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The paper gives a solution to the problem of the displacement of oil by 

a slug for different forms of the sorption isotherm and the distribution 

function of the additive between the phases and for different values of 

the initial flooding of the stratum. The process is considered under 

conditions of reversible sorption and also under conditions of partial 

retention of the additive by the skeleton of the porous medium. The 

behavior of slugs in the case of cyclic pumping of a solution of an 

active additive is investigated. 

One of the promising methods of increasing the oil extraction by flooding oil strata 

is to use active additives capable of changing the hydrodynamic characteristics of the 

flow system. The displacement of oil by solutions of active additives was considered 

earlier in [1-3], and self-similar solutions to problems of frontal displacement were ob- 

tained. However, in view of the high cost of the additives, oil is displaced in practice 

by slugs of solutions of active additives forced by water through the stratum. 

The displacement of oil by a slug of an active-additive solution is described by a 

hyperbolic system of quasilinear equations with discontinuous boundary conditions, which 

leads to a nonself-similar problem of the interaction of shock waves and rarefaction waves. 

1. The process of frontal displacement of oil by a slug of a solution of an active 

additive can be described in the large-scale approximation by a mixed problem for the sys- 

tem of equations of two-phase flow of two immiscible incompressible fluids and the balance 

of the additive dissolved in the two phases and adsorbed [I]: 

as a f  ~ 0 
+, =0, ~t -~x- Ot "sc+ fl--s~ q~+a" + ax "Fc+'i-F" cp'=O ( i . i )  

s(x,O)=s., c(x,O)=c,, s(O,t)=i ,  c(O,t)={ c~ O<t< i  f= f ( s ,  c) a=a(c), qo=r (1.2)  c., t>1 ' 

Here, x is a dimensionless coordinate equal to the ratio of the pore volume measured 

through the stratum from the injection boreho!e (gallery) to the slug, t is a dimension- 

less time, the ratio of the volume of the pumped fluid to the volume of the slug, s(x, t) 

is the saturation of the pore space by the water, c(x, t) is the concentration of the 

additive in the water solution, ~ is the concentration of the additive in the oil, a is 

the concentration of the adsorbed additive, and F is the Buckley--Leverett function, equal 

to the fraction of the water in the flow. At the initial time the stratum contains oil 

and bound water with saturation s,. Up to the .time t = I a solution of the additive is 

pumped through the injection gallery (borehole), and after t = 0 water. 

In the case when the active additive improves the displacement conditions (when it 

is a polymer or a surface-active substance), the final oil extraction increases with in- 

creasing c, the curves F(s, c) in Fig. i are shifted to the right, and the value of the 

immovable oil saturation 1 ~ s~ decreases [4]. 

We express the hyperbolic system of quasilinear equations (I.I) in terms of Rie- 

mann invariants [5]. By virtue of the relation F = F(s, c), as unknowns for the system 

we shall consider both (s, c) and (s, F). We shall represent the values of s(x, t) and 

c(x, t) by points of the plane (s, F) (Fig. i). To the eigenva!ues of the hyperbolic 

system 
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~,=F~, ~:={F+~'(t-,~')-'f{s+(~'+a') (l-~')- '}- '  
there correspond two families of simple waves 

dF dF F+~ '  ( l - ~ ' )  - '  

ds -- F , = ~ ,  ds -- s+ (~ '+a ' )  ( i - T ' )  -~ -- ~2 

and two families of characteristics 

(1.3) 

dx F + ~ ' ( t - ~ ' )  -~ dc dx dI 
d ~ =  s + ( ~ ' + a ' ) ( t - ~ ' ) - '  ' - ~ = 0 ;  - ~ = F + ,  ~ - = 0  ( 1 + 4 )  

Here, the second invariant I(s, F) is an arbitrary function constant along the tra- 

jectories of the vector field given by the second equation (1.3). Under the hodograph 

transformation (x, t) § {s(x, t), F(x, t)} the characteristics of the first family (the 
first equation in (1.4)) go over into simple waves of the first family (the first equa- 

tion (1.3)). The characteristics of the second family in (1.4) go over into simple waves 

of the second family in (1.3). A simple wave of the first family on the plane (s, F) 
corresponds to the line c = const. A simple wave of the second family corresponds to a 
trajectory whose tangent at the point (s, F) passes through the point {--(~'~at)(1--~r) -~, 
- - ~ '  ( t - - ~ ' ) - ~ } .  

The hyperbolic system of conservation laws (1.1) admits discontinuous solutions. 

The Hugoniot conditions expressing the balance of the mass of the phases and the balance 
of the additive at a discontinuity for c- r c + are transformed to [I] 

V =  { F •  [+] [ c - + ] - ~ }  { s~+  [ a + ~ ]  [ c - - + ] - t } - ~  ( 1 . 5 )  

a n d  f o r  c -  = c + r e d u c e  t o  t h e  B u c k l e y  d i s c o n t i n u i t y  

V =  ( F + - F  - ) (s+-s  -)  - '  ( 1 . 6 )  

H e r e ,  [A] i s  t h e  d i f f e r e n c e  b e t w e e n  t h e  v a l u e s  o f  A i n  f r o n t  o f  t h e  d i s c o n t i n u i t y ,  
A +,  a n d  b e h i n d  i t ,  A - ;  V i s  t h e  v e l o c i t y  o f  t h e  d i s c o n t i n u i t y .  

T h e  c o n d i t i o n s  ( 1 . 5 )  m e a n  t h a t  t h e  p o i n t s  ( s - ,  F - )  a n d  ( s  + ,  F +)  l i e  o n  a s t r a i g h t  
l i n e  t h r o u g h  t h e  p o i n t  { - - [ ~ + ~ [ c - - ~ ] - ' , - - [ ~ ] [ c - - ~ ]  - t}  w i t h  s l o p e  V. 

