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ABSTRACT: Buildup and stabilization of external filter cake is a well-known phenomenon in several environmental and
industrial applications. Significant decline of the tangential rate along thick intervals in lengthy vertical wells yields a nonuniform
external filter cake profile. We derive the mechanical equilibrium equations for the stabilized cake profile accounting for
electrostatic particle−rock interaction, varying permeate factor, applying the torque balance to describe cake equilibrium, and
calculating the lever arm ratio using Hertz’s theory for contact deformation of cake and particles. An implicit formula for the cake
thickness along the well is derived. Two regimes of the stabilized cake buildup correspond to low rates, where the cake starts
from the reservoir top, and for high rates, where the cake is formed in the lower well section only. The sensitivity analysis shows
that the drag and permeate forces are the competitive factors affecting cake thickness under varying Young’s modulus, rate, and
salinity. The main parameters defining external cake profile are injection rate, cake porosity, water salinity, and Young’s modulus.

1. INTRODUCTION

Well-injectivity decline has been widely reported for fresh and
hot water storage in aquifers, for industrial waste disposal,
during well drilling and completion, for sea- and produced-
water injection into oilfields, and geothermal reservoirs.1−7 The
phenomenon is explained by deep bed filtration of solid and
liquid particles associated with the injected fluids causing
permeability decline. In addition, the formation of external filter
cake on the sand-face wall causes additional hydraulic resistance
to the injected water. Similar processes occur during well
drilling and completion.5,6

The decision making, planning, and design of the above
environmental and petroleum production processes, determin-
ing optimal particle sizes, concentrations, injection rates, etc.,
strongly depend on the results of laboratory-based mathemat-
ical modeling.
For the case of low concentration of the retained particles,

the filtration and formation damage coefficients are constant,
the governing equations are linear, and the problem for axi-
symmetric suspension injection with low retention concen-
tration allows for exact analytical solution.8−12 The suspension
concentration around the well is steady state, yielding linear
growth of the retained concentration and the pressure
drawdown with time under constant injection rate. The
model parameters, which are necessary for well behavior
prediction, can be determined from the so-called three-point-
pressure corefloods.13

More sophisticated mathematical models for suspension−
colloidal transport in porous media include random-walk
equations,14−17 population-balance models,18−22 trajectory
analysis,23,24 and direct pore scale simulation.25

Incompressibility of the external cake results in the analytical
model, predicting linear growth of pressure drop versus the
amount of injected particles.11,13,26 Cake compressibility and
particle recompaction in the cake in the course of the pressure

drawdown increase cause nonlinear pressure drawdown
growth.27,28

Cake stabilization after a transient buildup has been observed
during well drilling. To model this phenomenon, force balance
and torque balance models for the cake mechanical equilibrium
have been utilized.5,6,29−31

It was found that stabilized cake thickness and consequent
well index are strongly rate-dependent.32 The tangential rate in
long vertical wells in thick reservoirs declines from the injected
value on the reservoir top to zero at the bottom. Therefore,
stabilized cake thickness and overall hydraulic resistance
significantly increase with depth. However, the works reported
in refs 32 and 33 consider a constant thickness cake in “short”
wells only.
Nonuniform cake thickness on the wall of a long vertical

injector is modeled in ref 34. However, the electrostatic force,
which is dominant with injection of high salinity water, is
ignored. The permeate factor is assumed to be constant, which
can vary significantly.35 The model uses the force balance as a
mechanical equilibrium condition, resulting in introduction of
the friction force with the empirically determined Coulomb
friction coefficient, which is not always available. The model has
been solved numerically. The analogous work for nonuniform
cake in fractured well is presented in ref 36.
The mathematical model for nonuniform cake profile in long

