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Here, as in previous examples, a decisive part is played by the mixed space-~time para-
ra®
meter Nt'f;s
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STABILITY AND ADMISSIBILITY OF DISCONTINUITIES IN THE SYSTEMS OF
EQUATIONS OF TWO-PHASE FILTRATION”

P.G. BEDRIKOVETSKII and M.V. LUR'E

To obtain the additional conditions at a discontinuity in the solution of
the non-convex hyperbolic systems of equations of two-phase filtration with
an active admixture /1-3/ (**) an approach is proposed that differs from
the method of vanishing viscosity. The discontinuous solution is consid-
ered as the limit of solutions of the non-equilibrium system, when the
characteristic time for thermodynamic equilibrium to become established
approaches zero. The admissibility conditions obtained (of the existence
of a structure) are the same as the equilibrium conditions in Oleinik's
form /5,6/, and ensure the existence and uniqueness of the selfsimiliar
solution of the problem of discontinuity disintegration.

The processes of petroleum displacement by hydrodynamically active fluids is defined by
systems of non-linear differential equation of hyperbelic type, as in gas dynamics, for which
discontinuous solutions are characteristic /7/. The stability of the discontinuity  with
respect to small perturbations is a generally acceptable requirement in the linearized problem
/8,9/. However, for some non-convex sytems of the equations of gas dynamics and elasticity
theory, the solution of the problem of discontinuity disintegration, containing stable discon-
tinuities is not unique /6,10/. Supplementary conditions at the discontinuity ensuring the
uniqueness of the solution were obtained either by generalizing the concept of stability, or
as the limit of the solutions of the corresponding problem in a more comprehensive physical
theory of “"vanishing viscosity" /8-11/.

*prikl.Matem.Mekhan.,Vol.47,No.4,pp.590-600,1983

** Entov V.M., Physicochemical hydrodynamics of processes in porous media. Preprint No.l6l.
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1. Analysis of solutions of the hyperbolic system. The process of two-phase
filtration of immiscible liguids with an active admixture under conditions of thermodynamic
equilibrium in the first phase and in sorption state is defined by the system of equation
of phase-mass balance and of admixture-mass balance

as arF . 1.1
S+ =0 F=F¢0 .1
L(es+a(0) + o chH)=0 (1.2)

where x and t are the dimensionless coordinate and time, s{z, f) is the saturation of the first-
phase threshold volume, ¢{%, ¥} is the admixture solution concentraticn in the first phase,
e (¢} is the concentration of adsorbed admixture ¢(0) =0, a’' {¢) >0, F (s, ¢) is the fraction of
the first phase in the stream, and F./ <0,

Let ug write the hyperbolic system of quasilinear equations (1.1), (1.2) in Riemann
invariants. By virtue of the dependence F = F (s, ¢) we will consider as the unknowns both
{s, ¢), and (s, F). In the transformation of the hodograph (z, f) — Is (z, t), F (z, t}} the character~
istics of system

T =F.(s + a')? {1.3)
' =F (1.4)

become simple waves

daF

B Pyl {1.5)
F dF
b= =% (1.8)

respectively. The characteristics of the
families (1.3) and (1.4) will be called
the o~ and s-characteristics, respectively.
The simple waves of families (1.5) and
(1.6} will be called s~ and c-waves. In
the plane (s, F) the simple s-waves are
represented by lines ¢ = comst; these
waves are trajectories of the vector field
{1.6). {In Fig.l the section %5
represents the s-wave when ¢ = ¢% and the section 8y — 84 represents the c-wave). Hence
the Riemann invariant that is constant along the c-characteristic is the concentration ¢ =
¢ {s, F}, and the invariant constant along the characteristic is any function which is constant
along the trajectories of the vector field (1.6) and varies monotonically from the trajectory
to trajectory.

