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ABSTRACT. Deep bed filtration of particle suspensions in porous media occurs during wa-
ter injection into oil reservoirs, drilling fluid invasion of reservoir production zones, fines
migration in oil fields, bacteria, viruses or contaminant transport in groundwater, industrial
filtering, etc. The basic features of the process are particle capture by the porous medium
and consequent permeability reduction.

Models for deep bed filtration contain two coefficients that represent rock and fluid prop-
erties: the filtration function, which is the fraction of captured particles per unit of particle
path length, and formation damage function, which is the ratio between reduced and ini-
tial permeabilities. The coeflicients cannot be measured directly in the laboratory or in
the field; therefore, they must be calculated indirectly by solving inverse problems. The
practical petroleum and environmental engineering purpose is to predict injectivity loss and
particle penetration depth around wells Reliable prediction requires precise knowledge of
these two coefficients.

In this work we determine these coefficients from pressure drop and effluent concentration
histories, measured in one-dimensional laboratory experiments. The filtration function is
recovered by optimizing a nonlinear functional with box constraints. The permeability
reduction is recovered likewise, taking into account the filtration function already found. The
recovery method consists of optimizing Tikhonov’s functionals in appropriate subdomains.
In both cases, the functionals are derived from least square formulations of the deviation
between experimental data and quantities predicted by the model.

Deep bed filtration, Suspension transport, Porous media, Inverse problem, Tikhonov requ-
larization, Formation damage, System of convection-reaction equations

1. INTRODUCTION

Severe injectivity decline during sea- or produced water injection is a serious problem in
offshore waterflood projects. This decline results from permeability impairment because the
rock captures particles from injected water. Reliable modelling-based prediction of injectivity
decline is important for the design of injected water treatment or management by water
filtering, injection of combinations of sea- or produced water, etc.

Formation damage induced by penetration of drilling fluid into a reservoir also reults
from suspended particle capture by rocks and consequent permeability reduction. Other
petroleum applications for which formation damage is important include sand production
control, fines migration and deep bed filtration in gravel packs. Deep bed filtration also occurs
in industrial water filtering, in propagation of contaminants (incluing viruses, bacteria, etc)
through aquifers, and in other environmental processes.

Mathematical models for filtration processes contain two parametric functions describing
properties of the aqueous suspension and of the porous medium: the filtration function, i.e.,
the probability for a particle to be captured per unit particle path length, and the perme-

ability reduction, i.e., the ratio between the reduced and the initial permeabilities. Particle
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deposition alters pore space geometry and hydraulic resistivity; in turn, pore geometry alters
conditions for further deposition, so it is natural to take the deposited concentration as the
basic independent variable for the filtration and formation damage functions.

The filtration and formation damage functions cannot be measured directly, rather they
must be recovered indirectly from experimental measurements by solving inverse problems for
deep bed filtration. In one-dimensional laboratory flow experiments, it is possible to measure
the time series of suspended particle efluent concentration and of pressure drop. Methods for
using the effluent concentration and pressure drop histories to determine constant filtration
coefficient and one-parameter permeability reduction function were presented in [17], [20],
[3] and [4]. In this work, we present a more flexible method using parameter optimization.

Moreover, we introduce regularization to generalize the procedure for a two-parameter
family of functions given in [11]. The recovery procedure for the filtration and permeabil-
ity reduction functions presented in this work consists of optimizing functionals using the
projection gradient method with box constraints developed in [6]. The functionals to be
minimized are obtained from a least squares formulation taking into account the difference
between experimental data and quantities predicted by the model. The box constraints
reflect physical properties of the solution such as positivity and monotonicity.

This paper is organized as follows. In Section 2, we present the deep bed filtration model
with formation damage as a system of two hyperbolic equations for suspended and retained
concentrations and a pressure balance equation. We also explain how to solve this system
by integrating two families of ordinary differential equations. In Section 3, we describe opti-
mization procedures to solve two inverse problems. In the first one, we use the the calculated
effluent concentration history to define the functional that is minimized to determine the fil-
tration function. In the second one, we use the calculated deposition to find the pressure drop
history and define the functional that is minimized to determine the permeability reduction
function. In Section 4, we validate the recovery methods an and we examine the

sensitivity of these inverse problems by means of synthetic data. In Section 5, we apply
the method to experimental data and discuss the recovered functions as obtained by solving
the two inverse problems.

