mechanical equilibrium of
attached particles holds and the dynamic attachment occurs ahead of the front. Introduction of
a timely potential form for suspended concentration decreases the order of governing system
allowing derivation of the erosion front trajectory. The analytical model describes the injec-
tivity decline due to fines migration and reveals non-monotonic injection rate dependency of
the well index.

Keywords Fines migration · Colloid · Porous media · Particle detachment · DLVO force ·
Mathematical model · Permeability decline · Injectivity

List of symbols

Variables

A123 Hamaker constant (ML2T−2)

c Suspended particle concentration (L−3)

C Dimensionless suspended particle concentration
D Erosion front velocity (LT−1)

d Collision diameter (L)
fs Probability density function for colloid radius
fp Probability density function for pore radius
F Force (MLT−2)

h Particle surface separation distance (L)
H Thickness of a rectangular pore channel (L)
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J Impedance (normalized reciprocal of well index)
k Absolute permeability (L2)

kB Boltzmann constant (ML2T−2K−1)

l Characteristic wavelength (L)
ln Normal lever (L)
ld Tangential lever (L)
n∞ Bulk number density of ions (L−3)

p Pressure (MT−2L−1)

P Dimensionless pressure
PVI Pore volume injected (dimensionless unit for time T)
q Volumetric flow rate per unit of the reservoir production thickness (L2T−1)

r Radius (L)
re Drainage radius of the well (L)
rs Radius of a particle (L)
S Dimensionless retained particle concentration
t Time (T)
T / Dimensionless time coordinate of intersection point of characteristics with erosion

front
U Darcy’s velocity in porous media (LT−1)

u Dimensionless velocity
V Potential energy (ML2T−2)

U Dimensionless velocity
X Dimensionless radial coordinate

Greek symbols

β Formation damage coefficient
γ Salinity
� Difference between two values (pressure, retained concentration)
ε Erosion number (ratio between the torques of detaching and attaching forces)
ζ Surface potential (mV)
κ Debye length (L−1)

λ Dimensional filtration coefficient (L−1)

	 Dimensionless filtration coefficient
μ Dynamic viscosity (ML−1T−1)

ρ Fluid density (ML−3)

σ Concentration of retained particles (L−3)

φ Porosity
χ Lifting force coefficient
ω Drag force coefficient

Subscripts

cr Critical (for attached concentration and coordinate of erosion front)
i Initial conditions values (for suspended and retained concentrations, for erosion

number)
e electrostatic (for force)
w Well (for radius, dimensionless radial coordinate and erosion number)
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m Maximum value (for velocity and erosion number)
n Normal (for force)
p Pore (for pore radius and pore size distribution)
s Straining (for retained concentration, filtration coefficients and formation damage

coefficient)
a Attachment (for retained concentration, filtration coefficients and formation damage

coefficient)
0 Initial value (for permeability and dimensionless radial coordinate)
d Drag (for force), damage (for reservoir radius and dimensionless radial coordinate)
g Gravitational (for force)
w Well
BR Born repulsion (for potential energy)
DLR Electrostatic double layer (for potential energy)
LVA London–van der Waal (for potential energy)

1 Introduction

Migration of natural reservoir fines occurs in many environmental, chemical and petroleum
engineering processes: water production and impairment of artesian wells (Khilar and Fogler
1998; Cheng and Ouazar 2003), water injection into aquifers for fresh water storage (Cheng
et al. 2003), invasion of sea water in aquifers (Bear and Cheng 1999), industrial waste dis-
posal in subterranean reservoirs (Bradford et al. 2009, 2011, 2012), cold water injection in
geothermal reservoirs (Rosenbrand et al. 2012, 2013), oil production and water injection in
low consolidated, high clay content and heavy oil fields (Civan 2007). Technology develop-
ment and design for the above processes are based on the results of mathematical modelling.

Usually fines migration is accompanied by severe permeability decline (Khilar and Fogler
1998; Civan 2010a,b). It is explained by lifting of the fine particles, attached to grain
surfaces and pore walls by drag and lifting forces, exerting the particles from the flow-
ing fluid. High flow velocity provides with high values of the detaching forces causing
fines mobilisation. Decrease of water salinity or increase of its pH results in weaken-
ing of the attaching electrostatic force that also causes fines detachment. The lifted fines
migrate in the porous space together with the carrier fluid until it meets the thinner pore
throat where it is size excluded. Particle detachment leads to minor increase in permeability
while the straining in thin pore throats and their plugging causes significant permeability
decline.

The decline in well injectivity and productivity due to fines migration have been reported
for low consolidated, high clay content and heavy oil reservoirs (Muecke 1979; Civan 2007).
In the present work, an analytical model for fines migration during water injection is derived
and the effects of fines migration on well injectivity are investigated.

Since the attaching and detaching forces depend on particle and pore sizes and on matrix
surface mineralogy, which are stochastically distributed, numerous micro scale studies of
the colloidal–suspension transport have been carried out. The population balance models
account for size distributions of pores and particles (Sharma and Yortsos 1987a,b,c; Santos
and Bedrikovetsky 2006). Averaging of the population balance equations results in the clas-
sical macro scale model for deep bed filtration only in the case of mono-sized suspensions
(see Bedrikovetsky 2008). Multiple particle capture mechanisms can be aggregated in one
mechanism with the total filtration coefficient depending on the overall retention concen-
tration (Guedes et al. 2009). Other approaches include random walk models (Shapiro 2007;
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Fig. 1 Torque balance on the particle at the internal cake surface as a condition of mechanical equilibrium

Yuan and Shapiro 2010a,b), trajectory analysis (Payatakes et al. 1974; Chatterjee et al. 2011)
and stochastic mean-field model (Lin et al. 2009).

The traditional model for particle detachment contains kinetic expressions for the release
rates that are proportional to differences between the current and critical values of velocity,
salinity, pH, stress, etc. (Ju et al. 2007; Lin et al. 2009; Bradford et al. 2009, 2012; Massoudieh
and Ginn 2010). The kinetics coefficients cannot be predicted theoretically and are fully
empirical parameters while the expressions for filtration coefficient are derived from micro
scale models. The model exhibits the delayed response to abrupt change of velocity, salinity,
pH, stress, etc., while the laboratory experiments exhibit the instant response.

Another approach to modelling of the particle detachment assumes the condition of
attached particle mechanical equilibrium yielding the existence of the maximum attached
concentration: the dynamic attachment occurs if the concentration of attached particles is
lower than its maximum value; otherwise the mechanical equilibrium holds (Bedrikovetsky
et al. 2011; Bedrikovetsky et al. 2012). The modified particle detachment model uses the
maximum (critical) retention function instead of kinetics expression describing the detach-
ment rate: if the retention concentration does not exceed its maximum value, particle capture
is going on according to the classical model of deep bed filtration; otherwise, the maximum
retention concentration value, which depends on flow velocity and brine ionic strength, holds.
The maximum retention concentration is determined by the torque balance of electrostatic,
drag, lifting and gravity forces exerting on the fine particles situated on the grain surfaces (Fig.
1a). The maximum attached concentration model is free of the above-mentioned shortcom-
ings. Therefore, in the current paper, the modified model with maximum (critical) retention
function is chosen to describe the effects of fines migration on water injection.