System (1.1), (1.2) has the following types of discontinuity /1/:

-ae) -lalfle] -aegd @ &, 1

Fig.1l

Vz'[f%]" [c]=0 (1.7)

Ft
V= E e 490 (-8
where {A] is the jump of the parameter 4, and ¥V is the velocity of the discontinuity. Discon-
tinuities of types (1.7) and (1.8) are called s- and c-jumps respectively. The following
definition of the discontinuity stability of system (1.1}, (1.2) is proposed: the discontinu-
ity is stable, when the total number of characteristics in the zone ahead of the jump with a
velocity not higher than ¥, and in the zone behind the jump with velocity not less than V, is
equal to three. This is one of the possible generalizations of the definition of a wave
adiabatic compared with the Lax form of the stability criterion /6/.

2. Two solutions of the problem of discontinuity decay. Consider the initial
system of equations with function a(¢), whose graph is shown in Fig.2.
We will solve the problem of discontinuity decay

s°,a:<0’ 20
S 3>0’ L I>O

The solution of this problem describes the process of petroleum displacement by a solu-
tion of active impurities. The problem has the selfsimilar solution (*) s =5 (£}, ¢ =¢ (),

3(1,0)={ ch,g),.-:{ (2.1)

*)See the footnote on p.484.
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t = ait.

* A E=z/t

Fig.2 Fig.3

We will rewrite the initial conditions (2.1) in the form

§ (=~ 00) =35° ¢ (— 00) =c° s(0) =35, c(o0)=c¢, (2.2)
To construct the solution we shall find ¢; and ¢ such that (Fig.2)
@ () = la () — a elie® — &),
a’ (eg) = la (eg) — a (cu)] (e — )™
We draw a tangent to the curve ¢ ==¢° from the point [-a (), 0] in the plane (s, F).

From the point s, where it intersects the curve ¢ = ¢, we draw the trajectory of the vector
field (1.6) until it intersects the curve ¢ =¢, at the point s, We connect the points S

and [~a(¢), 0] by a section of straight line. We join the point s, where that section inter-
sects the curve ¢ =¢, to the point (s,,c,) (Fig.l).
The solution has the form
=35, c==c’ —ooLtLO (2.3)
t=2 =F, sO=5 O=c

0LELVy==F, (51, ) = —Tlu 2D

EEgy
b= sW)=s cF)=a
Vim el cr gy, — Flma

e

$==8,, C==¢, DLELoe

The solution consists of a section of centered s-wave (&, ¢%) — (51, £%), a c-jump (s, )~
{ss, €1)» @ section of centered c-wave (s, &1} — {8y, €3),a C-jump (sy, ¢y) —> (51, €4), @ Quiescent region,
S == 54, € = Cyand an S~ Jump (5, Cq) ~> (54 C4) (Fig.1l). Each of the three jumps appearing in the
solution are Lax stable. The form of solution is shown in Figs.l and 3 by the solid line.

To derive the second solution of problem (2.2) we draw from the point {—[a (¢®)—a (¢ )I- ("~
¢x)™ 0} a tangent to the curve ¢=¢> and connect its point of intersection s with the
curve ¢ =¢, to the point (s,,c,). The solution has the form

s=5 cm=c®, ~0o<<E<O (2.4)
t=2L —F s =, cO=c
0<§<V1==F"(8¢,£°)== F (25, ¢°%)

518 (C)— alem] (& ~ca ¥
== gy, ==Ly

_— P {34, c) - F (sg, ca)
Vi@ e e e T <D=

—_-S‘, € == Oy D<§<OQ

and consists of a section of centred s-wave (5°, ¢°) — (35, €)y, @ c-jump (85, ) == (Sey Cu)s a

quiescent region s = s ¢ =c,, and an s-jump (ss, c,) = (5,5 €4). Both jumps are Lax stable.
Thus two stable generalized solutions have been constructed for the problem of discontin-~

uity decay for the system of equations (1.1), (1.2). Both provide a plausible flow picture
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of petraleum displacement by an active-admixture solution (Fig.3).