A s  t h e  c o n d i t i o n s  o f  s t a b i l i t y  o f  t h e  d i s c o n t i n u i t y ,  we t a k e  0 1 e i n i k ' s  c o n d i t i o n  
[ 6 ] :  a d i s c o n t i n u i t y  i s  s t a b l e  i f  i t s  v e l o c i t y  i s  n o t  g r e a t e r  t h a n  t h e  v e l o c i t y  o f  a 
s h o c k  t r a n s i t i o n  f r o m  a p o i n t  b e h i n d  t h e  d i s c o n t i n u i t y  t o  a n y  p o i n t  o f  t h e  s e c t i o n  o f  
t h e  s h o c k  a d i a b a t  j o i n i n g  t h e  p o i n t s  b e h i n d  t h e  d i s c o n t i n u i t y  t o  p o i n t s  i n  f r o n t  o f  i t .  
F o r  t h e  s y s t e m  ( 1 . 1 ) ,  t h i s  i s  t h e  c o n d i t i o n  f o r  t h e  e x i s t e n c e  o f  a d i s c o n t i n u i t y  s t r u c t u r e  
w h e n  a c a p i l l a r y  d i s c o n t i n u i t y  o f  i n t e r p h a s e  p r e s s u r e  i s  i n t r o d u c e d  i n t o  t h e  s y s t e m  a n d  
t h e  r e l a t i o n s  a = a ( c )  a n d  ~ = ~ ( c )  o f  t h e r m o d y n a m i c  e q u i l i b r i u m  a r e  r e p l a c e d  b y  t h e  e q u a -  
t i o n s  o f  t h e  s o r p t i o n  k i n e t i c s  a n d  t h e  k i n e t i c s  o f  s o l u t i o n  o f  t h e  a d d i t i v e  i n  t h e  o i l .  

F o r  t < 1 .  t h e  s o l u t i o n  t o  t h e  p r o b l e m  ( 1 . 2 )  i s  i d e n t i c a l  t o  t h e  s e l f - s i m i l a r  s o l u -  
t i o n  t o  t h e  p r o b l e m  o f  f r o n t a l  d i s p l a c e m e n t  o f  o i l  b y  a s o l u t i o n  o f  t h e  a c t i v e  a d d i t i v e :  
s = s ( ~ ) ,  c = c ( ~ ) ,  K = x / t  [ 1 ,  3 ] .  

I n  t h e  c a s e  o f  a c o n v e x  s o r p t i o n  i s o t h e r m ,  a "  ~ 0 ,  a n d  a l i n e a r  d i s t r i b u t i o n  f u n c -  
t i o n  o f  t h e  a d d i t i v e  b e t w e e n  t h e  p h a s e s ,  ~ = Kc,  a s e l f - s i m i l a r  s o l u t i o n  c o n s i s t s  o f  a 

C ~ c e n t e r e d  w a v e  o f  t h e  f i r s t  f a m i l y  c = f o r  0 < ~ < V 1 ( i n  F i g .  1 ,  t h e  p o i n t s  w i t h  i = 
1 ,  2 ,  3 ,  4 c o r r e s p o n d  t o  t h e  v a l u e s  o f  s i ) ,  a d i s c o n t i n u i t y  f r o m  ( S l ,  ~ )  t o  ( s 2 ,  c . )  
w i t h  v e l o c i t y  ~ = V l ,  a r e g i o n  o f  r e s t  s = s 2 ,  c = c .  f o r  V 1 < ~ < D = F ( s 2 ,  c . ) ( s  2 - -  
s . )  - 1 ,  a B u c k l e y  s h o c k  f r o m  s 2 t o  s .  w i t h  v e l o c i t y  ~ = D, a n d  a r e g i o n  o f  r e s t  s = s . ,  
c = c .  f o r  ~ > D; h e r e ,  we h a v e  u s e d  t h e  n o t a t i o n  

Vt=F~(sl, c~ c~ {F(s2, c~)+h}{s2+h+[a][c]-l(1+h)}-t h=K( i -K) - '  

On t h e  p l a n e  ( s ,  F ) ,  t h i s  s o l u t i o n  c o r r e s p o n d s  t o  t h e  p a t h  

(i, c+)-J+(s~176 c~ c~ c . ) -P-1+(s , ,  c,) 

w h e r e  P i s  t h e  r e g i o n  o f  r e s t  s = c o n s t ,  c = c o n s t ;  S i s  a s i m p l e  w a v e  o f  t h e  f i r s t  
f a m i l y ,  J i s  t h e  B u c k l e y  s d i s c o n t i n u i t y  ( 1 . 6 ) ,  a n d  J c  i s  t h e  c d i s c o n t i n u i t y  ( 1 . 5 ) .  

I n  t h e  c a s e  a "  > O, ~ = Kc a s e l f - s i m i l a r  s o l u t i o n  c o n s i s t s  o f  a c e n t e r e d  w a v e  o f  
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the first family c = c for 0 ~ ~ < VI, a centered wave of the second family from (sl, c ~ 

to (s2, c,0 for V 1 < ~ < V 2, a region of rest s = s2~ c = c, f o r  V 2 < ~ < D = F(s2~ c,) 

(s 2 -- s,) -1, a Buckley discontinuity from s 2 to s, with velocity ~ = D, and a region of 

rest s -- s,, c = c, for ~ > D; here, we have used the notation 

V,=S,(s~, c ~ c~ ~(c ~ V2={F(s2, c,)+h}{s~+h+a'(c,)(l+h)} -~ 

This solution corresponds to the path 

(I, c~ (s~ c~ c~ c~)-p-J~ (s., c.) 

on the plane (s, F), where C is a simple wave of the second family. 