2. FLOW OF WATER WITH PARTICLES IN POROUS MEDIA.

In this section we present the physical model for the flow of water with suspended particles
suffering retention in porous media. This model was developed in [3] based on [12]. During
injection, the suspended particles are gradually retained, reducing the permeability of the
medium. This phenomenon, called deep bed filtration with formation damage, is modelled by
the system of equations:

0 Oc
aa—j = Ao)Uc, (2.2)
v=_Fo ];(0) g—i’. (2.3)

Here the concentrations of dispersed and deposited particles are c(z,t) € [0,1] and o(z,t) €
[0, @], where ¢ is a dimensionless quantity between 0 and 1, called the rock porosity: it is the
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fraction of the rock volume available to the fluid. Eq. (2.2) can only be valid if 0 < ¢ holds.
The dependence of the retention rate on o is expressed by A(o), which is called the filtration
function. The physical domain is £ > 0 and 0 < x < L, where L is the length of the core.

We assume that permeability reduction k(o) is due to particle retention, and that it is a
decreasing function of the retained concentration. Eq. (2.3) is a form of Darcy’s law relating
the flow rate U to the pressure p. Here, kg is the absolute rock permeability and k(o) is the
permeability reduction due to the retained particles o; when expressed as a function of o,
it is called the formation damage function. It is normalized so that £(0) = 1, i.e. it is one
for clean porous rock. In general, the water viscosity i can be considered constant for small
particle concentrations.

2.1. Boundary and measured data. As initial data, we assume that the rock is clean
and contains water with no particles; as boundary data, we assume that the solid particle
concentration entering the porous medium is given, and that the efluent concentration is
measured:

o(z,0) =0 and c¢(z,0)=0, (2.4)
c(0,t) = ¢(t) >0, t>0, (2.5)
c(L,t) = Cegp(t) >0, t>0. (2.6)

The pressure drop Apes, = p(L,t) — p(0,1) is also measured in laboratory experiments. The
quantity o(0,t), however, needs to be determined by the model. Along the line z = 0, we
obtain from Egs. (2.2) and (2.5):

W=A(J(O,t))Uci(t), and  0(0,0) =0, 2.7)

where U is given. Integrating Eq. (2.7) provides (0, t), which is positive and increasing.

2.2. Solution for suspension flow. The well-posedness of the boundary/initial value
problem (2.1)-(2.2) with boundary and initial data (2.4)-(2.5) was established in [1],[2],
where U was taken as a constant and it was assumed that the filtration function \(o) was
C*, X\(o) > 0 for 0 € [0,4]. A generalization of this result follows. For ¢t < %fc, o(z,t) and
¢(x,t) vanish. For ¢ > %m, we rewrite Eqgs. (2.1)—(2.2) on characteristic lines z — %t = const
in the form

d

é = —\(o)o, (2.8)

d

é = —\o)cU. (2.9)
where % means differentiation along characteristic lines x — %t = const [1]. Since ¢(0,t) =

)
¢;(t) is specified and (0, ) is obtained from solving Eq. (2.7), the family of equations (2.8)-
(2.9) can be solved numerically using standard procedures for ODE’s.
The following remark reflects that the direct problem is well-posed, and is useful for
proving the well-posedness of the inverse problem (see appendix A).

Remark 2.1. Since the solution ¢ and ¢ of the system (2.8) and (2.9) are given by an
ordinary differential equations along characteristic lines, the continuity of the solution is a
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consequence of the theorem on ODE solution continuity with respect to parameter changes
(see [13], pag. 91). So the maps

A= o(z,t;N), A= c(z,t;N). (2.10)
are continuous in the uniform norm.

Differently from [1], we assume that \(c) is a non-negative piecewise C' function that may
vanish in its domain 0 < o < ¢. The following Lemma, proved in [2], allows this assumption.

Lemma 2.2. The solution of (2.1)—(2.3) with data (2.4)—(2.5) is given by (2.8)—(2.9) in the
trapezoidal domain 0 <z < L, 0 < %t < z+7; T can be infinite. If it is finite, o is constant

and equal to oy in the open trapezoid 0 < x + 7 < %t and c(z,t) = ¢;(x — %t) Also, c is

continuous in the trapezoid 0 <z < L, t > %x and o is continuous in the infinite rectangle
0<z<L,0<t<cx.

In [1] and [2] the well-posedness of the direct problem was proved. To solve inverse
problems for the filtration function A(o) and the formation damage function k(o), we need
to solve Egs. (2.1)—(2.5) and (2.7) many times as part of an optimization procedure. Thus,
it is necessary to solve this system with high speed and accuracy.