3. Criterion of the admissibility of the discontinuity. wWe will consider the
discontinuous solution of system (1.1}, (1.2) to be admissible, if it is the limit of solutions
of a two-phase filtration system with active admixture, taking into account the capillary jump
of pressure between phases, and the non-equilibrium of the sorption process

d oF o @ s 3.1

T = g [4695] e
8 o & 8

2 (es+a) + 5 (cF) =4 -5-3—[4‘11 & c)a—:]

fa z—
F =" e=el)

when the characteristic time At of the establishment in the system of thermodynamic equili-
brium and the characteristic value hA4A° of the pressure jump approach zero. In this formula

y is the admixture equilibrium concentration for which the dissolved admixture is with the
sorbed admixture, whose current concentration is egual to ¢, in a state of thermodynamic equili~
brium, i.e., a=a{y) and 4 (s, ¢)>0. Compared with system (1.1}, (1.2) the equation a = a (¢}
of the sorption isotherm is replaced by the equation of sorption kinetics, and in the equation
of phase-~mass balance the "vanishing viscosity" term is added.

Theorems of the existence and uniqueness of the generalized solution of system (1.1),
(1.2) do not exist at present. Let us, therefore, clarify how the proposed test of selecting
the "true" solution is linked with the conditions of the existence and uniqueness of the
generalized Cauchy problem for one first~order hyperbolic equation.

If in system (1.1), (1.2) we set s =F =1, we obtain the equation of equilibrium of
sorption from the flow

Fleta@+ =0 (3.2)

If, however, we set § = F =1 in system (3.1), we obtain the system of equations of non-
equilibrium sorption from the flow /12/

8 ac

s l+ta+5 =0 {(3.3)
B —_

=g, a=a() (3.4)

Let us assume that the generalized solution of Eq. (3.2) is the limit of the solutions of
system (3.3), (3.4) as h-»0. At some point (z, f,) let the solution (3.2) be discontinuocus,
c{zo—0,%) =c¢,c{z + 0,1) =¢", and let the discontinuity velocity at that point be V.
We will write the Hugoniot condition at the discontinuity in the solution of the equili-
brium sorption equation (3.2)
V = (1 4+ lal-[c]")

For the system of non-equilibrium sorption equations (3.3), (3.4) the Hugoniot conditions
at the discontinuity have the form

fe +al.V=le, [a}.V =0
It follows from them that the discontinuity velocity in system (3.3}, (3.4) is equal
either to zero or unity. The discontinuity velocity in (3.2) is less than unity. Hence, in
spite of the fact that the non-equilibrium sorption system admits of discontinuous solutions,

its solution at the point (=, to) is continuous. Then in a small neighbourhood of the point
(20, to) » the solution is approximately represented by

o x—ze—V{t—1t) 0

CED= o o gV (t— 19 >0 (3.5)

We will seek the solution of system (3.3), (3.4) in a small neighbourhood of the point
(%o, %) in the form of a travelling wave

e =c(E), a(z, t)y=a(f), E=lz—ac— V(t— t,)lh

Substituting these functions into the system, we obtain, taking into account the condi-
tion for discontinuity admissibility, the boundary value problem

¢z o) =%, a (£ o) = ¢ (c) (3.6)
for the system of ordinary differential equations

. d
—Vge+ta+g=0 (3.7)
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£

da
—VE= =L, a=a( A

If a sclution of this boundary value problem exists, then as h -0 it becomes the dis-
centinuous solution (3.5) of Eg.(3.2).
We integrate (3.7) from —woto § taking (3.6)intc account
ey ~Vie—c+a—a) =0 (3.9
Substituting the function y = y(a) the inverse of a == a{y), intc Eq.(3.B) and, then the
valuse of & expressed in terms of ¢ from formula {(3.9)

_&d_g_m 3(“‘+(1:{1;}_f-€5¢')v)”° = ®(c) {3.10)