At the time t = l, the boundary condition c(0, t) is replaced by a discontinuity, 

which corresponds to termination of injection of the solution and the beginning of the 

pumping of the water that forces the slug through the stratum. There is a decay of the 

discontinuity s-~, c=~c., s+~s~176 c§ ~ The decay configuration of this discontinuity 

contains the discontinuity(~, c.)--y-+(s~162176 c.), so that both when t > i and t < 1 we have 

s+(0, t):s~176 This corresponds to the fact that the water is pumped into the stratum 

after the oil has been washed out by the solution of the active additive in the slug. 

For t > l, there is interaction of the configuration with the centered wave of the first 

family of the self-similar solution. The types of the configurations and the solution of 

the problem (1.2) depend on the form of the functions a(c) and ~(c). 

2. We consider the case of the Henry sorption isotherm a "-" Fc and linear distribution 

function ~ = Kc of the additive between the phases. Then the second equation (l.1) can 

be rewritten as 

O{c(s§247 b=h-f-r(l§ ( 2 . 1 )  

Simple waves of the second family go over into contact c discontinuities. The second 

Riemann invariant has the form I = (F + h)(s + b) -I. The condition (1.5) on the discon- 

tinuity takes the form V = I -+. The contact discontinuities propagate along the character- 

istics of the first family. 

The decay configuration of the discontinuity of the boundary condition is described 

by t h e  p a t h  (t,  e,)--]--*(s~176 c,)--PL]c~(s~176 c~ On t h e  c o n t a c t  c d i s c o n t i n u i t y  x -- x o ( t )  
that forms ~ the back of the slug -- there is a complete discontinuity of the concentra- 

tion c + = c ~ c- = c,~ Since the inequality x/t~-F~<(F+h)(s§ -~ holds in the region of 

the centered wave, all the characteristics of the second family ~ the rays of the centered 

wave ~ intersect the line of the discontinuity x = xo(t ). They carry the quantity I + 

to the discontinuity line, Hence, we obtain 

xJt~F,(s+(xo), c~ dxJdt=I~(xo) ( 2 . 2 )  

We i n t e g r a t e  Eq. ( 2 . 1 )  o v e r  t h e  r e g i o n  o f  t h e  p l a n e  (x ,  t )  b o u n d e d  by t h e  c o n t o u r  
(0, O) § (0, I) ~ (x0~ t) § (0, 0) (Fig. 2). By Green's theorem, it is sufficient for 

this to integrate the differential form O~c(F~h)dt--c(s~b)dx around this contour. The 

form Q is the flux of the additive: 
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 0(0, n) d ,+ 0 am+ 0(F0+ (Xo) d =O ( 2  3) 
0 ~ t 

S u b s t i t u t i n g  i n  t h e  i n t e g r a l  a l o n g  t h e  l i n e  o f  t h e  d i s c o n t i n u i t y  t h e  e x p r e s s i o n  f o r  t h e  
v e l o c i t y  o f  t h e  d i s c o n t i n u i t y  ( t h e  s e c o n d  e q u a t i o n  i n  ( 2 . 2 ) ) ,  we f i n d  t h a t  i t  i s  e q u a l  
t o  z e r o .  The  p h y s i c a l  m e a n i n g  o f  t h i s  f a c t  i s  t h a t  t h e r e  i s  no  f l o w  o f  t h e  a d d i t i v e  

t h r o u g h  t h e  l i n e  o f  t h e  c o n t a c t  d i s c o n t i n u i t y .  T h e r e f o r e ,  t h e  i n t e g r a l  o f  t h e  f o r m  

a l o n g  t h e  r a y  f r o m  t h e  p o i n t  ( 0 ,  O) t o  t h e  p o i n t  o f  i n t e r s e c t i o n  o f  t h e  r a y  w i t h  t h e  

l i n e  o f  t h e  d i s c o n t i n u i t y  ( x o ,  t )  d o e s  n o t  d e p e n d  on  t ,  i . e . ,  i t  i s  a f i r s t  i n t e g r a l  o f  

t h e  m o t i o n  x o ( t ) :  
l+h=A(s+(xo), c~ A(s ,  c)=F+h-(s+b)F~ ( 2 . 4 )  

F r o m  t h e  s y s t e m  o f  t h e  t w o  t r a n s c e n d e n t a l  e q u a t i o n s  c o n s i s t i n g  o f  t h e  f i r s t  e q u a - -  

t i o n  i n  ( 2 . 2 )  a n d  E q ,  ( 2 . 4 )  we c a n  d e t e r m i n e  s + ( x o  ) a n d  x 0 f o r  a n y  t .  F r o m  t h e  c o n d i t i o n s  
o n  t h e  d i s c o n t i n u i t y  ( t h e  s e c o n d  e q u a t i o n  i n  ( 2 . 2 ) )  we f i n d  s - ( x o ) .  

I n  ( 2 . 4 ) ,  we go t o  t h e  l i m i t  t + ~ .  T h e n  A ( s + ( x o  ) ,  c ~ ) + 9 ,  a n d  f r o m  t h e  f o r m  o f  

t h e  f u n c t i o n  F = F ( s ,  c ~ ) i t  f o l l o w s  t h a t  s + ( x o  ) + S l ,  d x o / d t  + V 1 .  On t h e  p l a n e  ( s ,  F ) ,  
t h e  p o i n t s  c o r r e s p o n d i n g  t o  t h e  v a l u e s  o f  t h e  u n k n o w n s  i n  f r o n t  o f  t h e  h a c k  o f  t h e  s l u g  

and behind it lie on a straight line which passes through the point (--b, --h) on the 
o 

curves c = c and c = c,, respectively. As the saturation in front of the back of the 

slug varies from s~ ~ ) at t = 1 to s I as t + ~, the saturation behind the back of the 

slug varies from s~ ~ ) to s 3 (Fig. i). 