The axisymmetric flow with fine particles detachment, migration, attachment and straining
during water injection allows for an exact solution. The distinguished feature of the solution
is an erosion front—the mechanical equilibrium of attached particles holds behind the front
while the attachment occurs ahead of the front. The front is a weak discontinuity, i.e. the
unknown functions are continuous while their first derivatives suffer discontinuity across the
wave front. Introduction of a potential form for the suspended concentration permits reducing
the order of the governing system, resulting in a first-order equation for attached concentra-
tion. This equation along with the condition of mechanical equilibrium on the erosion front
and the expression for attachment rate uniquely determines the trajectory of the erosion front.
The analytical model reveals gradual injectivity decline with further stabilisation due to strain-
ing of the mobilised fine particles. The stabilisation time is significantly lower than a typical
injection period. The fines size that affects the filtration and formation damage coefficients
is the most influential parameter determining the injectivity decline due to fines migration.
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The structure of the paper is as follows. Section 2 presents basic equations for fine particles
lifting, straining and consequent permeability decline. The governing system for particle
transport, attachment and detachment is shown in Sect. 3. Derivation of exact solution for the
axisymmetric flow during water injection including implicit formulae for front trajectories
and areal concentration distributions are given in Sect. 4. Section 5 presents the matching of
the field data by the analytical model.

2 Fines Migration During Water Injection

In this section we briefly describe particle attachment, detachment and straining phenomena
during the suspension–colloidal transport in porous media.

Fines detachment and mobilisation by drag and lifting forces, migration of released fines
in porous media with the carrier water and particle straining in thin pore throats results in
permeability decline and, consequently, in the well index decrease. Particle lifting occurs
mainly near to wells where flow velocities and detaching forces are 2–3 orders of magnitude
higher than those in the reservoir. Therefore, the most favourable region for fines detachment
is the well vicinity. Since the particle straining rate is proportional to flow velocity, the
intensity of size exclusion of the mobilised fines is higher near to the well. Finally, the closer
to the well the permeability damaged zone is located the higher is the effect of permeability
decline on well injectivity. The above are the reasons why the retention processes occur
mostly in the well vicinity and why they highly affect well injectivity decline.

Particle straining is described by the linear kinetics equation where the capture rate is
proportional to the advective particle flux cU (Sharma and Yortsos 1987a; Rousseau et al.
2008; Bradford et al. 2012)

∂σs

∂t
= λscU, (1)

where U is Darcy’s flow velocity, c and σs are suspended and strained particle concentrations,
respectively, and λs is the filtration coefficient for straining.

Particle attachment is also described by the linear kinetics equation, but only until the
maximum value of attached concentration σcr is reached (Bedrikovetsky et al. 2011)

∂σa

∂t
=
{

λacU : σa < σcr (ε)

σa = σcr (ε) .
(2)

Here σa is the attached particle concentration and λa is the filtration coefficient for attach-
ment. The erosion number ε is the ratio between the detaching and attaching torques (see
Fig. 1a where the exerting forces are shown)

ε = l Fd (U ) + Fl (U )

Fe (γ ) + Fg
, l = ld

ln
(3)

Here Fd, Fl, Fe and Fg are drag, lifting, electrostatic and gravity forces, respectively;
ld and ln are the lever arms for drag and normal forces. Drag and lifting forces are monotoni-
cally increasing velocity functions while electrostatic force is monotonically decreasing salin-
ity function. So, the erosion number ε increases with velocity increase and salinity decrease.
Therefore, fines mobilisation occurs with either velocity increase of salinity decrease.

The erosion number dependency of the maximum retained concentration σcr is determined
from the condition of mechanical equilibrium of the fine particle on the surface of the external
cake formed by the attached fines. The condition of mechanical equilibrium is the equality
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of detaching torques of drag and lifting forces and attaching torques of electrostatic and
gravitational forces, Fig. 1. In particular, the maximum retention function as derived from
the torque balance in a single cylindrical capillary is given by

σcr (U ) =
⎧⎨
⎩

σo

(
1 − U 2

U 2
m

)
: U < Um

0 : U ≥ Um

(4)

where σ0 is a maximum retention value corresponding to no-flow and Um is a minimum
velocity that drags out all attached particles from the pore surface [see Bedrikovetsky et al.
(2011) for detailed derivations of Eqs. (2–4)]. Since the erosion number (3) is a velocity
function, maximum retention concentration can be considered as a function of either erosion
number (2) or velocity (4).

The advanced water lifts particles only from the rock surface accessible to water in water-
wet rocks. The accessible area grows with the saturation increase during the displacement
of oil by water (Fig. 1b). Therefore, the maximum retention function depends on water
saturation; see Muecke (1979); Yuan and Shapiro (2010a,b). Well impedance depends on
permeability damage in some neighbourhood of the wellbore, which is called the damaged
zone; the permeability decrease outside the damaged zone does not affect the well impedance.
The damaged zone size almost never exceeds 3–10 m (see Nunes et al. 2010). Fines migration
occurs far behind the displacement front in damaged zone, where the residual oil saturation
is already established. Therefore, during waterflooding, water saturation in damaged zone is
equal to one minus residual oil saturation 1 − sor; permeability for water is equal to absolute
permeability times relative permeability for water at the presence of residual oil k0krwor.
Initial permeability k0 and porosity φ further in the text correspond to water injection into an
aquifer. Injection well impedance during waterflooding can be obtained from that for single
phase flow by changing permeability k0 to k0krwor and porosity φ to φ(1 − sor).

The maximum concentration dependency σcr(ε) is a phenomenological function in the
model of particle detachment in porous media. This function is determined by mineralogy
of rock and fines, water composition, temperature, effective stress, etc. In particular, the
function depends on the pore and particle radii since its definition includes the particle radii
dependencies of drag, lifting, electrostatic and gravitational forces

σcr = σcr
[
ε
(
rs, rp

)]
(5)

The averaged maximum retention function defined as

σcr =
∫ ∞∫

0

σcr
[
ε
(
rs, rp

)]
fs (rs) fp

(
rp
)

drsdrp (6)

accounts for size distributions of pores and particles. Here fs and fp are particle and pore
size distributions, respectively.

Figure 2 shows maximum retention function versus velocity U for different salinities. The
curves have parabolic form (4). The salinity dependency of electrostatic force in (3) yields
the change of maximum velocity Um in (4) with salinity variation. The higher the salinity the
stronger is the electrostatic particle–grain attraction and the higher is the maximum attached
concentration.

The permeability increase after detachment and its decrease after straining are described
by the modified Darcy’s law (Sharma and Yortsos 1987a,b,c; Mays and Hunt 2005)

U = ko

μ (1 + βaσa + βsσs)

∂p

∂r
, (7)
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Fig. 2 Maximum retention concentration versus velocity for different brine salinities (as calculated for field
case)

where the formation damage coefficient for straining usually highly exceeds that for the
attachment

βa � βs (8)

Basic relationships (1–8) for particle attachment, straining and detachment are used in the next
section to form a closed system of governing equations for suspension–colloidal transport in
porous media.

3 Governing Equations

Incompressibility of water and particles is assumed inside the drainage zone. The Amagat’s
law of volumetric additivity during particle suspension in water is also assumed.

As it follows from the flux incompressibility, the volumetric rate per unit of the reservoir
production thickness q is independent of radius, i.e.