The bhcundary value problem (3.6) for Eq. (3.10) is seolvable when and only when
a} the points ¢ and ¢’ are singular for the vector field (3.10):
b} the sign of ®{c) in the interval between ¢ and ¢’ is the same as that of the remind~
er {¢* —¢7}/9/.
We substitute ¢ =¢* into (3,10). From condition a) we obtain
vl + 1 — V=WV ) = ¢
By virtue of the monotonicity of the function y(s) we have
ey 4 {4 — V)t — e )WV =a (')
from which follows the Hugoniot condition at the discontinuity (3.5) for Eq. (3.2)
"= Vet ale?) —c —ale)
Substituting the expression obtained for the discontimuity velocity V into (3.10), from
condition b} we cbtain that in the intexrval between ¢ and ¢* the sign of expressiocn

fae) +lele)—a @ — Y He— ) —afe))

is the same as that of the difference {¢* —¢}. In the plane {¢, ¢}, when ¢ < ¢  the curve
a{¢) lies in the interval between ¢ and ¢’ above the segment that joins the points [¢7, & (¢}
and [¢*, a {¢*)]. These points are neighbouring points of intersection of the curve with the
segments., Hence the inequality
@ @)K le @) —aE) ¢ —e)<a (")
holds., From this follows the discontinuity-evolution condition (the discontinuity is reached
by two characteristics)

1 1 1
TFee SV = TFRIET S 177

Hence from the condition for a discontinuity to be admissible the Hugoniot condition,
the condition for discontinuity evolution, and the supplementary condition at the discontinuity
follow. When these conditions are satisfied, the Cauchy problem for Egq. (3.2) has a general-
ized solution which is unique.

Note that for an arbitrary quasilinear first-order hyperbolic equaticn
a“-@-‘z{i’ﬁ=0

at 8z
by psssing to the "non-linear” system

FrEe FetRT -
we alse obtain the conditions that snsure the existence and uniqueness of the generalized
solution. For one equation the proposed approach yields the same results as the method of
vanishing viscosity /9/.

Let us find under what conditions the discontinucus solution of system (1.1), (1.2} can
he obtained as the limit of the solutions of system {3.1), for this we will analyze the
behaviour of the solutions of system {(3.1) in the neighbourhood of the point {Zo, tg)s System
(3.1} admits of discontinuous sclutions with concentration jumps. It follows from  the
HBugoniot conditions that the concentration discontinuities in systems (1.1, (1.2) and (3.0)
propagate at different velocities. Hence in the neighbonrhood of the point (s, fe) the solu-
tion of system (3.1} is generally continuous with appropriate houndary conditions.

A% in the case of one equation, we confine ourselves in the neighbourhood of the point
of discontinuity of the solution of system (1.1}, (1.2}
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S, x—zo—V (8 —1to) <0

s(x’t)z{s*,z-—zo—V(t—to)>0 (3.11)
iz =20 —V{t—10) <O

‘(z")“”‘{ ¢ r—zg—V ([t —tg) >0

to solutions of system (3.1) in the form of a travelling wave

c(z, t)=c(§)' S(xt t)=8(§), a(.z, t)=a(€)
E=[z—zo— V{t — tx)lh

we obtain the following boundary value problem:
s (&= ) = s, ¢ (zk ) = ¢, a (& o) = a (c%) (3.12)

for the system of ordinary differential equations

ds | dF _ 4o d ds (3.13)
A R Sl AEULE o

o d
—V—:T(cs+a)+—;2-(cl")=A —-é'%—-[_cA(s,c)Ts] (3.14)
—_y BtV gy (3.15)

df, T

Since the solution of the boundary value problem (3.12) for system (3.13)-(3.15)
approaches the discontinuous solution (3.11) of system (1.1), {1.2) as A -0, the existence
of a continuous sclution of the boundary value problem is the condition for the discontinuty
to be admissible. Below we separate the types of jumps that have the structure (3.1). It is
assumed that non-evolutionary jumps, which have an infinite number of structures, are not ad-
missible /8/.

