
A FAST INVERSE SOLVER FOR THE FILTRATION FUNCTIONFOR FLOW OF WATER WITH PARTICLES IN POROUS MEDIAA.C. ALVAREZ, P. G. BEDRIKOVETSKY, G. HIME, D. MARCHESIN, AND J. R. RODRIGUEZAbstract. Models for deep bed �ltration in the injection of sea water with solid inclusionsdepend on an empirical �ltration function that represents the rate of particle retention. Thisfunction must be calculated indirectly from experimental measurements of other quantities.The practical petroleum engineering purpose is to predict injectivity loss in the porous rockaround wells. In this work, we determine the �ltration function from the e�uent particleconcentration history measured in laboratory tests knowing the inlet particle concentration.The recovery procedure is based in solving a functional equation derived from the modelequations. Well-posedness of the numerical procedure is discussed. Numerical results areshown.Inverse problem, Formation damage, Deep bed �ltration, Iterative functional equation,System of convection-reaction equations1. IntroductionMost of the oil in the world is produced by injecting water in some wells and recovering oilin other wells. The recovered oil comes with reservoir water, which contains oil droplets andsolid particles. The produced water must be separated from the oil and discarded takingenvironmental precautions. In o�-shore �elds, produced water and sea water are injected.However, the injection of poor quality water in a well curtails its injectivity because theparticles suspended in the 
uid are trapped while passing through the porous rock. Thisis due to particle retention in the pores, or deep bed �ltration. In this paper we study thedeep bed �ltration during injection of water containing solid particles, which is essential topredict the loss of injectivity in wells.Many laboratory studies were carried out to understand the �ltration process ([7], [8]).Our work utilizes the model for deep bed �ltration, developed in [2] based on the fundamentalwork of Hertzig et al. [8], which consists of equations expressing the particle mass conser-vation and the particle retention process ([3], [8], [13]). They form a quasi-linear hyperbolicsystem of equations containing the empirical �ltration function �(�), which represents thekinetics of particle retention.Methods for determining the �ltration function from the e�uent concentration history atthe core outlet ce(T ) were presented in [14] and [17], for constant �ltration �. A recoverymethod for the general case was presented in [4] and [2], under the assumption that theinjected particle concentration is constant.In this work a method for obtaining the �ltration function is studied relaxing the assump-tion made in [4] of constant injected particle concentration. The inverse problem consists ofdetermining �(�) from the outlet and inlet particle concentration histories ce(T ) and ci(T ).The recovery method reduces to solving a functional equation, which is derived from aninvariant along the characteristic lines. The e�uent concentration history ce(T ) is measuredin laboratory experiments. Because of cake formation, ci(T ) is smaller than the particle1



2 ALVAREZ, BEDRIKOVETSKY, HIME, MARCHESIN, AND RODRIGUEZconcentration in the 
uid used in the injection experiment. This cake consists of particlesthat do not succeed in penetrating the wall where 
uid is injected.The paper is organized as follows. In Section 2 we present the deep bed �ltration model asa quasi-linear system of hyperbolic equations. Existence, uniqueness and continuous depen-dence on the initial and boundary condition are discussed. In Section 3, the inverse problemsolved in this work is presented, transformed into a functional equation. We prove that thisequation has a unique solution that depends on the given data in a weakly continuous way.In Section 4, numerical stability is discussed. In Section 5, the numerical results are shown.Our results are summarized in Section 6.2. Global solution for the direct problem in one dimensionWe assume that water is incompressible, that the mass density of solid particles in sus-pended and entrapped states are both equal to the water density and that it is injected atconstant volumetric rate. Neglecting di�usive e�ects, the mass conservation equation ([2],[7]) for the particles can be written in nondimensional form as:@@T (c+ �) + @c@X = 0: (2.1)Here c(X; T ) and �(X; T ) are the concentrations of the particles suspended in the waterand entrapped by the rock, respectively, at position X and time T . The time T is in anondimensional unit called pore volume or PV. The quantities c and � have values between0 and 1, but usually c �= 10�4; the independent variables satisfy 0 � X � 1 and T � 0. Themodel ([2], [8]) requires a law for particle deposition rate. In non dimensional form this lawis: @�@T = �(�)c: (2.2)The right hand side of Eq. (2.2) means that the retention probability is proportional to theavailable concentration of suspended particles. This concentration is in turn proportional toc and to the 
ow velocity that was scaled out of Eqs. (2.1)-(2.2) in the nondimensionalizationprocess.Physically, (2.2) cannot be valid for large c or �. In particular, Eq. (2.2) cannot take intoaccount release of deposited particles. The positive �(�) is an empirical coeÆcient knownas the �ltration function, which cannot be measured directly.We will see in Section 2.3 that (2.1){(2.2) has two families of characteristic lines; onefamily has the form T �X = constant, the other X = constant.2.1. Boundary and initial conditions. We assume that the solid particle concentrationentering into the porous medium is given, i.e.,X = 0 : c(0; T ) = ci(T ) > 0; T > 0: (2.3)Also, we assume that the experimental injected concentration ci is a positive continuouslydi�erentiable function for T > 0.As initial data at T = 0, we assume that the rock contains water with no particles:�(X; 0) = 0 and c(X; 0) = 0: (2.4)Along the line X = 0 we obtain from Eq. (2.2) and (2.3):d�(0; T )dT = �(�(0; T ))ci(T ); and �(0; 0) = 0: (2.5)