U (r) = q

2πr
(9)

The temperature and water composition are assumed to be constant during the injection.
Mass balance of suspended, attached and strained particles is

∂

∂t
(φc + σa + σs) + 1

r

∂

∂r

( cq

2π

)
= 0 (10)

Assuming the fine particles straining in 1–10 m of well vicinity and homogeneous porous
media with dispersivity 10−3–10−2 m, the Peclet’s number varies between 102 and 104. It
allows neglecting the dispersive particle flux if compared with the advective flux.
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Equations (1) and (2) for attachment and straining kinetics, accounting for (9), become

∂σa

∂t
=
{

λacq
2πr : σa < σcr (ε)

σa = σcr (ε)
(11)

and

∂σs

∂t
= λscq

2πr
(12)

respectively.
Modified Darcy’s law, accounting for permeability decline due to attached and strained

fine particles (7), becomes

q

2πr
= ko

μ (1 + βaσa + βsσs)

∂p

∂r
. (13)

During the straining particle capture, yielding significant permeability decline, one particle
plugs one pore and vice versa. Since the particle volume is significantly lower than the pore
body volume, retention concentration 10−3 can lead to several times decrease of permeability
(Mays and Hunt 2005). Therefore, the effects of size exclusion and detachment on porosity
in Eq. (10) can be neglected; further in the text, porosity φ is assumed to be constant.

The closed system of four governing Eqs. (10–13) determines the following unknowns:
suspended, attached and strained concentrations c, σa and σs, respectively, and pore pressure
p.

Introduction of dimensionless parameters—linear coordinate X , filtration coefficient 	,
time T , suspended, attached and strained concentrations C, Sa and Ss, respectively, and pore
pressure P

X =
(

r

re

)2

, Λk = reλk, T = 1

πφr2
e

t∫
0

q (y) dy, C = c

σai
, Sk = σk

φσai
, k = a, s

(14)

P = 4πko

qμ
p, u = 2πreU

q
(15)

transforms the system of Eqs. (10–13) to the dimensionless form:

∂

∂T
(C + Sa + Ss) + ∂C

∂ X
= 0 (16)

∂Ss

∂T
= 	s

C

2
√

X
(17)

∂Sa

∂T
=
{

	a
C

2
√

X
: Sa < Scr (X)

Sa = Scr (X)
(18)

1 = X

1 + φσai (βa Sa + βsSs)

∂ P

∂ X
(19)

Equations (16–18) do not contain pressure P and, therefore, can be separated from Eq. (19),
i.e. pressure P(X, T ) is determined from Eq. (19) by substitution of the solution of the system
(16–18) into Eq. (19).
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As it follows from (9) and (14), the following relationship between coordinate X and
dimensionless velocity u takes place

u = 1/
√

X (20)

allowing redefining the maximum retention concentration from the erosion number function
σcr(ε) (3, 4) and from the velocity function (4) to function of linear coordinate Scr = Scr(X).

Let us determine the initial conditions for system (16–18) that correspond to the start
of injection. As it follows from the assumption of the maximum retention function (2),
the instant release of the excess of the initial attached concentration σai over the function
σcr(ε) occurs. Figure 2 shows that the maximum retention concentration is zero for velocities
higher than the maximum velocity Um, i.e. the electrostatic force cannot ‘hold’ the attached
particles at high drag and lifting forces. Therefore, all attached particles are released in the
well vicinity of r < q/2π Um. The maximum retention concentration is above the initial
attached concentration for velocities lower than Ui, so the fines lifting in the remote area
with r > q/2π Ui does not occur. Initial suspended concentration between the two zones is
equal to the difference between the initial attached and maximum retention concentrations.
The initial strained concentration is assumed to be zero. The above determines the initial
suspended and attached concentrations:

C (X, 0) =
⎧⎨
⎩

Sai, εw < ε < εm

Sai − Scr (ε) , εm < ε < εi

0, ε > εi

(21)

and

Sa (X, 0) =
⎧⎨
⎩

0, εw < ε < εm

Scr (ε) , εm < ε < εi

Sai, ε > εi

(22)

It is assumed that no strained particles are present in the rock before the injection

Ss (X, 0) = 0. (23)

Particle-free water is injected; all suspended fines are those lifted during the injection; it
determines the boundary condition on the well:

C (Xw, T ) = 0. (24)

The exact solution of system (16–18), subject to initial-boundary conditions (21–24), is
presented in the next section.

4 Analytical Model for Fines Migration During Water Injection

Exact solution of the initial-boundary value problem (21–24) for system (16–18) is formulated
using the plane (X, T ) (Fig. 3), where the trajectories of fronts and the characteristic lines
of the solution are shown. Typical flow patterns are denoted as 0, I…XI. As the maximum
retention function is velocity-dependent [see (4)] and velocity is constant along the space
axis X [see (20)], the fines release occurs just once at the beginning of injection. So, there is
no re-attachment of particles in zone of the initial mobilisation Xw < X < X i. The initially
released particles move ahead into zone X > X i where there is a room for attachment, i.e.
where the attached particles are ‘under-saturated’, Scr(X) > Sai. The attachment of newly
arrived suspended particles occurs until the maximum retention value is reached by the
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Fig. 3 Structure of the flow zone
on (X, T ) plane and profiles of
suspended concentration,
attached and strained
concentrations: a profiles in
typical moments on (X, T ) plane;
b suspended concentration
profiles; c attached concentration
profiles and d strained
concentration profiles
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attached concentration; the attachment does not occur afterwards, see Eq. (18). The above
indicates that there are two different flow domains, separated from each other by an erosion
front X = Xcr(T ). The erosion front is determined by the equality of attached concentration
to maximum retention concentration along its trajectory X = Xcr(T )

Sa (Xcr (T ) , T ) = Scr (Xcr (T )) . (25)

The unknowns behind the erosion front are C and Ss while ahead of the front the unknowns
are C, Sa and Ss. The solution of the system (16–18) is obtained in the following sequence.
First, suspended concentration C(X, T ) is determined by the method of characteristics in
zones I, II, III, VI, VII, IX and X assuming that the trajectory of the erosion front is known
a priori. Then the attached concentration Sa(X, T ) in zones IX and X is determined by
direct integration of rate expressions for the previously calculated suspension concentration.
Provided the attachment concentration is already known, the condition (25) is a transcendental
equation allowing calculating the unknown trajectory of the erosion front, Xcr(T ). Then
unknown concentrations are calculated in other flow zones. Three following subsections
derive the solution behind the erosion front (Sect. 4.1), determine the erosion front trajectory
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(Sect. 4.2) and derive the solution ahead of the front (Sect. 4.3). Physics interpretation of the
solution (Sect. 4.4) and calculations of the pressure drop using the solution (Sect. 4.5) follow.

4.1 Solution Behind the Erosion Front

Since no attachment occurs behind the erosion front (second Eq. (18) holds), the attached
concentration is independent of time. Substitution of straining kinetics equation (17) into the
equation for particle mass balance (16) yields

∂C

∂T
+ ∂C

∂ X
= −Λs

C

2
√

X
. (26)

Equations for characteristics of the linear hyperbolic eq. (26) in zones I and II are

dX

dT
= 1,

dC

dT
= −Λs

C

2
√

X
. (27)

The characteristic velocity is equal to one, so the trajectories of characteristic lines are

X = Xo + T . (28)

In terms of the initial point Xo, the first and second Eq. (21) provide the initial condition
for the system of two ordinary differential equations (27):

C (Xo, 0) =
{

Sai Xw < Xo < Xm

Sai − Scr (Xo, 0) Xm < Xo < X i
(29)

Fine particles transport in zones I, II and VII corresponds to uniform initial data [first Eq.
(21)], while the non-uniform initial data [second Eq. (21)] determines the flow in zones III
and VI (see Fig. 3a). The second differential eq. (27) with initial condition (29) is solved by
separation of variables.

The final formulae for C(X, T ) in zones I, II, III, VI and VII are presented in Table 1.
These formulae are valid behind the erosion front, i.e. for X < Xcr(T ).