In the region of the driving water c = c,, and the problem (1.2) for the system (l.l) 

reduces to the mixed problem s(O, t)~s~176 s(x0(t), t):s-(x0(t)) for the first equation in (i.I). 

In the region 0 < x < x 0 of the driving water, the values of the saturation s-(x O) are 

carried from the back of the slug along the characteristics in a simple wave of the first 

family: 

s (x, t') =s- (Xo (t)), {X-Xo (t) } ( t ' - t)  -'=F~ (s- (Xo (t)), c.) (2.5) 

F o r  s-(xo)~S~176 .F-(xo)~l" The  s a t u r a t i o n  s - ( x  0)  d e c r e a s e s  t o  t h e  v a l u e  s ~ a t  
t h e  t i m e  t ~ = (1  + h ) / A ( s 4 ,  c ~  w h e r e  s 4 i s  t h e  s a t u r a t i o n  i n  f r o n t  o f  t h e  d i s c o n t i n u i t y  

c o r r e s p o n d i n g  t o  t h e  s a t u r a t i o n  s ~ b e h i n d  i t .  T h e r e f o r e ,  i n  t h e  r e g i o n  o f  t h e  d r i v i n g  
o 

w a t e r  f o r  0 < x < x = F s ( s 4 ,  c ~  ~ t h e  o i l  i s  i m m o b i l e .  

We i n v e s t i g a t e  t h e  d y n a m i c s  o f  t h e  b a c k  o f  t h e  s l u g .  S i n c e  d x 0 / d t  < V1, t h e  b a c k  
d o e s  n o t  c a t c h  u p  w i t h  t h e  f r o n t  o f  t h e  s l u g  x = V l t  , a n d  t h e  v o l u m e  f l ( t )  = V l t  - -  x 0 
o f  t h e  s l u g  i n c r e a s e s  w i t h  t h e  t i m e .  

We i n t e g r a t e  E q .  ( 2 . 1 )  o v e r  t h e  r e g i o n  b o u n d e d  by  t h e  c o n t o u r  ( 0 ,  0) § ( 0 ,  1) + 

( x  O, t )  + ( V l t  , t )  + ( 0 ,  0 ) ,  a s  i n  t h e  c a s e  o f  ( 2 . 3 ) .  S i n c e  t h e  i n t e g r a l s  o f  t h e  f o r m  
0 a l o n g  t h e  l i n e s  o f  t h e  c o n t a c t  d i s c o n t i n u i t i e s  x = x o ( t )  a n d  x = V l t  a r e  e q u a l  t o  z e r o ,  
we have 

Wit 

{s(~,t)+b}d~ ( 2 . 6 )  l + h =  

The  o b t a i n e d  e x p r e s s i o n  i s  t h e  b a l a n c e  o f  t h e  a d d i t i v e  i n  t h e  s l u g .  G o i n g  t o  t h e  

l i m i t  t + ~ i n  t h e  e x p r e s s i o n ,  we o b t a i n  ~ ( ~ ) = ( l + h ) ( s ~ + b ) - (  W i t h  t h e  p a s s a g e  o f  t i m e ,  

t h e  v o l u m e  o f  t h e  s l u g  i s  s t a b i l i z e d .  F r o m  t h e  t i m e  t = 1 ,  t h e  v o l u m e  o f  t h e  s l u g  i n -  

c r e a s e s  b y  t O = (1  + h ) ( F  1 + h)  - 1  t i m e s .  The  b a c k  o f  t h e  s l u g  h a s  t h e  i n c l i n e d  a s y m p t o t e  

x = V l ( t  - -  t o ) .  

3 .  The  r e g i o n  o f  t h e  f l o w  c a n  b e  d i v i d e d  i n t o  f i v e  z o n e s  ( F i g .  2 ) :  

1 ~ x > Dt,  t h e  z o n e  o f  t h e  d i s p l a c e d  o i l ,  s = s . ,  c = c . .  

2 ~  V l t <  x < D t ,  t h e  w a t e r - - o i l  b a n k  i n  f r o n t  o f  t h e  s l u g ,  s = s 2 ,  c = c . .  

~ .  x 0 < x < V l t ,  t h e  s l u g .  The  p r o f i l e  o f  t h e  s a t u r a t i o n  d i s t r i b u t i o n  c o r r e s p o n d s  
o 

t o  a p a t h  o n  t h e  p l a n e  ( s ,  F ) ,  n a m e l y ,  t h e  s e c t i o n  o f  t h e  c u r v e  e = c f r o m  s I t o  s + ( x 0  ) .  

4 ~  x ~ < x < x 0 ,  t h e  z o n e  o f  t h e  d r i v i n g  w a t e r  w i t h  m o b i l e  o i l  p h a s e .  The  p a t h  i s  
o 

t h e  s e c t i o n  o f  t h e  c u r v e  c = c .  f r o m  s - ( x  0)  t o  s . 
o 

5 ~  0 < x < x , t h e  z o n e  o f  t h e  d r i v i n g  w a t e r  w i t h  i m m o b i l e  o i l  p h a s e .  The  p a t h  i s  
t h e  s e c t i o n  o f  t h e  c u r v e  c = c .  f r o m  s ~ t o  s ~ 1 7 6  
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With the passage of time, the first, second, and fourth zones increase unboundedly 

in size, while the third zone stabilizes as t § ~ and the fifth as t = t ~ In the limit 

t § ~, the saturation in the slug decreases to Sl, and in the zone of the driving water 

it varies from s~ ~ ) at the injection borehole to s 3 at the back of the slug. 