A FAST INVERSE SOLVER FOR THE FILTRATION FUNCTION FOR FLOW IN POROUS MEDIA 3Integrating Eq. (2.5) provides �(0; T ), which is always positive and increasing.2.2. The invariant along the characteristics. Except at initial times, it turns out thatc is much smaller than �. Because of this fact, Herzig et al. [8] proposed a simpli�edmodel comprising (2.2) and the following modi�ed version of (2.1), where @c=@T in (2.1)was neglected relative to @�=@T : @�@T + @c@X = 0: (2.6)For the model (2.2) and (2.6), under the assumption (2.4a), Herzig et al. in [8] proved thefollowing relationship between the deposited and suspended particle concentrations alongcharacteristic lines: �(X; T )c(X; T ) = �(0; T �X)c(0; T �X) ; (2.7)which is valid for T > X, 0 � X � 1. However, the same relationship was stated in [4] forthe full model (2.1), (2.2) based on an incomplete derivation. Because (2.7) is the basis ofthe method for determining �(�), here we provide a proof. The reader interested only in theinverse problem may skip the rest of Section 2.We make the following positivity assumption:Assumption 2.1. The �ltration function is a positive C1 function of � in 0 � � < 1, suchthat �(�) > 0 for 0 � � < 1.This assumption is somewhat stringent in practical applications because �(�) may vanishfor colloidal suspensions. From Assumption 2.1, we can de�ne the �rst integral 	 of 1=� ,i.e., we can choose 	 so that 	(0) = 0 as follows:	(�) = Z �0 d��(�) : (2.8)Let us introduce the notation m = Z 10 d��(�) ; (2.9)Depending on the behavior of �(�) near 1, the range of 	 : [0; 1)! [0; m) is either a �niteor in�nite interval.Let us consider a solution of (2.1){(2.4); we can expect that it is C1 except at the charac-teristic line X = T , because there is a mismatch between the initial and boundary data forc at (0; 0). We will focus our attention on the trapezoid f(X; T ) : 0 � X � 1; T � X � 0g,see Fig. 2.1, and make the following assumption, which will be justi�ed in Theorem 1:�(X; T ) = 0 for T = X; just above the trapezoid lower edge: (2.10)Lemma 2.2. Assume that there exists a C1 solution of (2.1){(2.3) in the trapezoid, satisfying(2.10). Then �=c is constant along characteristic lines with slope 1.Proof: Di�erentiating Eq. (2.8) and using Eq. (2.2) we obtain@	(�)@T = c for � in [0; 1): (2.11)Since 	 is C2 the derivatives of (2.11) are@c@T = @2	(�)@T 2 ; @c@X = @2	(�)@T@X (2.12)