3. RECOVERY METHODS

In this section, the function coefficients are recovered by using optimization procedures to
minimize functionals that represent the difference between the solution of the direct problem
and the available experimental data. Taking into account that parameter estimation in
the system of partial differential equations (2.4)—(2.9) is inherently unstable ([2],]9]), i.e.,
the recovered parameters do not depend on the data in a stable way, we use Tikhonov’s
regularization, which enables us to obtain stable approximations of ill-posed inverse problems
([19]). The well-posedness of the inverse problem of recovering filtration and permeability
reduction functions is proved in [2] in the operator theory framework.

First, we recover the filtration function using the method presented below or methods
presented in [1] and [2]. This first inverse problem determines the filtration function from
the outlet concentration, i.e., the kinetic particle capture rate is calculated from the particle
concentration history. Then we recover the permeability reduction function using the method
presented below or in [2]. This second inverse problem determines the formation damage
function from pressure drop, i.e., the dynamic coefficient rate that specifies the hydraulic
conductivity increase due to particle retention is calculated from the history of the pressure
loss on the core.

3.1. Recovering the filtration function. In this section we formulate our method for
solving the inverse problem of finding the filtration function from the efluent concentration
history measured in laboratory experiments.

Before the recovery procedure, a parametrization A(c;#) must be chosen for the filtration
function, where 0 is the set of parameters. The form of these parametric functions and their
parameter ranges are dictacted by physical properties of the filtration function. Then we
minimize a functional relating the filtration function and the efluent concentration:

Fe(0,a) = / (c(L,t;0) — Ceap(t))?dt + 2|0 — 0%| 7. (3.1)

B
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Here c,p(t) represents the effluent particle concentration history measured in the laboratory,
c(L, t; 0) is obtained by solving Egs. (2.4)-(2.9) for a fixed §, B = ¢L/U is the breakthrough
time, A is the end time of the experiment and « is the regularization parameter.

3.2. Recovering the permeability reduction function. For one-dimensional flow in a
rock core, we divide Eq. (2.3) by 1/k(co(z,t))U, and integrate the resulting equation in [0, L]
to obtain the following relationship between deposited particle distribution and pressure
drop history:

L
dx k'()
— | —— =22 Apt), 0<t<A. 3.2
| oty 2
Like in the previous subsection, first we choose a parametrization k(o; 8) for the permeability
reduction function, with parameter set 5. Then we minimize the functional:

A
B = [ (A0(t5) = Speay(0) e+ 1710 = 0| (3.3
where Ap(t; B) is the right hand side of Eq. (3.2), Apesp(t) is the experimental data, vy is the
regularization parameter.
Notice that the evaluation of FP(3,~) requires the system of equations (2.4)-(2.9) to be
solved using the filtration function recovered from the effluent concentration history: once
we have the deposition of particles o(x,t) then the integrals in Eq. (3.3) can be evaluated.

4. NUMERICAL RESULTS WITH SYNTHETIC DATA

In this section we present two examples where the functionals (3.1) and (3.3) are minimized
numerically.

We use synthetic data to calibrate the model and to test the algorithm. These data are
obtained by fixing the parameters (6, 3) and solving the direct problem given by the system
of equations (2.4)—(2.9) and the integral equation (3.2). We simulate observational error in
real data adding random errors to the exact results. We prescribe permeability reduction
and filtration functions A\(0) = max{0,1—1710} and k(o) = (1+ 3000 +1000?)~*, which are
similar to those typically obtained from experimental data, and create two sets of synthetic
data introducing random perturbations of the order of 0.01 (“clean data”) and 0.05 (“noisy
data”), shown in Figure 4.1.

The predicted effluent concentrations have relative errors of 1.8 x 10~ and 4.7 x 10710
for clean and noisy data, respectively, whereas the predicted pressure drop histories have
relative errors of 5.6 x 107° and 1.4 x 10™3. As shown in Figure 4.2, we obtained excellent
matches in all cases.

In Figure 4.3 the corresponding recovered filtration and permeability reduction functions
are shown. We see that for both clean and noisy data the permeability reduction and
filtration functions are recovered accurately, with smaller relative errors for clean data, as
expected.

In order to remedy the ill-posedness of the problem we utilize non-zero penalization pa-
rameter o and y in Egs. (3.1) and (3.3). To estimate these parameters, we made experiments
with large values and then we reduced them until an adequate stabilization was obtained.
This is a practical solution; however, a careful determination of these parameters can be
done based on the noise statistics ([19]).
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FIGURE 4.1. Synthetic data.
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FicUure 4.2. Comparison of direct problem solutions using the originally pre-
scribed parameters and those recovered from data.