Figure 2 shows the profiles of the saturation distribution in the case of displace- 

ment by a slug (continuous curve), an active additive (broken curve), and water (chain 

curve). Compared with ordinary flooding, the water saturation of the production in the 

case of displacement by a slug is lower in the stage of the water--oil bank and the slug, 

the flooding begins later, and the final oil extraction is higher. In the case of dis- 

placement by a slug, the saturation in a certain region behind the back of the slug is 

higher than in the case of displacement by a solution of the additive, and in the central 

part of the zone of the driving water it is lower. At large volumes of the slug, com- 

plete flooding commences at the time when the back of the slug reaches the extraction 

gallery, and the process of extract ends. For smaller volumes, the process of ex- 

traction can be continued after this time. If a given level of water saturation is 

achieved before the arrival of the back of the slug, then the oil extraction is the 

same as in the case of displacement by a solution of the additive. Otherwise, the oil 

extraction is lower. 

In the case of a high concentration of the additive solution, s 3 > s ~ [2], the 

fourth zone is absent, and all the oil in the zone of the driving water is immobile. 

In the case F c > 0 (the additive results in less favorable displacement conditions) 

or c. > c o (the slig demineralizes the stratal water), the behavior of the back of the 

slug is described by the system (2.2), (2.4) until the emergence from the centered wave, 

after which its velocity becomes equal to VI~ and the volume of the slug is stabilized. 

4. We consider the process of cyclic injection into a stratum of a solution of an 

active additive [7] : 

c ~ O ~ t ~ t ,  t ~ t ~ t 3 , . . .  
~(0~ t) 

c,, l<t~t~, t~<t<ts,. . .  

At t = tl, there is decay of the discontinuity of the boundary condition with the 

configuration (i, c ~ ) -- J § (s~176 c ~ ) -- P -- Jc § (s~176 c,) and interaction with a 

simple wave of the first family (2.5) begins. The resulting c discontinuity -- the front 

of a second slug -- propagates along a characteristic of the first family. Along it, 

there is a complete discontinuity of the concentration c-(x I) = C, c+(xl) = c.. In the 

region of the simple wave {x -- x0(t))(t' -- t) -I = Fs(S-(X0), c,) < l(x0) , and therefore 

the front of the second slug intersects all the characteristics of the second family. 

They carry to the line x = xl(t') the quantity I-. At the same time, 

{xt(V)-xo(t)} ( t ' - t)- i=F,(s-(xo(t)) ,  c.) ( 4 . 1 )  

We i n t e g r a t e  E q .  ( 2 . 1 )  o v e r  t h e  r e g i o n  o f  t h e  p l a n e  ( x ,  t )  b o u n d e d  by  t h e  c o n t o u r  
(0, O) § (0, t I) § (Xl(t') , t') § (x0(t), t) § (0, 0), as in the case of (2.3). The in- 

tegral of the form ~ along the line of the contact discontinuity x = Xl(t') is equal to 

zero~ Therefore, the integral of the form @ along the broken line (0, 0) -- (x0(t), t) -- 

(xl(t') , t') does not depend on the time t' and is a first integral of the motion x = 

xl(t'): 

(i+h)t~:A(s+(xo), c~ c.) (if-t) ( 4 . 2 )  

F r o m  t h e  s y s t e m  o f  t h e  f i v e  t r a n s c e n d e n t a l  e q u a t i o n s  ( 2 . 2 ) ,  ( 2 . 4 ) ,  ( 4 . 1 ) ,  a n d  ( 4 . 2 )  
f o r  any  t '  we c a n  d e t e r m i n e  t ,  Xo, s + ( x o )  , s - ( x  O) = s + ( x l ) ,  a n d  x 1.  F r o m  t h e  c o n d i t i o n s  
on t h e  d i s c o n t i n u i t y ,  we f i n d  s - ( x l ) .  S i n c e  c - ( x  1) = c + ( x o  ) ,  i t  f o l l o w s  t h a t  s - ( x  1)  = 

s + ( x o ) .  

In the limit t' § ~, we have s+(xl) § s3, s-(xl) + Sl, dXl/dt' § V I. In the region 

of the second slug c = c , and the values of the saturation are carried from the front of 

the slug s-(xl) along the characteristics in a simple wave of the first family as in the 

case of (2~ 

On the back of the second slug x = x2(t") there is a complete discontinuity of 
o 

the concentration, c- = c., e + = c . Integration of the form @ along the contour 

- " ~ "  .... t ' )~  (~(~), ~)-~ (0, o) (O.O)~(O,t~)~(xz(t"),t, tz~t~), 

413 



l e a d s  t o  a n  e x p r e s s i o n  a n a l o g o u s  t o  ( 2 . 4 )  a n d  ( 4 . 2 ) .  T h e  d y n a m i c s  o f  t h e  b a c k  o f  t h e  

s l u g  i s  d e s c r i b e d  b y  a s y s t e m  o f  s e v e n  t r a n s c e n d e n t a l  e q u a t i o n s .  As t "  § ~ ,  we h a v e  

s + ( x 2 )  § S l ,  s - ( x  2 )  § s 3 ,  d x 2 / d t "  § V 1 .  I n  t h e  z o n e  o f  t h e  d r i v i n g  w a t e r  c = c , ,  a n d  
t h e  v a l u e s  o f  t h e  s a t u r a t i o n  a r e  c a r r i e d  f r o m  t h e  b a c k  o f  t h e  s l u g  s - ( x  2 )  = s - ( x  O) 
along the characteristics of the second family as in the case of (2.5). 