4 ALVAREZ, BEDRIKOVETSKY, HIME, MARCHESIN, AND RODRIGUEZare well de�ned for X 6= T . Substituting the expressions (2.11) and (2.12) in (2.1) we have@2	(�)@T 2 + @2	(�)@T@X = � @�@T or � @@T �d	(�)dX � = � @�@T ; (2.13)which is well-de�ned for X 6= T . In (2.13b) ddX is the di�erentiation along characteristic linesT �X = constant, i.e. ddX = @@X + @@T , see Fig. 2.1.Now, we consider (2.13) in the in�nite trapezoid f(X; T ) : 0 � X � 1; T � X � 0g.Integrating (2.13b) in T along a vertical line from the point (X;X) on the lower edge of thetrapezoid to a �xed (X; T ) we obtaind	(�)dX �����(X;T ) � d	(�)dX �����(X;X) = ������(X;T ) � ������(X;X): (2.14)Using (2.8) and (2.10) we see that �jT=X = 0 and d	(�)dX ����T=X = 0; using these expressions in(2.14) we obtain (2.15a). Using Eqs. (2.1) and (2.2) we obtain (2.15b)d�dX = ��(�)� and dcdX = ��(�)c: (2.15)In summary, we have proved that if (2.1){(2.2) has a C1 solution in the trapezoid satisfying(2.5), (2.10), then this solution must satisfy (2.15) in the trapezoid. From Eqs. (2.15a) and(2.15b), we obtain along characteristic linesd�dc = �c : (2.16)Integrating Eq. (2.16) along characteristic lines with slope 1, we obtain that �=c is invariantalong such lines, hence (2.7) holds. �2.3. Well posedness of the direct problem. The system (2.1){(2.2) can be rewritten as@@T �c�� + �1 00 0� @@X �c�� = ���(�) 0�(�) 0��c�� ; (2.17)which is a quasi-linear hyperbolic system. This system has two characteristic directions,which are (dX; dT )T = (1; 1)T (with speed 1) and (dX; dT )T = (0; 1)T (with speed 0), seeFig 2.1.Theorem 2.3. There exists a unique, well-posed weak solution of (2.1){(2.4) in the in�niterectangle for C1 boundary data ci(T ), T > 0. This solution vanishes in the triangle withvertices (0; 0), (0; 1), (1; 1) in Fig. 2.1; it is C1 in the trapezoid above the triangle, where itis given by the unique solution of family of the ODE's (2.5), (2.15).Proof: We consider the system (2.17) in the triangle f(X; T ) : 0 � T � X � 1g with initialdata (2.4). It follows from the method of characteristics described in Section 5, Chapter 2,[9] and Section 2, Chapter 5, [6] that the only solution in the triangle vanishes identically.This is illustrated by the two characteristic lines reaching the point (X; T ) in the triangleshown in Fig. 2.1: since � and c vanish at the feet of characteristics, they vanish at (X; T ).Let us consider bounded weak solutions of (2.1), (2.2) de�ned near the line X = T (seeFig 2.1), in the sense of [9]. Integrating (2.2) along segments with �xed X for 0 < X � 1
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Figure 2.1. Characteristic lines; triangle (lower) and trapezoid (upper).from T � � to T + �, where � is positive and small we see thatlim�!0f�(X; T + �)� �(X; T � �)g = 0:Thus (2.10) holds. Performing the same integration on (2.1) yields no new information, i.e.c(X; T ) may be nonzero on T = X, just above the trapezoid lower edge from (0; 0) to (1; 1);in other words, there may be a shock along T = X.Now, let us focus on the in�nite trapezoid f(X; T ) : 0 � X � 1; T � X � 0g. Considerthe unique C1 solution �(X; T ), c(X; T ) of (2.5) and (2.15) in the trapezoid. Notice that(2.14), (2.13), (2.12) and (2.11) hold, therefore (2.1){(2.2) hold and this is the only solutionof system (2.1){(2.4) in the trapezoid. This solution is C1 in the trapezoid.In summary, the system (2.1){(2.4) has a unique solution on the in�nite rectangle. Thissolution has a jump in c along the front X = T . This is the unique global weak solution of(2.1){(2.2) under proper initial and boundary conditions and the assumption (2.1) on the�ltration function �(�). �Remark 2.4. Since along the front trajectory X = T the deposited concentration is zero,i.e., (2.10) holds, we obtain the following ordinary di�erential equation for c(X;X) alongthis line in the trapezoid: dc(X;X)dX = ��(0)c(X;X): (2.18)Integrating (2.18) and using (2.3) at T = 0, we obtainc(X;X) = ci(0) exp(��(0)X): (2.19)Since ci(0) > 0, from (2.19) we obtain that c(X;X) is positive for X > 0 in the trapezoidand 0 below; so there is indeed a shock along the characteristic X = T , as shown in Figure(2.2a).Remark 2.5. The system of equations (2.5), (2.15) is convenient for using standard ODEprocedures to solve numerically the PDE.
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b) T = 3PVIFigure 2.2. Typical normalized suspended and deposited particle concentra-tions before and after breakthrough: notice the discontinuity at T = X on theleft �gure.Remark 2.6. If we take the experimental data function ci(T ) to be C2 instead of C1, thenthe solution �, c of the system (2.1){(2.4) is C2 in the trapezoid. In particular, the predictede�uent concentration c(1; T ) is a C2 function for T > 1.3. The recovery methodHere we describe the recovery method for obtaining the �ltration function in (2.17) fromthe injected and e�uent concentration of particles. See also [1], [2], [4] [10], and [11]. Aninverse problem for a system similar to (2.17) was studied in [5].3.1. Derivation of the functional equation. Here we generalize [2] and [4], where onlythe case of constant injected concentration ci(T ) = cio was considered. It is useful to intro-duce the variable z � 0 and the notationci(z) � c(0; z) > 0; ce(z) � c(1; z + 1) > 0; �i(z) = �(0; z); �e(z) = �(1; z + 1): (3.1)We assume here that the experimental data ci, ce are C2 functions for 0 � z <1.We will also need the C3 functions on 0 � z <1� = Ci(z) � Z z0 ci(s)ds; Ce(z) � Z z0 ce(s)ds: (3.2)From (3.1a) it follows that Ci in (3.2a) is monotone increasing and Ci(0) = 0. Thus, fromthe implicit function theorem the inverse function C(�1)i (�) of Ci in (3.2a) and it is C3.Moreover, this function is monotone increasing. We havez = C(�1)i (�) or dzd� = 1ci(z) with z(0) = 0:Because of Assumption 2.1, the de�nition (2.8) and 	0(�) = 1=�(�) > 0, there exists thefunction g : [0; m)! [0; 1)� = g( ); inverse of the function  = 	(�); (3.3)notice that g(0) = 0. Relationships between the deposited and suspended particle concen-trations at the inlet and outlet points X = 0 and X = 1 can be obtained as follows. We