The attached concentration behind the erosion front is equal to the maximum retention
function (4,5). In particular, the attached concentration is equal to zero in high velocity zones
I and IV, i.e. it remains constant since the beginning of injection. It is equal to the initial
attached concentration in zones II, III and V. The attached concentration profiles are built up
from the rear of the erosion front and remain constant in zones VI, VII and VIII. Finally,

Sa (X, T ) =
{

Scr (X) , Xm < X < Xcr(T )

0, Xw < X < Xm.
(30)

The corresponding formulae for the attached concentrations in zones I, II, III, IV, V, VI,
VII and VIII are presented in Table 2.

Strained concentration in zones I, II and III is determined from kinetics equation of
straining rate, see Eq. (17), by integration of the suspended concentration in time T from its
initial value at T = 0, (29) to T :

Ss (X, T ) = 	s

2
√

X

T∫
0

C(X, T )dT . (31)

Since suspended concentration in zones IV, V and VIII is zero, strained concentration is
steady state and is determined from its value along the injected water front T = X − Xw.
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Table 1 Formulae for suspension concentration in all flow domains

Zone number Domain Suspended concentration

0 T < X − X i 0

I Xw < X < Xm
0 < T < X − Xw

Sai exp
(
−	s

(√
X − √

X − T
))

II Xm < X < X i
X − Xm < T < X − Xw

Sai exp
(
−	s

(√
X − √

X − T
))

III Xm < X < X i
0 < T < X − Xm

(Sai − Scr (X − T )) exp
(
−	s

(√
X − √

X − T
))

IV Xw < X < Xm
T > X − Xw

0

V Xm < X < X i
T > X − Xw

0

VI X i < X < Xcr(T )

Tcr(X) < T < X − Xm

(Sai − Scr (X − T )) exp
(
−	s

(√
X − √

X − T
))

VII X i < X < Xcr(T )

X − Xm < T < X − Xw

Sai exp
(
−	s

(√
X − √

X − T
))

VIII X i < X < Xf2
T > X − Xw

0

IX Xcr(T ) < X < Xf2
X − X i < T < Tcr(X)

C (X, Tcr(X)) exp
(
− (	s + 	a)

(√
X − √

Xcr(T )
))

X X > Xf2
X − X i < T < X − Xw

C (X, Tcr(X)) exp
(
− (	s + 	a)

(√
X − √

Xcr(T )
))

XI X > Xf2
T > X − Xw

0

So, the above subsection presents the solution of the governing system (16–18) in zones
I, II…VIII behind the erosion front. The trajectory of the erosion front is obtained in the next
subsection.

4.2 Determining the Trajectory of the Erosion Front

The retained concentration fields Sa(X, T ) and Ss(X, T ) are continuous all over the (X, T )

plane, while concentration C(X, T ) jumps across the front of the clean water injection
T = X − Xw. Yet, the concentration fields suffer discontinuities of their first derivatives
along the erosion front X = Xcr(T ) due to switching from the mechanical equilibrium of
particles, given by the maximum retention function [second Eq. (2)], to non-equilibrium
particle attachment [first Eq. (2)], i.e. the weak discontinuity propagates along the erosion
front. Let us derive equation for the erosion front X = Xcr(T ).

As it follows from the expressions for attachment and straining rates, i.e. from Eqs. (17)
and (18), respectively,

C = 2
√

X

Λa

∂Sa

∂T
= 2

√
X

Λs

∂Ss

∂T
(32)

the suspended concentration C becomes a timely potential for both attached and strained
concentrations. From (32) it follows that

∂Ss

∂T
= Λs

Λa

∂Sa

∂T
(33)
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Table 2 Formulae for attached concentration

Zone
number

Domain Attached concentration

0 T < X − X i Sai

I Xw < X < Xm
0 < T < X − Xw

0

II Xm < X < X i
X − Xm < T < X − Xw

Scr(X)

III Xm < X < X i
0 < T < X − Xm

Scr(X)

IV Xw < X < Xm
T > X − Xw

0

V Xm < X < X i
T > X − Xw

Scr(X)

VI X i < X < Xcr(T )

Tcr(X) < T < X − Xm

Scr(X)

VII X i < X < Xcr(T )

X − Xm < T < X − Xw

Scr(X)

VIII X i < X < Xf2
T > X − Xw

Scr(X)

IX Xcr(T ) < X < Xf2
X − X i < T < Tcr(X)

Sai + (Scr (Xcr) − Sai)

√
Xcr
X exp

(
− (	s + 	a)

(√
X − √

Xcr

))

X X > Xf2
X − X i < T < X − Xw

Sai + (Scr (Xcr) − Sai)

√
Xcr
X exp

(
− (	s + 	a)

(√
X − √

Xcr

))

XI X > Xf2
T > X − Xw

Sa (X, 0) +
X−Xw∫
X−Xi

	a
2
√

X
CX (X, T ) ∂T

Substituting (33) into (16) yields

∂

∂T

(
C + Sa + Λs

Λa
Sa

)
+ ∂C

∂ X
= 0. (34)

Substituting first timely potential (32) into (34) and changing the order of differentiation
in the second term leads to

∂

∂T

[
∂

∂T

(
2
√

X

Λa
Sa

)
+
(

1 + Λs

Λa

)
Sa

]
+ ∂

∂T

[
∂

∂ X

(
2
√

X

Λa
Sa

)]
= 0. (35)

Integrating both sides of (35) in T yields

∂

∂T

(
2
√

X

Λa
Sa

)
+
(

1 + Λs

Λa

)
Sa + ∂

∂ X

(
2
√

X

Λa
Sa

)
= f (X) , (36)

where the time-independent function to the right hand side of (36) is determined by initial
conditions (21, 22). Let us calculate the left hand side of Eq. (36) at T = 0 for X > X i:

∂Sa

∂T

∣∣∣∣
T =0

= Λa

2
√

X
C = 0, (37)

∂Sa

∂ X

∣∣∣∣
T =0

= ∂Sai

∂ X

∣∣∣∣
T =0

= 0. (38)
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Finally, the X -function in the right hand side of (36) is found from (37) and (38). Equation
(36) becomes

∂

∂T

(
2
√

X

Λa
Sa

)
+
(

1 + Λs

Λa

)
Sa+ ∂

∂ X

(
2
√

X

Λa
Sa

)
=
(

1 + Λs

Λa

)
Sai+ ∂

∂ X

(
2
√

X

Λa
Sai

)
.

(39)

Performing differentiation on both sides of Eq. (39) yields

∂Sa

∂T
+ ∂Sa

∂ X
= (Sai − Sa)

1

2
√

X

(
Λa + Λs + 1√

X

)
(40)

Since mechanical equilibrium of fines is reached along the erosion front, the attached
concentration is equal to maximum retention function along the erosion front:

Sa (Xcr (T ) , T ) = Scr(Xcr) (41)

Taking the ordinary derivative in X of both sides of condition (41) yields

dTcr

dX

∂Sa

∂T
+ ∂Sa

∂ X
= d (Scr(X))

dX
(42)

For any point (Xcr(T ), T ) on the erosion front, first Eq. (18), Eqs. (40) and (42) form a
system of linear 3 × 3 equations for 3 unknowns: X - and T -derivatives of function Sa(X, T )

and the erosion front velocity. Substituting first Eqs. (18) and (40) into (42) results in an
explicit expression for the velocity of the erosion front

dTcr

dX
=

[
d(Scr(X))

dX − (Sai − Sa)
1

2
√

X

(
Λa + Λs + 1√

X

)
+ Λa

2
√

X
C
]

2
√

X

ΛaC
(43)

Here concentration C along the front trajectory is that obtained by the method of character-
istics in zones VI and VII, see Table 1.