Our tests show that a more stable solution is obtained in the presence of the penalization
term, i.e., changes in Ap,,,(t) do not produce significant changes in the recovered functions
in solutions obtained with penalization. In this experiment with synthetic data, the penal-
ization term yields no significant accuracy improvement; however, among equally inaccurate
approximate solutions we prefer the stable ones, so a penalizing term is actually used in
Eqgs. (3.1) and (3.3). These observations are part of the sensitivity analysis, which we do not
include in this paper: see [2] for a discussion on sensitivity.

The numerical examples based on synthetic data suggest that the recovery method de-
scribed here is appropriate for finding the permeability reduction and filtration functions
from experimental data.
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FIGURE 4.3. Recovered functions for clean and noisy synthetic data.

5. NUMERICAL RESULTS FOR EXPERIMENTAL DATA

Data from Kuhnen et alii. We applied the method to the effluent particle concentration
experimental data described by Kuhnen et alii in [15], shown in Figure 5.1. In these experi-
ments, hematite suspensions of equal concentration and varying ionic strengths were injected
at an equal rate into sandstone, to investigate the relation between filtration phenomena and
electrostatic attraction between oppositely charged particle and porous medium surfaces. In
order to apply our empirical model, we tested numerous parametrizations on each of the six
data series contained therein, and obtained the following results.

.
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FIGURE 5.1. Data series from [15].

The data series all show an increasing trend, three of them going close to the zero filtration
situation, where ¢, = ¢; and A(¢) = 0. The other three do not approach this boundary. For
the model to reproduce the first case accurately, i.e. to approach A(c) = 0 as o increases,
this trend must be taken into account: all parametrizations were of the form \oe~/(?), where
f(o) was a non-negative increasing function. Polinomials of various degrees yielded different
results: the best all-around parameterization was Aoe~ %" for all six data series, but a good
match over the ¢, & ¢; segments of the first two series was only obtained using f(o) = fo*.



8 ALVAREZ, HIME, MARCHESIN, AND BEDRIKOVETSKY

Figure 5.2 shows good matches obtained using the quadratic exponent. Figure 5.3 shows
the difference of the two best parameterizations for series approaching the limit c./c¢; = 1.
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FIGURE 5.2. Best fits for effluent concentration using A(c) = Age .
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FIGURE 5.3. Profiles recovered using two fits for A in the first data series.

Restricting the input data to the first 70 PVI of the last four data series, shown as markers
in Figure 5.4a, we recovered the filtration functions shown in Figure 5.4b. We calculated
the effluent concentrations using these filtrations and plotted them over the input data in

Figure 5.4a, with which they coincide visually.

Data from Soma and Papadopoulos. Soma et al. performed a series of four experiments
injecting oil-in-water emulsions into quartz sand [18], using similar conditions and varying
the ionic strength of the emulsion, for which thei measured both effluent concentration and
total permeability reduction, i.e., the pressure drop history. We applied the empirical model
to the two experiments with higher ionic strength, where there was enough deposition to
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a) Cropped data and model prediction. b) Corresponding filtration functions.
FI1GURE 5.4. Excellent recovery obtained using the optimization solution
shown over smooth approximations of the actual data.

prevent the effluent concentration curve from reaching c./c; = 1 quickly, and to produce
significant permeability reduction.

However, the effluent concentration history curves are not monotone in these two experi-
ments. The authors attribute this lack of monotonicity to a greater attraction of oil droplets
in the suspension to previously deposited oil than to the bare pore surface. In terms of the
empirical A(o) coefficient, this translates to having a non-monotone filtration function, one
that increases after a certain value of ¢ is reached. To account for this behavior, we chose
the parameterization

o) = Ao(e™7 + 6,0) (5.1)

For the permeability reduction function, we used the inverse of a second degree polynomial,
which is compatible with the literature and suitable for our calculations. Higher degree
polynomials did not yield better results.

For both data sets, the model reproduced well both the effluent concentration and per-
meability reduction curves, as shown in Figure 5.5. The parametric empirical functions
recovered solving the inverse problems are shown in Figure 5.6.

6. CONCLUSION

The recovery method described here consists of solving two inverse problems: in the
first one the filtration function is determined from the effluent concentration evolution, and
in the second one the formation damage function is determined from the pressure drop
history. In the cases examined, the method yields good matches between experimental and
predicted data. Thus, it constitutes a viable procedure for the parameter estimation problem
of determining the empirical injectivity damage functions from pressure drop and effluent
concentration histories.