A FAST INVERSE SOLVER FOR THE FILTRATION FUNCTION FOR FLOW IN POROUS MEDIA 7integrate Eq. (2.11) in z, use (3.2) and �i(0) = �(0; 0) = 0, �e(0) = �(1; 1) = 0, i.e.,	(�i(z)) = Ci(z); 	(�e(z)) = Ce(z): (3.4)Now, from (3.3) and (3.4) we obtain�i(z) = g(Ci(z)); �e(z) = g(Ce(z)) for z � 0: (3.5)Replacing X by 1 and T by T + 1 in (2.7) and using (3.1) with z = T we obtain:�(1; T + 1)c(1; T + 1) = �(0; T )c(0; T ) or �e(z)ce(z) = �i(z)ci(z) : (3.6)Substituting the expressions (3.5) into Eq. (3.6b), we obtain the following functional equationfor the function � = g( ):g(Ce(z)) = ce(z)ci(z) g(Ci(z)) or g(Ce(z)) = C 0e(z)C 0i(z)g(Ci(z)) for z � 0: (3.7)Finally, using the de�nition of � in (3.2) and denotingD(�) � Ce(C(�1)i (�)) and �(�) � ce(C(�1)i (�))ci(C(�1)i (�)) ; (3.8)equation (3.7) can be rewritten asg(D(�)) = �(�)g(�) for � � 0: (3.9)Here D and � are known, so this is a functional equation for g that needs to be solved.For constant injected concentration ci(z) = cio, (3.9) reduces to Julia's equation, which isstudied in [11]: g(D(�)) = D0(�)g(�) for � � 0: (3.10)The recovery method outlined in [4] is based on the functional equation (3.10); a formulafor the solution of (3.10) is obtained by means of an iterative procedure. In the next sectionan analogous formula for the solution g(�) of (3.9) is obtained for non-constant injectedconcentration ci(T ).From the de�nitions of g in (3.3) and 	 in (2.8) we obtain�(�) = g0(�): (3.11)Thus, once the function � = g(	) has been found by means of equation (3.9), we determinethe �ltration function �(�) using (3.11).Remark 3.1. We will see in the next section that the solution of (3.9) is proportional tog0(0). Notice from (3.11) that g0(0) = �(0). This value is determined from (2.19) as follows:g0(0) = �(0) = � log(ce(0)=ci(0)): (3.12)3.2. Solution of the functional equation. In this section the functional equation (3.9)is solved. We assume that the data ci(T ), ce(T ) are C2, providing suÆcient smoothness forthe existence of a unique C2 solution. SuÆcient conditions for the existence and uniquenessof the solution of (3.9) are given in [11].In practice, the values of the injected and e�uent particle concentration are measured upto the �nal time Tf . So, we solve the equation (3.9) for � in [0; r], where r = Ci(Tf ).