C ~ The characteristics in the zones c = and c = c, corresponding to the saturations 

s+(x0 ) = s-(xl) and s-(x 0) = s-(x2) are pairwise parallel. The points x0(t) , Xl(t) , and 

x2(t ) lie on the characteristics of the second family, along which s• > s• 

> si(x0, (t)), and therefore dx2/dt < dxl/dt < dx0/dt and the volumes of the zone be- 

tween the slugs and of the second slug increase. From the condition of mass balance we 

find, as in the case of (2.6), that in the limit t § 

xi-xo~ (i +h) (tt-l) (s3+ b) -~, xi-xi~ ( t+h )  (ti-t,) (s,+b) -~ 

The discontinuities x I and x 2 have inclined asymptotes: 

x=V~(t-to-ti), t e = ( l + h )  ( t t - l )  (F3+h)-t,. x=V~(t-to-Q-t~), t~=(t+h) (t3-ti) (F~+h) -I 

T h e  p r o b l e m  c a n  b e  s o l v e d  s i m i l a r l y  f o r  a r b i t r a r y  p i e c e w i s e  c o n s t a n t  c ( O ,  t ) .  I n  
t h e  c o n t a c t  c a s e  a = Fc  a n d  ~ = Kc,  e a c h  s u c c e s s i v e  d i s c o n t i n u i t y  p r o p a g a t e s  i n  t h e  f i e l d  
o f  t h e  c h a r a c t e r i s t i c s  o f  t h e  s e c o n d  f a m i l y  b e h i n d  t h e  p r e c e d i n g  d i s c o n t i n u i t y .  T h e  

m o t i o n  o f  e a c h  s l u g  i s  i n d e p e n d e n t  o f  t h e  c o n c e n t r a t i o n s  o f  t h e  s o l u t i o n s  p u m p e d  a f t e r  i t .  

F o r  i n i t i a l  w a t e r  s a t u r a t i o n  s ,  < s ( x ,  O) < s 3 o f  t h e  s t r a t u m ,  t h e  s o l u t i o n  t o  t h e  
problem of cyclic injection differs from the case s(x, 0) = s. only by the self-simila~ 

part of the solution ahead of the front x = Vl(t). Depending on the value of s(x, 0), 

there are four types of solution differing in the sequence of the motion along c = c, 
O 

and the J discontinuity from the point (s2, c.). For s 3 < s(x, 0) < s , the solution 

of the displacement problem is identical to the solution for s(x, 0) = s. in front of 

the broken line consisting of the characteristics of the second family corresponding to 

s(x, 0) = s-(x O) = s+(x I) = ... . The volumes of the slugs and the velocities of the 

fronts stabilize after a finite time. 

5. We now consider displacement of oil by a slug when there is an irreversible re- 

tention of some of the active additive by the skeleton of the porous medium. We assume 

that the desorption isotherm is a linear function of the concentration, 

a ~ (c, c ~ ) = { r c ~  ~ ( c . ,  c ~ } ( c ~  -~ ( c - c . )  + ~  ( c . ,  c~  

w h e r e  c ~ i s  t h e  c o n c e n t r a t i o n  o f  t h e  s o l u t i o n  a t  t h e  b e g i n n i n g  o f  t h e  d e s o r p t i o n  p r o c e s s .  
F o r  3 c / 3 t  < 0 a n d  c -  < c + ,  t h e  c o n s t a n t  b i n  Eq .  ( 2 . 1 )  a n d  i n  t h e  m a s s  b a l a n c e  c o n d i t i o n s  
on the discontinuity is b~176176 c~176 and the point 0 is shifted to 

the right (Fig. 3). 

At t = i, the interaction of the discontinuity of the boundary condition c- = e., 

e + = c ~ with the centered wave of the self-similar solution begins. In the region of 

the centered wave, we have 

Xo/t=F~ (s + (x0), c ~ < {F + (x0) + h }  {s + (x0) + b } - ' = d x 0 / d t  

a n d  t h e r e f o r e  t h e  b a c k  o f  t h e  s l u g  i n t e r s e c t s  a l l  r a y s  o f  t h e  c e n t e r e d  w a v e .  I n t e g r a t i n g  
E q .  ( 2 . 1 )  o v e r  t h e  r e g i o n  b o u n d e d  b y  t h e  c o n t o u r  ( 0 ,  O) § ( 0 ,  l )  § ( x o ,  t )  + ( 0 ,  O) u s i n g  
t h e  c o n d i t i o n s  o n  t h e  d i s c o n t i n u i t y ,  we o b t a i n  

l+h=A~ c~ h ~  c)=F+h--(s+b~ ( 5 . 1 )  

I n  c o n t r a s t  t o  t h e  c a s e  o f  r e v e r s i b l e  s o r p t i o n ,  a t  t h e  f r o n t  o f  t h e  s l u g  

dxo/dt= (F~+h) (s,+b ~ - ' >  (F,+h) (s ,+b)- '=V~ 

Therefore, at a certain time t I the back of the slug catches up with its front. 

From (5.1), we obtain an expression for tl: 

t ,=( t+h) /A~  c ~  ~ 

which expresses equality of the mass of the pumped additive and the additive retained by 

the porous medium in the volume Vlt I. At the time tl, the slug disappears (Fig. 4). 

Behind the back of the slug c = c,, the flow takes place in the pore space with 
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irreversibly adsorbed additive�9 The water permeability remains lowered, and for the oil 
it becomes the same as in front of the slug [4]. Therefore, the flow in the region x < 

x 0 traversed by the slug is described by the first equation in (l.1) with Buckley--Leverett 
function Fa(s, c.) for which F(s, c ~ ) < Fa(s, c,) < F(s, c,). In the region ahead of the 

boundary of the porous medium with retained additive and without it, x = Vltl, the flow 

is described by the first equation in (1.1) with the Buckley--Leverett function F(s, c,). 