wells, presented in the current work, is free of the above-
mentioned shortcomings. The electrostatic force as calculated
using the Derjaguin−Landau−Verwey−Overbeek (DLVO)
theory is included in the microscale particle−cake interaction
model and is proven to be one of the dominant forces. The
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varying permeate factor is included in the model; the modeling
exhibits its high effect on the cake profile. Using the torque
balance for mechanical equilibrium of the external cake and
calculating the contact particle−grain area using Hertz’s theory
allows the reduction of the number of empirical model
constants by one if compared with the force−balance model.
Other eliminations of the model parameters come from
neglecting the lifting force and small contact particle−cake
deformation areas typical for sandstones. Despite not adopting
several simplifying assumptions of refs 34 and 36, an analytical
model is derived for calculation of the cake thickness. It was
found that depending on the injection rate, the cake can be
formed on the overall well surface or only on its lower part.
The structure of the present paper is as follows. Section 2

presents the torque balance as the mechanical equilibrium
condition for stabilized cake. Equations for varying cake profile
are derived in section 3 from the torque balance and mass
conservation. The equations are solved analytically in section 4,
allowing for multivariant sensitivity study in section 5. The
discussion of main parameters defining the cake profile form
and the model applicability concludes the paper.

2. MECHANICAL EQUILIBRIUM OF STABILIZED CAKE
A particle on the cake surface with streamlines of the injected
water in the well column is shown in Figures 1 and 2. Water

enters the reservoir with simultaneous placement of suspended
particles on the cake surface. The deposited particle is subject
to the electrostatic, drag, permeate, lifting, and gravitational
forces, denoted by Fe, Fd, Fp, Fl, and Fg, respectively.

32,37,38 In
the case of rolling, the external moment of surface stress ME
adds to the detaching torques. The torques of electrostatic and
permeate forces attach the particle to the cake surface while the
drag, gravitational, lifting, and external stress torques detach the
particle.
The condition of mechanical equilibrium of the particle on

the cake surface is the equality of the detaching and attaching
torques

+ + = +F F l M F F l( ) ( )d g d E p e n (1)

which correspond to the left- and right-hand sides of eq 1,
respectively. Here, ld and ln are lever arms for detaching and
attaching (normal) forces, respectively (see Figure 2).
For typical values of well rates and particle sizes, the lifting

force is negligible if compared with other forces, so it is not
accounted for in mechanical equilibrium eq 1. The expressions
for the above forces and torques are presented in Appendix S1
of Supporting Information. The electrostatic forces depend on
the separation distance between the particle and surface, see eqs
S-2−S-4 in Supporting Information. If the attaching torque
exceeds the detaching torque, the separation distance decreases
until equilibrium (eq 1) is established. The increase of the
detaching torque, where it is lower than the attaching torque
with the maximum value of the electrostatic force, increases the
separation distance until the new equilibrium. If the detaching
torque exceeds the attaching torque with the maximum value of
the electrostatic force, the particle leaves the cake and starts
rolling along the cake surface. Therefore, the condition of the
cake mechanical equilibrium is eq 1 with the maximum value of
the electrostatic attractive force (Fe).
We now consider mutual deformation of the particle and the

rock under the attachment condition (Figure 2). The
deforming force is the total of electrostatic and permeate
forces. The radius of the contact area, ln, is determined from
Hertz’s theory6,39−42

=
+⎛

⎝
⎜⎜

⎞
⎠
⎟⎟l

F F r

K

( )
n

p e s
1/3

(2)

where the composite Young’s modulus, K, depends on the
Poisson’s ratio, σ, and Young’s modulus, E, of the particle and
of the cake:
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Here, subscripts s and c refer to particle and cake, respectively.
Schechter shows that for rigid particles like silica or quartz,

the radius of the contact area is significantly smaller than the
particle radius.6 Therefore, further in the text, the detaching
lever arm, ld, is assumed to be equal to the particle radius (see
Figure 2).

Figure 1. Schematic of nonuniform external filter cake profile.