8 ALVAREZ, BEDRIKOVETSKY, HIME, MARCHESIN, AND RODRIGUEZRemark 3.2. Let D : [0; r] ! [0; r) be a continuous monotone increasing function, suchthat D(0) = 0 and D(�) < � in (0; r]. Let �0 be any point in (0; r]. Consider the nonnegativesequence in [0; r] given by �n+1 = D(�n), n = 0; 1; 2; : : :. Then this sequence is monotonedecreasing and it converges to 0 (see [1] or [10] for a proof).Let us consider the Banach space with norm jjgjj = sup[0;r]fjg(x)jg+sup[0;r]fjg0(x)jg+sup[0;r]fjg00(x)jg:G0 = fC2[0; r] such that g(0) = 0g:Theorem 3.3. Let D : [0; r] ! [0; r) be a C2 monotone increasing function, such thatD(0) = 0 and D(�) < � in (0; r]. Let � : [0; r] ! (0; 1) be a C2 function, satisfying0 < �(�) < 1 and [D0(0)]2=�(0) < 1. Furthermore, consider the functional equation (3.9) onG0, i.e. g�D(�)� = �(�)g(�) for � in (0; r): (3.13)Then the functional equation (3.13) has a solution in G0, which is uniquely de�ned by thevalue of g0(0).Proof: The existence of a unique C2 solution of the functional equation (3.13) is guar-anteed by Theorem 3.4.2 in [11]. Now, an iterative formula for the solution of (3.13) ispresented in Theorem 5.8 in [10], which depends on an arbitrary function. Here we deter-mine the solution as follows.Let us assume that given D and � as above there exists a g. We present an algorithm orformula for g. To compute g(�0) for any 0 < �0 < r, we de�ne the two in�nite sequences�1 = D(�0); �2 = D(�1); : : : �n = D(�n�1);q1 = �(�0); q2 = �(�1)q1; : : : qn = �(�n�1)qn�1;or �n = Dn(�0); qn = n�1Yk=0 �(�k):From Remark 3.2, �n tends to zero monotonically. Notice that �1 = D(�0) is continuous in�0, and so is �n = Dn(�0). Similarly, since � is continuous, qn is a continuous function of �0.The following lemma is proved in [10].Lemma 3.4. limn!1 qn(�0) = 0 uniformly for �0 2 [0; r).From the functional equation (3.13), it follows thatg(�k) = g(D(�k�1)) = �(�k�1)g(�k�1);so by repeated use of the formula above for k = n; n� 1; � � � ; 1 we obtaing(�n) = g(�0) n�1Yk=0 �(�k): (3.14)On the other hand, using the de�nition of derivative and g(0) = 0 we obtaing0(0) = limn!1 g(�n)� g(0)�n � 0 = limn!1 g(�n)�n � (3.15)