Let us prove that suspended concentration C is continuous along the erosion front Xcr =
Xcr(T ), i.e. concentration C in Eq. (43) is that ahead or behind the front Xcr(T ). Consider
the condition of particle flux continuity on the front. Introduce the reference system linked
to the front and moving with speed D, where D is the dislodging front speed. The relative
velocity of suspended particles with respect to the reference system is 1 − D; the relative
velocity of retained particles with respect to the reference system is (−D).

The flux of particles behind the front is equal to that ahead of the front:

C+ (1 − D) − S+ D = C− (1 − D) − S− D, (44)

where S is the total retained concentration

S = Sa + Ss. (45)

Behind the erosion front, the retained concentration already reached its critical value

S− = Scr. (46)

As it follows from the retention rate Eqs. (17, 18), concentration S(X, T ) is a continuous
function. In particular it is continuous across the erosion front. Therefore, S+ = Scr on the
erosion front, and the balance condition on the shock (44) becomes(

C+ − C−) (1 − D) = 0 (47)
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which leaves either of two possibilities: D = 1 or C is continuous. Since the erosion front
lags behind the characteristic that crosses point (X i, 0) (Fig. 3), its velocity is less than one;
the suspended concentration along the erosion front is continuous

C (X, T ) ={
Saoexp

(−Λs
(√

Xcr − √
Xcr − Tcr

))
for Xw < Xcr − Tcr < Xm

(Sai − Scr (Xcr − Tcr)) exp
(−Λs

(√
Xcr − √

Xcr − Tcr
))

for Xm < Xcr − Tcr < X i.

(48)

Finally, ordinary differential eq. (43) with initial condition

X = X i : T = 0 (49)

determines the trajectory of the erosion front X = Xcr(T ).

4.3 Solution Ahead of the Erosion Front

Particle attachment occurs ahead of the erosion front, i.e. first Eq. (18) holds. Substituting it
into (16) along with Eq. (17) results in

∂C

∂T
+ ∂C

∂ X
= − (Λs + Λa)

C

2
√

X
. (50)

Suspended concentration along the erosion front (48) provides boundary condition for
Eq. (50). The characteristic lines with unit speed that start at the erosion front cover zones
IX and X (Fig. 3a):

X − Xcr
(
T /

) = T − T / (51)

where T / determines the intersection point of characteristic line (51) with erosion front and
can be determined from (51) as a function of X and T by solving transcendental equation

T / = T / (X, T ) . (52)

Separating variables in characteristic form of Eq. (50) yields the explicit expression for
suspended concentration ahead of the erosion front in zones IX and X:

C (X, T ) = C
(
Xcr

(
T /

)
, T /

)
exp

(
− (Λs + Λa)

(√
X −

√
Xcr

(
T /

)))
. (53)

Here the intersection point T / is determined from (52).
Strained concentrations along the suspension concentration front X = X i + T is equal

to zero. Attached concentration along the front X = X i + T is equal to its initial value, i.e.
Sai. Integration of Eq. (17) in T starting from the suspension concentration front results in
expressions for strained concentration

Ss (X, T ) =
T∫

X−X i

Λs

2
√

X
C(X, T )dT . (54)

The attached concentrations Sa(X, T ) in zones IX and X is obtained from Eq. (40) by
method of characteristics with boundary condition (41):
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Sa (X, T )

=
{

Sai+(Scr (Xcr)−Sai)

√
Xcr
X exp

(
− (Λs+Λa)

(√
X − √

Xcr

))
, Xcr < X <T +X i

Sai, X − T > X i.

(55)

Formulae (53–55) are valid for zones IX and X.
Since suspended concentration in zone XI is zero, strained concentration is steady state

and is determined from its value along the front T = X − Xw.
Formulae for suspended, attached and strained concentrations for zones 0, I, II…XI are

included in Tables 1, 2 and 3. Interpretation of transport phenomena in different flow zones
is presented in the next Subsection.

4.4 Structure of the Flow Zone

Figure 3a shows twelve different flow zones; formulae for concentrations in all zones are
different (Tables 1, 2, 3). Figure 3b,c and d show profiles of suspended, attached and retained
concentrations in three different moments, respectively.

There are two distinguished flow domains: that ahead of the erosion front where the
attaching torque exceeds the detaching torque, yielding particle attaching and that behind the
erosion front where the mechanical equilibrium is established and no attaching occurs.

An instant release of attached particles up to the value of maximum attached concentration
occurs at the moment T = 0, see (21). Since velocity decreases with radius, the maximum
attached concentration increases. Figure 3c shows no attached particles near to wellbore
and the remaining initial attached concentration Sai outside the particle mobilisation zone
X > X i. The released particles are mobilised into the suspension. Figure 3b shows that all
detached particles near to the wellbore Xw < X < Xm have been mobilised into suspension
with maximum concentration. Partial release of fine particles in the intermediate zone Xm <

X < X i results in the suspension profile with concentration monotonically decreasing from
the maximum value at X = Xm to zero at X = X i. Zero suspension concentration at X > X i

corresponds to no attached fines release for small velocities. The strained concentration at
T = 0 is equal to zero (Fig. 3d).

Straight line X = Xw + T is the injected water front of the injected particle-free water.
Suspended concentration is zero behind this front due to piston-like dispersion-free displace-
ment of the suspension by the clean injected water. No particles can be attached in zone
Xw < X < Xm at high flow velocities, so Sa remains zero in zones I and IV.

The suspended concentration profile at the moment T1, before the erosion front catches up
with the trajectory that starts at X = Xm, shows some increase due to decrease of retention
rates (17) and (18) as X increases (Fig. 3b). Yet, the profile decreases with X in zones III and
VI because the initial suspended concentration of released particles decreases with X . No
suspended particles move ahead of the concentration front in zone 0 because no particles have
been released there. Yet, mobilised particles move ahead of the erosion front in zones IX and
X. The attached profile remains the same and equal to the maximum attached concentration
in zones with X < X i since no attachment occurs behind the erosion front. Yet, some extra
particles attach for X > X i due to the released particles ahead of the erosion front in zones
IX and X with smaller velocities (Fig. 3c). The profile of strained concentration Ss shows an
increase from zero at the wellbore due to straining of suspension with maximum suspended
concentration (Fig. 3d). Further decrease of strained fines concentration with X is explained
by decrease of suspended concentration and of straining rate as X increases.
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Table 3 Formulae for strained concentration in different zones

Zone
number

Domain Strained concentration

0 T < X − X i 0

I Xw < X < Xm
0 < T < X − Xw

Sai√
X

[
exp

(
	s

(√
X − T − √

X
)) (

1 − √
X − T

) + √
X − 1

]

II Xm < X < X i
X − Xm < T < X − Xw

Sai√
X

exp
(
−	s

√
X
) [

exp
(
	s

(√
X − T

)) (
1 − √

X − T
)

+ exp
(
	s

√
Xm

) (√
Xm − 1

)] + 	s
2
√

X

X−Xm∫
0

CIII(X, T )∂T

III Xm < X < X i
0 < T < X − Xm

	s
2
√

X

T∫
0

CIII(X, T )∂T

IV Xw < X < Xm
T > X − Xw

Sai√
X

[
exp

(
	s

(√
Xw − √

X
)) (

1 − √
Xw

) + √
X − 1

]