The method is robust and flexible, thus allowing the analysis of experimental data that
other recovery methods, such as the one proposed in [1], cannot analyze. At the same time,
it is easier to implement than other methods equally adequate for practical purposes such
as the method for the permeability reduction developed in [2]. It is also flexible in the sense
that, by accommodating different physical conditions under a minimal set of macroscopic
parameters, all built into the recovered permeability damage and filtration functions, it can
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FIGURE 5.6. Recovered empirical functions in two experiments.

be readily applied to variations of the model (2.1)—(2.3) which cannot be solved numerically
by (2.8)—(2.9).

The proposed method can be recommended for determining the filtration and formation
damage functions from laboratory corefloods for use in predicting the injectivity decline,
formation damage and contaminant propagation in petroleum and environmental engineering
projects.

APPENDIX A. WELL-POSEDNESS OF THE FILTRATION INVERSE PROBLEM

In this section we prove that the inverse problem formulated in Eq. (3.1) is well-posed in
the sense of Tikhonov ([16]). To do so, a feasible subset of parameters is chosen, such that the
minimization problem has a unique minimum, and that small perturbations of experimental
data produce small parameter variations. We rewrite the inverse problem in the framework
of operator theory. Several results on regularization of nonlinear operators are used to prove
the well-posedness of the inverse problem ([10]).
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The stability and convergence results obtained here are based on [5], [10], [14] and [7]. We
choose

D(G°) = {\ € H?[0,1], such that X\ > A}, (A.1)
with A\; constant. Let us define the nonlinear operator
G°: D(G°) C H*[0,1] = L?0, 4], G°(\) =c(1,-;X), (A.2)

where A represents the filtration function and ¢(1, - ; A) is the effluent concentration obtained
from the solution of the system (2.5), (2.8)—(2.9). From the well-posedness of the direct
problem ([2]), for each \ there exists a unique function ¢(1,- ; \), so the operator in (A.2)
is well-defined. Notice that the domain D(G°) is closed and convex, therefore it is weakly
closed. Let us define

M ={) € H?[0,1] such that Xy <\ < A3}, (A.3)
where Ay and )3 are constants. We have following;

Theorem A.1. Let \ represent the filtration function and c(1,- ;) the solution of the
system (2.1)—(2.2), with initial and boundary condition given in (2.4) and (2.5). Let n > 0
and the domain

D,(G) = {\ € H*'"[0,1] such that X > X} (A.4)

The following assertions are valid.

i) The (nonlinear) operator
G°: D(G°) c H*"[0,1] — L?[0, A], G°(\) = c(1,- ;)), (A.5)

1S continuous and injective.

ii) Let D(G®) be as in Eq. (A.1). Then the operator in (A.2) is weakly closed and com-
pact.

iii) The map G¢: M — G°(M) is continuous and has continuous inverse.

Proof: (i) Let A, — X in H*™[0,1] with n > 0. Since H*'" is compactly embedded in
C'0, 1] then A, — X uniformly in C'[0, 1], from Remark 2.1 it follows that G¢(\,) — G¢())
in L?[0, A]. The injectivity is a consequence of the uniqueness of the solution of the system
of equations (2.1)—(2.5) and (2.7).

(i) Let {\,} be a sequence in D(G¢) converging weakly in H?[0, 1] towards ). Since D(G®)
is weakly closed, then A € D(G*) and since H?[0, 1] is compactly embedded in C*[0, 1], then
An — Ain C0,1]. By (i) G¢(\,) — G4()\) in L?[0, A]. Thus, G€ is compact, hence weakly
closed.

(iii) Notice that G° is continuous in M by (ii). Moreover, M is a compact subset of C[0, 1],
because it consists of uniformly bounded functions in H'[0,1] ([8]). Therefore (iii) is a
consequence of the Lemma of Tikhonov. [

From (ii) in Theorem A.1 and Proposition 10.1 in [10], the inverse problem of determining
the filtration function A in G¢(A\) = b with given b = c.(-) is locally an ill-posed problem.
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Hence, the Regularization of Tikhonov is used to find stable solutions. The regularized
solution is determined as the minimizer over D(G*) of the functional

A= [IGUN) = ce()[7a10,4) + 11X = X[ Fgo 5 (A.6)

where « is the regularization parameter. Since G is weakly closed, stability and convergence
of the regularized solution follow from Theorem 10.2 and 10.3 in [10].

Let us denote by 6 a parametrization of the filtration function A(c). Neglecting the
interaction between the parameters, i.e., by assuming that they are uncorrelated, we obtain

1A= X[Fo, ~ 110 = 67 (A7)

where || - || denotes some appropriate norm in the parameter space. Thus, from Eq. (A.7),
we see that the penalization functional can be written in terms of the parameters 6.
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