Thecrem. The boundary value problem {3.12) has a unique continuocus solution when and
only when

1) the Bugoniot conditions at the discontinuity (3.11) are satisfied for the system of
laws of conservation (L.1), (1.2)

. Pl __[eF]
V=T = Tt (3.16)

2) in the interval between ¢~ and ¢* the sign of the expression

af{c”) -+ lallel e — ¢y — a{c)
is the same as that of the difference (¢* — ¢’}
3) The over-all number of characteristics in the zone ahead of the jump at a velocity not
higher than V and in the zone behind the jump at a velocity not less than V, is equal to three.

. Proof. Necessity. Let the continuous solution of the boundary value problem (3.12) exist.
We integrate Eqs. (3.13) and (3.14) form - « to { taking into account the boundary conditions

A%A (s, c)é%::f"—-i"—?(s-—s‘) {3.17)
A%A (5, ¢) g% s F — e F~ — Vo5 o a — o5~ —a (¢7)] (3.18)

'?he ;::.oints ey emy a(e)] and [s*, ¢*, e (¢*)] -are singular for system (3.15), (3.17), {(3.18).
Substituting the values c=¢* s=s" and a=a(s*) into them, we obtain the Hugoniot conditions
(3.16) from which formulas (1.7) and (1.8) follow.

Condition 2) has meaning when ¢ st¢*. At the discontinuity condition (1.8) is satisfied
We subtract Eq.(3.17) multiplied by ¢ from Eq. (3.18). For ¢~ s=¢* we obtain the following '
equation: F~ = V[ + (@ — a(c7)) (¢ — ¢7J!]. Comparing it with (1.8), we have

[a~—a(e)]-(c— ) = [a)[e]? (3.19)

. t’Thetiet of Eoints in the plane (¢, 4) that satisfy this relation lies on the segment con-
ecting e points (¢, e(c7)) and (c¢*, a(c*)). Substituting the expression for a fr 3 i
{3.15), and using y=y(a) we obtain om 3.39) dneo

{8]  de__yfa(e)+la]-fe—~c )]} —c
dg L4

le] (3.20)

As in the case considered above of one hyperbolic equation, the condition for a continuous
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golution of the boundary value problem for Egq. (3.20) to exist is equivalent to conditions
a) and b). Condition a) is satisfied. When ¢ > ¢t condition b) for Eqg.(3.20) means that
in the interval (c*, ¢7) since the function a(y) is monotonic the inequality a(e~)+[a](c — ) [c]™ <
a{e) is satisfied. When c*>c¢- the inequality sign is reversed. cCondition 2) of the
theorem is satisfied.

From this we have the inequalities o (c7)<{a]-[¢j]*<a’(c*). Then

F+ F+ U F- F

FFeE) S FFEEE | rF AR S e
i.e. the velocity of the c-characteristic in the zone
ahead of thediscontinuity is not greater than ¥V, and in
the zone behind it, it is not less than V. Two c¢-
characteristics reach the c-jumps. It remains to prove
that only one c-characteristic reaches the c~jumps.

Let ¢ >c¢t. Depending on the number of of s-
characteristics reaching the jump from curve c¢=¢ to
curve c¢=ct, (various types of jumps can be seen in
Fig.4), we have

G 1 Vam B/ e P (0, 09) < Vig = ) (3,6
F /sy )<V Ve <FJ (50 ¢7)

Fig.4 Fol{sseot) <Ves <F (50 ¢7)

where V,; is the velocity of the jump (s, ¢7) — (55 ¢¥).

Let us assume the opposite, i.e. the discontinuity which is not reached by a single s-
characteristic, or by two s-characteristics is admissible. Then the discontinuity belongs to
one of the types (Fig.4
P g-4) (84— 1)y (s6—35), (51— 3)

Let a trajectory exist that links points 4 and 7. Let us consider the system of two
ordinary differential equations (3.17) and (3.20),in the phase plane (s ¢} For the trajec~

tory considered we have
s(--o0)==5, €(—o00)=0¢", 5(00) =85 c{oo)=0c*

Let us consider the behaviour of the system trajectories in the neighbourhood of the
singular point (s,¢”). The matrix of the linearized system has two eigenvalues