V Xm < X < X i
T > X − Xw

Sai√
X

exp
(
−	s

√
X
) [

exp
(
	s

(√
Xw

)) (
1 − √

Xw
)

+ exp
(
	s

√
Xm

) (√
Xm − 1

)] + 	s
2
√

X

X−Xm∫
0

CIII(X, T )∂T

VI X i < X < Xcr(T )

Tcr(X)< T < X − Xm

	s
2
√

X

(
T∫

Tcr

CVI(X, T )∂T + Tcr∫
X−Xi

CIX(X, T )∂T

)

VII
X i < X < Xcr(T )

X − Xm < T < X − Xw

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

	s
2
√

X

⎛
⎜⎜⎜⎜⎜⎝

X−Xm∫
Tcr

CVI (X, T ) ∂T +

Tcr∫
X−Xi

CIX(X, T )∂T + T∫
X−Xm

CVII(X, T )∂T

⎞
⎟⎟⎟⎟⎟⎠

X < Xf1

	s
2
√

X

(
Tcr∫

X−Xi

CIX(X, T )∂T + T∫
X−Xm

CVII(X, T )∂T

)
X > Xf1

VIII
X i < X < Xf2
T > X − Xw

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

	s
2
√

X

⎛
⎜⎜⎜⎝

X−Xm∫
Tcr

CVI (X, T ) ∂T +
Tcr∫

X−Xi

CIX(X, T )∂T + X−Xw∫
X−Xm

CVII(X, T )∂T

⎞
⎟⎟⎟⎠X < Xf1

	s
2
√

X

(
Tcr∫

X−Xi

CIX(X, T )∂T + X−Xw∫
X−Xm

CVII(X, T )∂T

)
X > Xf1

IX Xcr(T)< X < Xf2
X − X i < T < Tcr(X)

	s
2
√

X

T∫
X−Xi

CIX(X, T )∂T

X X > Xf2
X − X i < T < X − Xw

	s
2
√

X

T∫
X−Xi

CIX(X, T )∂T

XI X > Xf2
T > X − Xw

	s
2
√

X

X−Xw∫
X−Xi

CIX(X, T )∂T

The structure of the suspension concentration wave—jump from zero on the front of
injected water, increase ahead of the injected water front with further decrease down
to zero on the perturbation front—remains the same in moments T2 and T3. Some extra
attachment of released particles occurs ahead of the erosion front, the attached concen-
tration in these zones increases with time. Straining particles accumulate in all zones
with non-zero suspended concentration. The straining concentration remains constant in
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any point of the reservoir from the moment of passing this point by the injected water
front.

Finally, the typical features of suspension transport in different flow zones are:

0 unperturbed zone without particles ahead of the concentration front;
I deep bed filtration in rock without attached particles under high velocities near the well;

II motion of the particles lifted in zone I under the presence of some attached particles;
III flow and straining of suspended fines initially lifted under the presence of remaining

attached particles;
IV flow of particle-free water near the well with strained and no attached particles;
V flow of particle-free water in the rock under the presence of the attached particles

remaining after the initial lifting and of the fines strained during periods II and II;
VI motion and straining of fines that arrived from zone III;

VII motion and straining of fines that arrived from zone II;
VIII flow of fines-free water in the rock under the presence of fines strained during the

periods XI, VI and VII and the fines attached during the period IX;
IX suspension flow with straining and attachment in under-saturated zone behind the con-

centration front until the mechanical equilibrium is reached;
X suspension flow with straining and attachment in under-saturated zone behind the rear

concentration front until the suspended particles are swept by the injected water;
XI fines-free water flow under the presence of the particles attached and strained during

the period X.

4.5 Calculation of the Pressure Drop

Semi-analytical solution of axisymmetric flow problem derived in Sects. 4.1–4.3 allows
calculating pressure drop in the drainage zone (between the well and the drainage radii,
rw < r < re) during the injection. The calculations are presented in the current section.

Expressing pressure gradient from Eq. (19) and integrating in X from well X = Xw to X =
1 yields

�P(T ) =
1∫

Xw

1 + φσai (βa Sa(X, T ) + βsSs(X, T ))

X
∂ X. (56)

The initial pressure drop across the reservoir corresponds to the absence of strained fines

�Pi =
1∫

Xw

1 + βaσai

X
dX = − (1 + βaσai) ln Xw. (57)

Let us analyse the so-called impedance that is equal to normalised pressure drop across
the reservoir during the injection

J (T ) = �P(T )

�Pi
. (58)

The distributions of attached and strained concentrations as taken from Tables 2 and 3 have
been calculated numerically using MatLab. The impedance (58) has also been calculated by
integration (56) in MatLab.

The dynamics of impedance is shown in Fig. 4 for different injection rates and water
salinities. The impedance increases with time tending to some limit. The stabilisation takes
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Fig. 4 Effects of injection rate and salinity on the impedance dynamics
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Fig. 5 Maximum impedance versus rate for different filtration coefficients/salinities

place after short-term injection remaining constant further throughout the waterflooding of
the reservoir. A large number of particles are released at higher rates, so the higher the rate the
higher is the impedance. The higher is the water salinity the larger is the electrostatic particle–
grain attachment and the higher is the maximum attached concentration. Therefore, the higher
is the salinity the smaller number of particles is released and the lower is the well impedance.

Since the impedance stabilisation occurs quickly, only its stabilised value is important for
prediction of the well behaviour. Figures 5, 6 and 7 present a sensitivity study of the stabilised
impedance value with respect to filtration coefficient, brine salinity and injection rate.
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Fig. 6 Maximum impedance/skin factor versus rate for different brine salinities: a large fines case, b for small
fine particles

The higher the filtration coefficient for straining the larger is the concentration of strained
fines and the higher is the stabilised impedance (Fig. 5). The stabilised impedance increases
with water salinity decrease due to weakening of electrostatic forces and increase in the
mobilised fines concentration.

Figure 6 presents the rate dependency of the stabilised impedance. Low release and low
straining occurs at low rates, so the released particles travel far away from the wellbore
causing minimum damage due to straining. Injectivity increase due to particle detachment
is higher than further decrease due to straining at low rates. Further rate increase causes
higher increase in particle release and straining near to the wellbore yielding increase in the
injectivity damage. It explains the non-monotonic rate dependency of stabilised impedance
(Fig. 6a). The lower the salinity the higher is the stabilised impedance.

If fine particles are significantly smaller than pores, the straining rate is low. The rate
increase causes injectivity improvement due to mobilisation of attached particles. This effect
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Fig. 7 Competitive permeability effects of particles release and straining: injectivity increase with the rate
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is not compensated by weak straining far away from the wellbore (Fig. 6b). If fine particles
are significantly smaller than pores, the straining filtration coefficient is low and the rate
increase causes injectivity improvement (Fig. 7). Stabilised impedance increases for large
jamming ratios.

The decision on impaired well stimulation is based on the value of the impedance that
quantifies the injectivity decline. Yet, the areal spreading of the deposit is important for
design of the well stimulation or damage removal technology (amount of injected acid, depth
of perforation holes, etc.). So, the size of the damaged zone is another parameter revealing the
extent of injectivity damage. Following Nunes et al. (2010), let us introduce the radius of the
damaged zone as a minimum distance beyond which neglecting the retained concentration
yields less than 5 % underestimation of well impedance. Let us consider the case where the
formation damage coefficient for straining is significantly higher than that for attachment.
As it follows from (56), the following equality is valid for X = Xd∫ 1

Xw

Ss(X,T )
X ∂ X − ∫ Xd

Xw

Ss(X,T )
X ∂ X∫ 1

Xw

Ss(X,T )
X ∂ X

= 0.05. (59)

The damage zone size Xd is calculated from transcendental Eq. (59).
Figure 8a shows that the damaged zone size increases as the injection rate increases and

the brine salinity decreases. The higher the jamming ratio the higher is the straining filtration
coefficient and the fines are captured closer to the well (Fig. 8b). The effect increases as brine
salinity decreases.