Along the back of the slug there is a discontinuity from the curve F = Fa(s, c.) 

to the curve F = F(s, c~ The points behind the back of the slug and in front of it lie 

on a straight line which passes through the point O~ ~ --h). From the condition on the 

discontinuity we find s-(x0). 

In the region traversed by the slug, the values of the saturation s-(x0) propagate 

along characteristics as in the case of (2.5) to the line x =Vltl: 

s(V~tl, t ~) =s-(xo(t) ), -{V~t~-xo(t) } (t'-t)-~=Fo~(s-(xo), c.) 
On t h e  l i n e  x = V l t l ,  t h e r e  i s  a d i s c o n t i n u i t y  o f  t h e  s a t u r a t i o n ,  a t  w h i c h  t h e  

b a l a n c e  F~(s-(V~t~, t'), c.)~F(s+(V~t~t'), c.) of t h e  m a s s e s  o f  t h e  p h a s e s  h o l d s .  On t h e  p l a n e  
( s ,  F ) ,  t h i s  c o r r e s p o n d s  t o  a jump f r o m  t h e  c u r v e  F = F a ( s ,  c . )  t o  t h e  c u r v e  F = F ( s ,  c . )  

o 

parallel to the abscissa. As s-(Vltl, t') changes from s 3 at t = t I to s as t § ~, the 

value of s+(Vltl, t') varies from s 4 to s ~ (Fig. 3). 

At the point (Vltl, tl) , the discontinuity s- = s4, s + = s2, c • = c, decays, this 
being realized by the centered wave (x -- Vltl)(t -- tl)-I = Fs(s, c,). In the region 

ahead of the line x = Vlt I to the trailing edge of the centered wave the values of s+(Vltl, 
t') propagate along the characteristics as in the case of (2.5). 

At the time t2, the front of the water--oil bank x = Dt catches up with the leading 

edge of the centered wave, Dt 2 = Fs(S2, c,)(t 2 -- tl) +Vlt I. The discontinuity begins 
to interact with the centered wave 

Since 

{x, (t)-V~t~} (t-t~)-'=F~(s-(x~), c,) ( 5 . 2 )  

dxJdt=F(s- (x~), c.) {s- (x~) - s . } - ~ < F ~  (s -  (x , ) ,  c . )  

the characteristics carry values s-(x I) > sf from the centered wave to the line of the 
discontinuity. We integrate the first equation in (1.1) over the region of the plane 

(x, t) bounded by the contour (Vltl, t l) + (xl(t), t) § (Dr2, t2) § (Vltl, tl). The 
corresponding differential form is @s = Fdt ~ sdx. We obtain a first integral of the 
motion x = xl(t) in the form 

A~(s-(x~)(c,) (t~t~=As(s2~ c.) (t2-t~), A~(s, c)=F--(s--s.)F. 
From the system of the two transcendental equations (5.2) and (5.3) we obtain x I and 

s-(xl) for any t�9 In the limit t + ~, s-(x I) § sf and dXl/dt -* Df. 
Since dxl/dt < Dr, the leading edge of the centered wave does not catch up with 

the front of the water--oil bank. The volume of the region between them increases and 

stabilizes as t § ~�9 Integrating the form @s around the contour 

( 5 ~  
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(V,t~, 4) ~ ( V,t~ +Df ( t - t~),  t) ~ (x~ ( t) , t) ~ (Dt2, t2) -~ ( V,t~, t , )  

a n d  going to the limit t § ~, we obtain as in the case of ( 2 . 6 )  the inclined asymptote 

of the front of the water--oil bank: 

x=V~t~+Ds ( t - t , )  + A ~  (s~, c.) (t2-t~) (s~-s . )  -~ 

Figure 4 shows the profiles of the saturation in the case of displacement by a slug 

(continuous line) by a solution of additive (broken line), and by water (chain line). 

For small volumes of the slug (the axis of the recovery gallery lies to the right of x = 

Vltl) , the slug disappears without reaching the recovery gallery. Ahead of the ray x = 

Vlt the saturation in the case of displacement by a slug is higher than in the case of 

flooding, and behind the ray x =Vlt it is lower, i.e., the use of a slug leads to a 

slowing down in the growth of the water saturation of the production in the initial stage 

of the flooding. In the case of displacement by a slug, the saturation varies through the 
O 

stratum from s, to s~176 and in the case of flooding from s, to s , i.e., the use of a 

slug increases the final oil recovery. At the same time, the period of waterless exploita- 

tion increases somewhat. 

At large volumes of the slug (the axis of the recovery gallery lies to the left of 

x = Vlt I) the exploitation indices in the case of displacement by a slug are the same as 

in the case of displacement by a solution of additive. 

In the case of strong sorption or an initial saturation s(x, 0) such that sf < s 2 

the velocity of the front of the water--oil bank is equal to Df and the discontinuity x = 

Dft does not interact with the centered wave. The use of a slug does not change the t• 

a t  w h i c h  f l o o d i n g  b e g i n s .  