_ FJ (snem)—V _ {a}{e]* —a' (¢7)
L G o) <0 M= Tal{ea () >0

to which vorrespond the eigenvectors

_ F/ (s¢07) Flspc)—V a]'[c'l—-a'(c‘))

h=(1.0), "’—<— A"iﬂ(s.,c‘) P TAA (s, ©) !VTmJ[_e]TZ'ﬁ

i.e. the singular point (s, ¢’} is a saddle point. From the theorem of the behaviour of traject-
ories near a saddle point /13/ it follows that the required field trajectory is an unsteady
whisker of the saddle and touches the eigenvector &k, By virtue of condition 2) proved above,
¢ <0 and the motion along the trajectory in the neighbourhood of the singular point is in
the direction of vector hy when s >0, i.e., in some neighbourhood of the singular point

es < 0.

Let us consider the trajectory pattern in the plane (s F). Since ¢ <0, the trajectory
lies above the straight line F—F,= V(s —s). Hence, as follows from (3.17), along the whole
trajectory we have s < 0. The contradiction obtained shows that a trajectory connecting
points 4 and 7 does not exist.

The pairs of points 6 and 5, and 1 and 3 connect an infinite multiplicity of trajector-
ies, i.e. the respective jumps are not admissible. The case of ¢ < ¢t is considered similar-
ly.

Let us consider the s-jumps ¢c-=c¢t. In the solution of the boundary value problem (3.12)
for system (3.17), (3.20) we have c(f)= . problem (3.12) reduces to the boundary value pro-
blem s (—oo) = 57,8 (+o0) = s* for one equation (3.17). Since the curve F = F (s, c}) has only one point
of inflection, condition b) for a solution of the boundary value problem to exist for one
ordinary differential equation, is equivalent to the conditions

F/ (s B SV < F) (s o)
i.e. there are two s~-characteristic reaching the saturation jumps.
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Sufficiency. We shall prove that when conditions 1)—3) are satisfied, a unique solu-
tion of the boundary value problem s (too) = s, ¢ (400) = c* exists for system (3.17)—(3.20).
That solution together with o (}) expressed in (3.19) is the solution of the boundary value
problem (3.12) for system (3.12)=~(3.15).

From the Hugoniot conditions 1) it follows that the points (s*,¢*) and (s, ¢7) are singular
in system (3.17), (3.20). Two s-characteristics must reach the s~jumps. This implies con-
dition b) for Eq.(3.17), when () =c%, i.e., a solution s(}) of the boundary value problem
s(foo) = st exists. This solution together with ¢ () =¢t for system (3.17), (3.20) is the
solution required.

Let ¢ s=¢t. Condition 2) implies condition b) for Eg.(3.20), i.e. a solution of the
boundary value problem ¢ (— o) = ¢, ¢ () = ¢* exists for it. From condition 2) it also follows
that the c-characteristic velocity in the zone ahead of the jump is not greater than Vv and
in the zone behind the jump it is not less than V. Consequently, it follows from condition
3) that one s-characteristic reaches the c~jump. The jump belongs to one of the types (Fig.
Y (s7 > 55)s (4= 55)y (51— s0)

The proof that a solution exists for all types of jumps involves investigating the be-
haviour of system trajectories in the phase plane (s, ¢).

Consider the type (ss— s). The matrix of the linearized system in the neighbourhood of
the point (s, ¢t) has two eigenvalues

= Flenen) =¥ = lalle]—a'(e)
i o e EE S O TORCAGE
to which correspond two eigenvectors
Folsmet)  Fl(s e)—V  [a]fe]t— o (¢*)
= = —_— c —
hl = (1, 0)’ h‘z < A°A (S-,, C*‘) ’ AOA (S-“ C+) V‘t [al [c]-l-a’ (c+))

i.e. the singular point (s, ¢*) is a saddle. Consider the steady whisker along which ¢ <0.
We direct §— — oo along it. Then c¢—¢.