Figure 8 reveals that the size of damaged zone typically varies from one to ten meters.
Therefore, the injectivity lost by fines migration can be restored by re-perforation only in
exceptional cases where the formation damage zone size does not exceed one meter. The
damaged zone size calculated by (59) can be used to determine the necessary acid volume to
remove damage during well stimulation by acidizing.

123



182 P. Bedrikovetsky, N. Caruso

(a)

(b) 

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

Normalised Rate (q/qo)

D
am

ag
e 

Z
on

e 
R

ad
iu

s 
(r d

/r
w

)

NaCl=2%

NaCl=1%

NaCl=3%

φ=0.3; σai=0.008; qo=10-5 m2.s-1;

βs=1000; βa=5; rw =0.1 m; re=1000 m;

Λs=1; Λa=0.1Λs; rs=5 μm

0 1 2 3 4 5 6 7 8
2

4

6

8

10

12

14

16

18

20

22

Λs

D
am

ag
e 

Z
on

e 
R

ad
iu

s 
(r d

/r
w

)

NaCl=3%

NaCl=1%

NaCl=2%

q=0.0001 m2.s-1; rs=5 μm; Λa=0.5; φ=0.3;

σai=0.008; βs=1000; βa=5; rw =0.1 m;

re=1000 m

Fig. 8 Radius of the damaged zone: a effects of salinity and injection rate on the damaged zone size; b
filtration coefficient and salinity dependency of the damaged size

5 Treatment of Injection Well Data

The current section presents the adjustment of field data by the analytical model.
The problem of the diagnostics of the injectivity decline mechanism is of extreme

importance because it defines the technology of well damage removal, mitigation and
prevention. The fines mobilisation by high rates or low salinity with migration and fur-
ther straining is mentioned between the most wide spread mechanisms of well index
impairment along with injection of water with solid and liquid particles, sulphate and
carbonate scaling and clay swelling. Identification of the physics mechanism for injec-
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Fig. 9 Fitting of Well N1 data (field Bohai) and sensitivity with respect to filtration and formation damage
coefficients

tivity decline for a concrete field case requires the extended laboratory studies and well
testing.

Paper by Asghari et al. (1995) presents the field case of injectivity decline in field Siri
(Iran) submitted to waterflood. Injection of water with solid particles is indicated as a physics
mechanism of permeability decrease along with fines migration under high injection rates.
Several laboratory tests on core injectivity and fines migration did not allow diagnosing of the
permeability damage mechanism. Threefold decrease of well index occurs during 2 PVI. The
lack of available data does not allow for reliable modelling accounting for both mechanisms.
Nevertheless, the conclusion of instant injectivity loss at the time scale of water injection
into oilfields allows dismissing fines migration as the only mechanism for injectivity decline
in the Siri field.

Another case of ‘competitive’ mechanisms to explain injectivity decline is water injection
in Bohai field (China), where fines migration and smectite swelling were nominated as
possible physics mechanisms for injectivity loss (Shenglai et al. 2008). Figure 9 presents
scattered data on impedance increase if compared with the initial injectivity index. The data
show no timely transient from an initial impedance value J = 1 to average value of J = 1.8,
i.e. a high well index decline occurs almost instantly.

Let us adjust the stabilised value of the Bohai’s well impedance by the analytical model.
First, we determine the electrostatic force.

Interaction between the colloidal particles (kaolinite clay particles) and the core matrix
(sandstone) determines the extent of particle removal due to flow-rate alternations. Attrac-
tive long-range London–van der Waals forces and short-range electrical double-layer repul-
sion/attraction forces quantitatively determine such an interaction. A short-range Born repul-
sion force determined by the Lennard–Jones ‘m–n’ potential takes into account the elec-
tron clouds overlapping for the case of atoms being close to each other (Elimelech et al.
1995; Habibi et al. 2012). The overall particle-surface potential energy has the following
expression:

V = VLVA + VDLR + VBR, (60)
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where VLVA, VDLR and VBR are London–van der Waals, electrostatic double-layer and Born
potential energies, respectively.

The sphere–plate-retarded London–van der Waals interaction should be used in the fol-
lowing form according to Gregory (1981):

VLVA = − A123rs

6h

[
1 − 5.32h

l
ln

(
1 + l

5.32h

)]
, (61)

where A123 = 7.73×10−21J is the Hamaker constant for a system kaolinite–water–sandstone;
it is calculated according to Israelachvili (2006); the characteristic wavelength of the inter-
action is equal to l = 100 nm according to Gregory (1981); h is particle–surface separation
distance, h � rs; rs is radius of a colloidal particle.

In order to evaluate the effect of salinity variation on colloidal particle detachment, three
values of NaCl were taken: 0.171, 0.342 and 0.513 M. For the above suspension salinities,
three values of the product (κrs) were obtained: 339, 480 and 587, respectively. In these
calculations, the inverse Debye length κ = 3.28 × 109 × I 0.5, m−1 was adopted according
to Kang et al. (2004). The calculated κrs-values correspond to the case where the size of the
particle is significantly larger that the thickness of the double layer, according to Khilar and
Fogler (1998). Gregory (1975) proposed the following formula for electrostatic double-layer
potential:

VDLR = 128πrsn∞kBT

κ2 ζ1ζ2e−κh, (62)

where n∞ = 6.022 × 1025 number/m3 is bulk number density of ions; kB = 1.381 ×
1023J K−1 is the Boltzmann constant; T is the absolute temperature of the system, K; ζ1 and ζ2

are zeta-potentials for kaolinite and sandstone, respectively. The following zeta potential
values were adopted in the present calculations: ζ1 = −0.035 mV (Stephan and Chase 2001)
and ζ2 = −0.026 mV.

Born repulsion potential was evaluated according to Ruckenstein and Prieve (1976)

VBR = A123d6

7560

[
8rs + h

(2rs + h)7 + 6rs − h

h7

]
(63)

where d is collision diameter, m.
Critical retention concentration was evaluated according to the model (4), where the

maximum retention concentration at zero velocity assumes complete filling of the pore space
by the attached particles:

σ0 (U = 0) = (1 − φc) φ (64)

In the model (4, 64), H is the thickness of a rectangular pore channel adopted as 2rp =
2×10−6 m; Fe—is the total electrostatic force calculated as the sum of attractive London–van
der Waals (LvdW) and electric double-layer repulsive (DLR), and Born repulsive (BR) forces
according to Derjaguin, Landau, Verwey and Overbeek (DLVO) theory (see Israelachvili
2006); φc = 0.10 is the porosity of the cake formed on the internal surface due to colloidal
particle deposition.

The following parameters are used in the present calculations: rs = (0.25, 0.50 and 1.0)×
10−6 m, T = 25 ◦C, ρ = 1023.3 kg m−3, rp = 1.0×10−6 m, φ = 0.28, ω = 5, χ = 639.75,
μ = 1.1 × 10−3Pa s. Using the above model parameters, we calculated σcr = f (U )-curves
for various values of particle radius and salinities. Figure 2 presents maximum retention
function for colloids with radius of 0.25 μ and pore size 1.0 μ.