6 .  We n o w  c o n s i d e r  b r i e f l y  t h e  c a s e  o f  a n o n l i n e a r  s o r p t i o n  i s o t h e r m .  F o r  t h e  

L a n g m u i r  i s o t h e r m  a "  < 0 a n d  ~ = Kc  t h e  d e c a y  c o n f i g u r a t i o n  o f  t h e  d i s c o n t i n u i t y  o f  t h e  

b o u n d a r y  condition a t  the time t = 1 h a s  the form ( t , c , ) - - J - , - ( s ~ 1 7 6 1 7 6 1 7 6 1 7 6  

Interaction of the centered wave of the second family which is formed with the centered 

wave of the first family begins. There arises a zone with decreasing concentration which 

adjoins the wave of the first family along the ~ characteristic xo(t) and the zone c = c. 

of the driving water along the c, characteristic x2(t ) of the back of the slug. The 

motion of x 0 is described by the syste m of the two equations (2.2) and (2.4) for b = h + 

a'(~)(l + h). At the time t I = (I + h)/A(Sl, c~ the front of the slug catches up with 

the line x O. The region of the slug with maximal concentration disappears, and the wash- 

ing out of the slug by the driving water commences. 

Behind the front of the slug E1 < ~2, and the characteristics of the second family 

intersect all characteristics of the first. To investigate the behavior of the character- 

istics, we construct a hodograph transformation. The velocity of the characteristics of 

the first family increases but at the second decreases. 

At t = tl, the perturbation imposed on the configuration of the self-similar solu- 

tion by the discontinuity of the boundary condition catches up with the discontinuity 

x = Vlt , and interaction with the front of the slug commences. On the front of the slug, 

the line x = xl(t) , the Jouguet condition [8] 

dxJd t=  (F~+h) {s• [a] [c] - ' ( t + h )  } - ' = F ~ - ,  c + = c , = 0  

i s  s a t i s f i e d  a s  w e l l  a s  t h e  m a s s  b a l a n c e  c o n d i t i o n s .  

U n d e r  t h e  h o d o g r a p h  t r a n s f o r m a t i o n ,  t h e  l i n e  x I + 0 g o e s  o v e r  i n t o  t h e  s e c t i o n  o f  

t h e  c u r v e  c = c .  f r o m  s 2 a t  t = t I t o  s 4 a t  t § ~ , w h e r e  

F~(s,, c , ) =  ( F , + h )  {s~+h~a' (c,) ( l+h) }- '=Y~. 

T h e  l i n e  x 1 - -  0 g o e s  o v e r  i n t o  t h e  s e c t i o n  o f  t h e  J o u g u e t  l i n e  F~-=(F~+h){s•  -~ 
( l + h ) }  -~ f r o m  s 1 a t  t = t 1 t o  s 4 a t  t § ~ .  T h e  l i n e  x 2 g o e s  o v e r  i n t o  t h e  s e c t i o n  o f  t h e  

c u r v e  c = c .  f r o m  s ~  a t  t = 1 t o  s 4 a s  t § ~ .  T h e  s a t u r a t i o n  i n  t h e  s l u g  d e c r e a s e s  

t o  s 4 .  T h e  c o n c e n t r a t i o n  o f  t h e  a d d i t i v e  i n c r e a s e s  f r o m  0 a t  t h e  b a c k  o f  t h e  s l u g  x 2 t o  

c - ( x  1 )  a t  t h e  f r o n t .  I n t e g r a t i n g  t h e  s e c o n d  e q u a t i o n  i n  ( 1 . 1 )  o v e r  t h e  r e g i o n  h o u n d e d  b y  

t h e  c o n t o u r  ( 0 ,  1 )  § ( X l ,  t )  § ( V l t l ,  t l )  § ( 0 ,  1 ) ,  we  o b t a i n  x , ( t ) = { a ( c - ) - - a ' ( c - ) c - }  -~ f o r  
c -  = c - ( x l ) .  I n  t h e  l i m i t  t + ~ ,  we  t h e r e f o r e  h a v e  c-(x~)~{--a'(O)V,~2} -'~. T h e  v o l u m e  o f  

t h e  s l u g  i n c r e a s e s  u n b o u n d e d l y .  
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In the case of weak sorption (s 2 < sf), the simple wave of the first family ahead 

of the front of the slug interacts with the front of the water--oil bank, changing its 

velocity and the saturation from D, s 2 to Df, sf as t + ~. When s 2 > sf, this interac- 

tion does not occur. 

A similar solution to the problem (1.2) holds in the case a=Pc, ~<0. 

For a concave sorption isotherm, a" > O, and ~ = Kc at the time t = 1 a discontinuity 

xo(t) forms, along which c- = c. = O, c + = c ~ The motion of the discontinuity is de- 

cribed by the system of equations (2.2) and (2.4) for b=h+[a][c]-i(i§ At the time t I = 

(I + h)/A(Sl, c~ the discontinuity catches up with the boundary x = Vlt of the first and 

second waves of the self-similar solution. Under the hodograph transformation, the line 

x 0 + 0 goes over into the section of the simple wave of the second family from s I at t = 

t~ %0 s2 as t § ~. The line x 0 -- 0 goes over into the section of the curve c = c. from 

s (c) at t = 1 to s 2 as t § ~. Integrating the second equation (I.I) over the region 

bounded by the contour (0, O) § (0, I) ~ (Xo, t) § (0, O) for t > t ! we obtain for a T = 

c+(xo) the expression xo(t)={a'(c+)c+La(c+),}-t As t § ~, the saturation in the slug de- 

creases to s2, dxo/dt § V2, and the concentration of the additive increases from 0 on 

the front to c+(xo)~(aH(O)V2t/2} -'~ at the back of the slug. The volume of the slug in- 

creases unboundedly: Q(t)~(1+h)(F2+h)-1(2a H(0) V2~t) % 

The problem (1.2) has a similar solution for a = Fc and ~" > O. 

I thank M. V. Lur'e and M. V. Filinov for suggesting the problem and constant in- 

terest in the work, and also V. M. Entov for helpful discussions. 
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