It is necessary to prove that s—s. Let us assume the opposite. If Ver < (° 4 [a}[e] ™)1,
then point 6 is a unique singular point of the system when (= . Hence from the above as-
sumption it follows that the limit of s(}) does not exist as f— —oo. If Vg > (s° + la] [eJH) 1,
then for c¢= ¢ apart from point 6, one more singular point 4 of the system exists. However,
as shown above, a continuocus trajectory connecting points 4 and 7 does not exist. In this
case the assumption implies that the limit of s(t) as f— — « does not exist. Since the
quantity s(§ is limited, it follows from here that it is not monotonic in any neighbourhood

e —¢|<e, i.e. in any such neighbourhood (or t < —N,) there exist on the trajectory a
point at which s =0.

Let us consider the pattern of the trajectory in the (s, /) plane. It follows from the
above that in any neighbourhood of point 6 a point of intersection of the trajectory with the
straight line F — F (s, ¢) = V(s —s) exists. This means that in the phase plane of the system,
in any neighbourhood of point 6, a point exists that belongs to the trajectory. The matrix
of the linearized system in the neighbourhood of point & has two eigenvalues

Pl (s =V = o[ —a' ()
M e Y M e

i.e. that point is an unstable node. Then the statement that the limit of s(}) does not
exist as {— — o contradicts the theorem on the behaviour of the trajectories in the
neighbourhood of the unsteady node /13/.

It follows from the above reasoning that the trajectory considered here is a unique
trajectory connecting peints 6 and 7.

The existence and uniqueness of the trajectories linking points 4 and 5, and 1 and 2
is proved similarly.

The conditions for the discontinuity to be admissible obtained above are not only neces-
sary, but also, sufficient to construct the unique selfsimiliar solution of the Riemann
problem of the decay of an arbitrary discontinuity for the system of equations (1.1) and (1.2)

In solution (2.3) of the problem of the decay of discontinuity (2.1) all discontinuities
are admissible (2.4) the jump (s, —ss) is present. The segment connecting points [¢7, a (¢7)}
and [c¢",a (¢*)] in the (c,a) plane intersects the curve a (), which contradicts condition 2)
of the admissibility of the discontinuity (Fig.2). Solution (2.3) is true.

The criterion obtained for the admissibility of the discontinuity is a well-known general~
ization of the concept of a wave adiabatic compared with the condition for the stability of
the discontinuity inthe Lax form /5,6/. Condition 3) of the theorem is the well-known con-
dition for the evolution of the discontinuity, which ensures the existence of solution of the
linearized problem of the interaction of a small perturbation with the discontinuity /8,11/.
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Condition 2) of the thecrem is a supplementary condition &t the discontinuity obtained as the
condition for the structure (3.1l) to exist. This condition means that the sorption process,
is undirectional, i.e. that in the neighbourhood of a discontinuity either a sorption process
a; >0 or a desorbtion process a; <C 0 occurs., Condition 2) of the theorem can be rephrased
thus: the discontinuity (5, ¢") — (5%, ¢*) is admissible, if the points (s7, ¢7) and (5%, ¢*) can be
connected by-a continuous curve (sy, ¢y} on which the Hugoniot conditions for the jump (s7, ¢) —
(s, cy) are satisfied, and the velocity V for any n is not less than the velocity V of the
jump (57, ¢7) = (s*, ¢*), i.e.

VazzV (3.21)

If condition (3.21) is not satisfied, then in solvingthe non-linearized problem of the
interaction of the discontinuity with small perturbations an inversion of the perturbation
front occurs before the perturbation reaches the discontinuity.

4, Admissibility of a discontinuity in more complicated systems. We can
now consider a thermodynamically unstable system in order to obtain the conditions for a
discontinuity of many systems of equations of underground physico-chemical hydro-gasdynamics
to be admigsible. We shall give a few examples.

The process of two-phase filtration with an active admixture, soluble in both phases, is
defined by the system of equations of phase-mass balance (1.1) and admixture-mass balance.