123



Analytical Model for Fines Migration 185

Figure 9 presents sensitivity study of the matched stabilised impedance value with respect
to filtration and formation damage coefficients. The obtained values of straining filtration
and formation damage coefficients presented in Fig. 9 are the common values for these
parameters.

6 Discussions

Release of particles causes some increase of permeability while their subsequent capture by
size exclusion results in permeability decline, i.e. two processes are competitive. Mobilisation
of particles, which are significantly smaller that pores and are not size excluded leads to
injectivity increase, while the release of fine particles with size that has the same order of
magnitude as the pore size results in the injectivity decline.

Let us compare the suspension flow structures given by the exact solution for axisymmetric
injection (Tables 1, 2, 3) and by the solution of the linear flow problem (Bedrikovetsky
et al. 2012). The flow velocity is constant during the linear flow. So, the critical retention
concentration is also constant along the ‘core’. Therefore, the mobilised suspended particles
are uniformly distributed after the beginning of injection; the attachment does not occur. The
suspended particles perform deep bed filtration: they are carried by water and are captured
by the rock with probability λ during the motion along the unit length. The suspended
concentration is independent of the linear coordinate along the core and exponentially decays
with time. Since the particle-free water is injected, suspended concentration is zero behind
the injected water front. The strained concentration in each core point stabilises when the
injected water front reaches this point.

The appearance of the erosion front moving in the reservoir away from the well is caused
by non-uniform particle release during axisymmetric flow. Since the velocity decreases with
radius in radial flow, the amount of released fines decreases with radius reaching zero at
some distance from the well. The erosion front starts from this ‘zero’ point. The erosion front
separates the forward flow domain with ‘under-saturated’ attached particles and dynamic
attachment from the rear flow domain where the attached particles are in the state of mechan-
ical equilibrium and no attachment occurs. The erosion front velocity is lower than the carrier
water velocity. Therefore, the released particles bypass the erosion front and attach ahead of
this front in the lower velocity zone, where the initial attached concentration is lower than the
maximum retained concentration. It yields significantly more complex flow structure with
radial flow rather than that during the linear flow. The attached concentration is equal to the
maximum retained concentration behind the erosion front remaining ‘under-saturated’ ahead
of the front. Figure 3b–d shows timely evolutions of attached, suspended and strained con-
centration profiles. The bank of the mobilised fines shrinks with time due to attachment ahead
of the erosion front and straining in the overall flow zone. Disappearance of the suspended
bank corresponds to stabilisation of attached and strained concentration profiles.

The injection rate dependency of the stabilised impedance value for small particles (low
filtration coefficient) is non-monotonic due to two competitive factors of the rate increase:
it causes release of more particles but they retain nearer to well. Therefore, release of small
quantities of fines at low rates that retain far away from the well causes some increase of
injectivity (Fig. 7a). Application of higher rates releases more particles but they are strained
closer to well yielding higher injectivity damage. The effect of non-monotonic stabilised
impedance versus rate increases as filtration coefficient decreases (Fig. 7b).

At high rates, where velocity exceeds the maximum speed Um in well vicinity, all attached
fines are mobilised. The straining rate is proportional to injection rate, so the detached particles
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are retained in the same vicinity. The capture becomes instant for rate tending to infinity.
Therefore, the stabilised impedance becomes independent of rate at high flow rates (Fig. 8).
The well injectivity increases at low filtration coefficient (small fine particles) and decreases
for large fines.

The higher the injection rate the larger is the area of the released fines and the higher is the
size of the damaged zone (Fig. 9a). Decrease of water salinity causes the same effect—more
particles are released into moving suspension and they are captured farther. Increase of the
filtration coefficient yields fines straining closer to well, resulting in damaged zone radius
decrease (Fig. 9b).

The minimum well rate that would not cause the fines migration corresponds to the initial
velocity of fines mobilisation Ui on the well wall, i.e. the minimum rate is equal to 2π rwUi.
Radius of the zone around the injection well where the permeability is damaged by the
mobilised and strained particles has an order of magnitude of meters.

The effects of fines migration on injectivity can be important for reservoirs with low
consolidated rocks and heavy oils.

As it follows from the analytical modelling data, the well impedance stabilises during fines
migration almost instantly (the transient process takes around 10−7 PVI). On the contrary, the
injectivity decline during injection of water with solid and liquid particles lasts for the periods
of pore volume injection. The timely function of well index is matched by the model in the case
of aqueous suspension injection, while just only the stabilised value is available for treatment
by the analytical model. Therefore, a model validation from well data is significantly less
informative for the case of fines mobilisation. An extensive set of field cases would allow
claiming that the model for injectivity decline due to fines migration is valid. However, the
extensive literature search reveals only the Bohai’s well case.

The finding of the instant occurrence of the fines-induced injectivity decline can be helpful
in well history analysis. Fines migration and suspension injection have been considered
as possible causes for injectivity decline in field Siri. Gradual injectivity decrease allows
concluding that fines migration cannot be the only cause.

The present work discusses constant rate injection. The axisymmetric problem (21–24)
allows for exact solution for the case of piecewise constant rate. The solution allows inves-
tigating how high initial rate may ‘clean up’ the injection well.

The derived formula for strained fines concentration exhibits monotonic permeability
growth k(r) from well into the reservoir. The formulae may be used in the interpretation of
well test data for radius-dependent permeability (Feitosa et al. 1994; Thompson and Reynolds
1997).

7 Conclusions

Fines lifting near to injection wells due to high drag and lifting forces, further fines migra-
tion and straining are described by the analytical model consisting of the transcendental
equations. The lifting of the natural reservoir fines occurs near injector from the beginning
of injection almost instantly. The mobilised fines migrate and form the erosion front; the
fines partly attach to the rock surface ahead of the front while the steady-state profile of
attached particles is formed behind the front. The attachment torque exceeds the detaching
torque ahead of the erosion front while the mechanical equilibrium is established behind the
front.

High rate injection causes the injectivity decline for large values of filtration coefficient, i.e.
for large fine particles and for strong ‘particle-grain’ attraction. For low filtration coefficients
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(small fines, weak ‘particle-grain’ attraction or repulsion) the high rate injection results in
some injectivity enhancement.

The effects of fines mobilisation on well injectivity increase with the injection rate increase.
The lower the salinity, the weaker are electrostatic attracting forces, the higher is the

mobilised fines concentration and the higher is the injectivity decline. This effect is stronger
for high filtration coefficients.

The higher the filtration coefficient, the higher is the fraction of the mobilised particles
that retains in the rock and the higher is the stabilised impedance value.

For the case of small particles and, consequently low filtration coefficient, the injection
rate dependency of stabilised impedance can be non-monotonic.

The stabilised impedance value is independent of injection rate for high values of injection
rate.

Skin factor induced by fines migration and straining monotonically increases with time
and then stabilises. According to laboratory-based modelling, the injectivity decreases 2–3
times until stabilisation, and the typical values of the typical stabilisation time have order of
magnitude 10−7 PVI, that corresponds to several hours for high rate wells and few days for
low rate wells. Therefore, the injectivity decline due to fines migration occurs instantly at the
reservoir exploitation time scale.

The values of the model parameters (filtration and formation damage coefficients, maxi-
mum retention concentration) that match the injectivity decline case in Bohai offshore field
are in the range of common intervals. However, more field cases must be analysed for vali-
dation of the model developed.

The formula for formation damage zone size can be used for planning and design of the
injection well stimulation by acidizing, re-perforation or other damage removal and mitigation
technology.
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