A FAST INVERSE SOLVER FOR THE FILTRATION FUNCTION FOR FLOW IN POROUS MEDIA 9Substituting (3.14) in (3.15), we see thatg0(0) = g(�0) limn!1Qn�1k=0 �(�k)�n : (3.16)Thus, we obtain the solution for the functional equation (3.13) for any �0 > 0:g(�0) = g0(0) limn!1 �nQn�1k=0 �(�k) or g(�0) = g0(0) limn!1 �nqn � (3.17)The formula (3.17) can be rewritten as an in�nite product, which is very useful for nu-merical calculations. Let us de�neRn = �nQn�1k=0 �(�k) ; �n = D(�n)�(�n)�n � (3.18)Then Rn = D(�n�1)�n�1�(�n�1)�n�1Qn�2k=0 �(�k) = D(�n�1)�(�n�1)�n�1Rn�1 = �n�1Rn�1; (3.19)so that g(�0) = g0(0) 1Yn=0 D(�n)�(�n)�n or g(�0) = g0(0) 1Yn=0 �n: (3.20)Eq. (3.20) is the basis of the algorithm for solving the functional equation.Remark 3.5. Now it is possible to verify that the functional equation in (3.9) satis�es theassumptions of Theorem 3.3. To do so, we take into account the following facts. ApplyingGronwall's inequality into (2.15b), it was proved in [1] that ce(�) < ci(�) for � � 0; it followsthat 0 < �(�) < 1 for � � 0. Moreover, using (3.8) one veri�es that D0(0) = �(0), so theinequality [D0(0)]2=�(0) = �(0) < 1 is satis�ed.Now, since 0 < �(�) < 1 and ce(�) < 1 for � > 0, we obtain that D(�) < � for � > 0.Finally, D(�) and �(�) are C2 functions because the functions ci and ce are C2.Remark 3.6. For Julia's equation the formula (3.20) reduces tog(�0) = g0(0) 1Yn=0 D(�n)D0(�n)�n ; with D(�) = Ce(�=ci0): (3.21)Remark 3.7. Once the solution g of the functional equation (3.9) is obtained, we can solvethe direct problem (2.1){(2.4) using the �ltration function �(�) determined by (3.11) and�nd c(1; T ). It is possible to verify, using the method described in Section 3 and Theorem3.3, that the correspondent e�uent concentration function c(1; T ) coincides with the inputdata ce(T ) in (3.1b) used in the recovery procedure.We have proved the following:Theorem 3.8. Given the C2 functions ci(T ), ce(T ), there exists a unique �(�), (which isC1) such that the problem (2.1){(2.4) has a solution satisfying c(1; T ) = ce(T ).Remark 3.9. More generally, it is possible to prove that given Cm functions ci(T ), ce(T ),the �ltration function �(�) is Cm�1.



10 ALVAREZ, BEDRIKOVETSKY, HIME, MARCHESIN, AND RODRIGUEZ4. StabilityIn summary, the method for obtaining the �ltration function in Section 3 consists of thefollowing sequence of calculationsfci; ceg ! fCi; Ceg ! fD; �g ! g ! �;where \!" represents a procedure to obtain output functions from the previous data. Toobtain stable numerical methods for calculating the approximate solution of the �ltrationfunction, we must study the well posedness of Eqs. (3.2), (2.8) and (3.9).Clearly the functions Ci and Ce depend continuosly on ci and ce respectively. The func-tions D and � depend continuosly on ci, ce as well. In [11] it was proved that the solution ofthe functional equation (3.9) depends continuously on the functions D(�) and �(�), so thesolution g depends continuously on the functions ci and ce. Finally, the stability of the recov-ery method requires that the numerical di�erentiation of the solution g of (3.9) is performedin a stable way. We have used cubic splines for numerical di�erentiation; however, betterapproximations such as smoothing splines perhaps would lead to less oscillating �ltrationfunctions ([15], [16]). Also, from the de�nition of 	 in (2.8), we can expect that seriousnumerical instabilities arise when the �ltration function values are very small.5. Numerical resultsIn this section the implementation of the numerical method for solving the functionalequation is described, along with the experiments we performed over real measurement data,their results and brief discussion.5.1. Implementation. We have implemented the product form presented in (3.21) (Julia'sequation), assuming that ci(T ) is a constant ci0. The algorithm takes this constant and atime series (T; ce(T )) as input. Data are �ltered so that only the pairs with T � 1 for whichce(T ) > 0 are used. Ideally, the time value T0 of the �rst of these pairs is 1, but not inpractice: in the four cases we studied, it was in the range [4:26; 7:75]. To provide for themissing datum ce(1), and also to obtain a dense data set from the sparse points available, wehave added arbitrarily the point (T = 0; ce(0) = 0) to the data series and then we used cubicspline interpolation to obtain a smooth, dense set with which includes the point (1; ce(1)).The time series is not necessarily evenly spaced. Over this time grid we compute theauxiliary quantity D(�), using standard trapezoidal integration. Next we compute the cubicspline used to evaluate the function D(�), stored as a discrete series, and its derivative. SinceD(�) is the integral of ce(T ), we know its �rst derivative at the end points, and use it whencomputing the spline coeÆcients.We now proceed to the computation of g(�) as in (3.21). We create an evenly spacedmesh for 	 in (2.8) covering the interval [0; Tf ], the whole span for which data is available.Over this mesh, we compute the values of g iteratively as a truncated in�nite product. Thecriterium for trucation is the quotient �n=qn dropping to zero or its relative di�erence to�n�1=qn�1 becoming less than 10�4. These values were determined through experimentation.We decided to use an evenly spaced mesh for simplicity, as the computation of any g(�0)requires the computation of g for many other values in the interval [0; �0].Theoretically, g(�) is non-decreasing, so that g0(�) = �(�) is positive; but using exper-imental data yielded non-monotonical g(�) pro�les. We analysed six data sets from [12],and for four of those we obtained good results working around the lack of monotonicity by