2 [es+ 9(©) (1 —9)] + = [F + 9(0) (1 —F)]=0 (4.1)

where @ (¢)is the equilibrium concentration of admixture in the second phase. 1If ¢ (¢) has the
form shown in Fig.2, problem {2.1) admits of two selfsimilar solutions, when ¢ (¢)is more
complex it has three or more solutions.

To obtain the supplementary conditions at the discontinuity we introduce into Egs.(l.l)
and (1.2) a capillary pressure jump similar to (3.1), and replace the equation ¢ = ¢ {c) by
the eguation of the kinetics of the distribution of the admixture among the phases

99 c—y

= =0 (4.2

when A-»0 on the discontinuity (3.11) of system (1.1}, (4.1) we obtain the Bugoniot
conditions and the stability conditions. They are equivalent to conditions 1) and 3) of the
theorem and to equality of the sign of the equilibrium and running concentration ¢ and the
sign of the difference (¢~ — c¢*).

The process of petroleum displacement by a solvent is described by a system of equations
of two-phase three-component filtration /14/

Srlesto@t =91+ 2 [F + o) (t — ] =0 4.3
L0+ 9O =9+ = [0 F +%() (1 —F)}=0

where c and o are the concentrations of the solvent in the water and petroleum phases, and @
and ¢ are the concentrations of admixture in the water and petroleum phases. Changing to the
unknowns Cw =@ ()s+v () (1 —s) and Uw =@ (c) F + Yy {¢) (1 — F), we obtain

8Cq " Uy Oy, ©) —0 X 4 Ugr + Bl a—c—-O

Fr 3z =Y T Ty P ez

afc) =(c—o}eg—V)* Bl)=0—P(c—o)e—¥)*

I1f the form of the function P (&) is that shown in Fig.2, the problem of discontinuity
decay has two Lax stable selfsimilar solutions. Supplementary conditions at the discontinu-
ity are cobtained by introducing into system (4.3) a capillary jump and taking into account
the kinetics of the solution process.

The discontinuity in system (4.3) is admissible, if conditions 1) and 3) of the theorem
are satisfied and, also, the sign of the difference ¢  — ¢" is the same as that of the expres-
sion 7 + [pie — &7} {*1™ — B (a).

For the systems considered here the Hugoniot conditions and the stability conditions en-
sure the existence and unigueness of a selfsimilar solution of the problem of arbitrary dis-
continuity decay. The proof of this reduces to the problem of clasaifying the types of
configurations for an arbitrary discontinuity decay /3/ and to proving the uniqueness for
each type as in /6&/.

The authors thank L.I. Sedov for his interest, and A.G. Kulikowskii and A.A. Barmin for
discussing the results.
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ON THE ASYMPTOTIC THEORY OF THE THREE-DIMENSIONAL FLOW OF A
HYPERSONIC STREAM OF RADIATING GAS AROUND A BODY”

V.N. GOLUBKIN

The three-dimensional flow of a hyersonic stream of ideal gas round bodies
of arbitrary thickness allowing for radiation at high temperatures is
investigated using the method of a thin optically transparent shock layer,
which is a generalization of the well-known method of a thin shock (boundary)
layer /1/. Using the fundamental property of the gas in the thin shock
layer, which expresses the conservation of the ratio of the stream compon-
ent of vorticity along streamlines to the density of the gas /2,3/, an
analytic solution is cobtained of the non-linear problem of the flow round

a body bounded by a surface of zero total curvature. The distribution of
the radiation heat flux to the body is determined. The effect of radiation
on the flow of gas is considered, as an example, in the neighbourhood of
the plane of symmetry of a conical body at the angle of attack.

The flow of a hypersonic stream of radiating gas round a bedy for the plane and axisym-
metric cases has been studied in numerous papers {see /4,5/ and the bibliography there).
Recently the first results of a numerical calculation of the three-dimensional hypersonic flow
of a selectively radiating gas mixture over a blunted body were obtained in /6/. Two-dimen-
sional flow round bodies was considered in /7,8/ using the method of a thin shock layexr /1/.
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