A FAST INVERSE SOLVER FOR THE FILTRATION FUNCTION FOR FLOW IN POROUS MEDIA 11
0 10 20 30 40 50 60 70

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

T [PVI]

c
e
/c

i0

Series 3
Series 4
Series 5
Series 6

a) E�uent pro�les. 0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

σ/c
i0

λ
 [

1
/m

]

Series 3
Series 4
Series 5
Series 6

b) Filtration functions.Figure 5.1. Shown as markers on the left, the data series for which we solvedthe inverse problem. The solid lines are the e�uent concentrations calculatedon the basis of the recovered �ltration functions; the latter are shown on theright.removing the decreasing intervals of the function, forcing it to stay constant at the maximumat the left of each such interval. Finally, we use g(�) to evaluate �(�) as given in (3.11).Figure 5.1 shows our primary results: on Figure 5.1a, we show as markers the data pointsof the series 3 through 6 we obtained from [12]. For each of these data series, �(�) wasrecovered; these are shown in Figure 5.1b. Finally, the e�uent pro�les found by solving thedirect problem using the recovered �(�) are shown as solid lines in 5.1a. The oscillations inthe �ltration functions are due to insuÆcient smoothness of the data sets. Smoother datawould yield smoother �ltration pro�les.5.2. The e�ect of extrapolating for missing data. Experimental data for the break-through concentration ce(1) is usually unavailable. These diÆculties arise from di�usive thesmall value of � at breakthrough and from difusive e�ects. The value of ce(1) is a key scalingfactor for the whole procedure, and its sensitivity relative to the value of ce(1) was tested inthe second experiment. We repeated the previous runs using the same data preprocessing,but setting ce(1) = ce(T0) now, where T0 is the actual PVI value of the �rst data point avail-able where ce > 0. The resulting data series are identical to those used previously exceptnear T = 1. As it can be seen in Figure 5.2, the �ltration functions recovered from theseseries are very similar to the previous ones, except for very low � values, i.e. the changes atce(1) a�ected mostly the neighbourhood of �(0), as expected. For higher � values, there islittle change in the e�uent pro�les produced using the �ltration functions recovered throughthe funcional equation, despite the unavailability of the ce(1) datum. One can set the valueof ce(1) quite arbitrarily without a�ecting the shape of the �ltration function for higher �values.5.3. The impact of data smoothing. In our next experiment, we used a �ne mesh andlinear interpolation before smoothing the data with the cubic splines, so as to preserve itssharp edges. The results, analogous to those of the �rst experiment, are shown in Figure5.3. Once again, the direct problem reproduces the input data with great accuracy, and the�ltration functions show the same oscillating nature, however more edgy. The oscilations
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a) Filtration functions for data with imposed ce(1). 0 10 20 30 40 50 60 70
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b) Filtration functions from previous experiment.Figure 5.2. On the left, the �ltration coeÆcients obtained from the serieswhere the value of ce(1) was imposed. The �gure on the right is the sameas 5.1b. Comparing both Figures, notice the di�erence for low �, and thesimilarity of the pro�les as � increases.are therefore due to higher values of the lower order derivatives of the curves implied by thedata series.
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b) Filtration functions.Figure 5.3. Third experiment. Same as in Figure 5.1, but using linear in-terpolation when preprocessing the e�uent pro�le data.5.4. The e�ect of data preprocessing. This model for the �ltration function recoversthe data series exactly, accounting for all irregularities in the data. However, because ofexperimental error, it is common practice in engineering to preprocess the data and replaceit with smooth curves that do not necessarily pass through the experimental points; usuallysome sort of least square approximation is used. Figure 5.4a shows smooth pro�les obtainedfrom the data points using a preprocessing method described in a forthcoming work; ap-plying the algorithm described here to these pro�les yielded the extremely smooth �ltrationfunctions shown in 5.4b, which look much more reasonable than those in 5.2b. We calculatedthe e�uent concentrations using these �ltrations and plotted them over the input data onFigure 5.4a, with which they coincide visually.
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