Figure 2. Schematic of forces and lever arms at particle dislodgment
moment.
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3. EQUATIONS FOR CAKE PROFILE hC(Z)
Let us derive equations for the stabilized cake profile. The main
assumptions are incompressibility of the fluid, rock, and cake;
torque balance as a mechanical equilibrium condition for the
particle on the rock surface; linear kinetics equation for the
particle injected fluid with the constant filtration coefficient;
and constant formation−damage coefficient.5−7,21

The difference between tangential flow rates, Q, in two cross
sections along the well is equal to water volume injected
through the interval between the cross sections. Therefore, the
volume balance for incompressible fluid is

= −
−

Q
z

q
d
d r h z( )w c (4)

where q is the flow rate per unit length of the reservoir, rw the
well radius, and hc the cake thickness.
Using the eq S-9 in Supporting Information for external

moment ME, and substituting the expression for contact area
radius ln (eq 2) along with the assumption that ld = rs into
torque balance eq 1 yields
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The dimensionless parameters for tangential flow rate, cake
thickness, and reservoir thickness are defined as
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respectively, where Q0 is the injection rate and Hf is the
thickness of reservoir. Substituting expressions for drag,
gravitational, and permeate forces (eqs S-8−S-13 in Supporting
Information) and expression for permeate rate (S-23) into eq 5
yields the following dimensionless relationship:
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Expressing the dimensionless tangential flow rate, Q̃, from
torque balance eq 7 yields
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Introduction of dimensionless constants A, B, C, and D
significantly simplifies eq 8 as
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− ̃ − − ̃ +

+

− ̃ − − ̃

⎛
⎝⎜

⎞
⎠⎟Q C

A
h h B

h D h

(1 )( ln(1 ) )
1

(1 ) (1 )

c c

4/3

c
3

c
3

(9)

where the four dimensionless groups are
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Substitution of the permeate rate expression (eq S-23 in
Supporting Information) into volumetric balance eq 4 results in
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Substituting the tangential rate expression (eq 9) into
volumetric balance equation (eq 11) results in the following
ordinary differential equation:
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The obtained ordinary differential equation (eq 12)
determines the dimensionless cake thickness profile h̃c(z).
The formulas for the cake thickness profile, based on solutions
of eq 12, are derived in the next section.

4. EXPRESSIONS FOR CAKE PROFILES
Let us introduce the critical injection rate resulting in zero cake
thickness on the well wall. The critical rate is determined from
eq 9 as
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Let us first consider the case in which the injection rate is below
its critical value. In this case, Q̃ is equal to one on the left-hand
side of eq 9, which determines cake thickness at the top of the
reservoir:32
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It provides the initial condition (boundary value) for the
ordinary differential equation in eq 12:

̃ = ̃ = ̃z h h0: c c0 (15)

Separating variables in the ordinary differential equation in
eq 12 and integrating both sides accounting for initial condition
given in eq 15 yields
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Equation 16 provides the implicit expression for the cake
profile h̃c(z), in which the constant h̃c0 is determined from
transcendental eq 14.
Now let us discuss the case in which the injection rate is

above its critical value. In this case, the cake thickness remains
zero from the reservoir top down, until the depth zcr where the
tangential rate reaches the critical value. First, we determine
how the tangential rate decreases with depth under the absence
of the cake. Substituting eq S-23 in Supporting Information
into eq 4 and applying dimensionless variables (eq 6) yield
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Integrating eq 17 with initial condition Q̃(z ̃ = 0)=1 results in

π
μ

̃ = −
+

Δ
̃Q

kH
Q mt

p
z1

2
(1 ) ln r

r
cr

f

0 tr
cre

w (18)

The critical depth, zc̃r, is determined using the expression for
the critical rate (eq13)
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The initial condition for the ordinary differential eq 12 in the
case of high rate is formulated as

̃ = ̃ ̃ =z z h: 0cr c (20)

Separating variables in eq 12 and accounting for the initial
condition (eq 20) yield
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In eq 21, C, D, and G are calculated from eqs 10 and 11 by
replacing Q0 and Hf with Qcr and Hf − zcr, respectively.
The analytical model in eqs 16 and 21 describes nonuniform

cake profile formed by drag, electrostatic, permeate, and
gravitational forces along with external surface stress torque.
The calculations are presented in the next section.

5. EFFECTS OF PHYSICAL PARAMETERS ON CAKE
PROFILE

In this Section, the analytical model (eqs 16 and 21) is used to
investigate the effects of injection rate, cake porosity, particle
Young’s modulus and Poisson’s ratio, pressure drawdown, and
salinity on the cake thickness profile.

Figure 3. Total electrostatic interaction energy: A132 = 2 × 10−21 J, ζ potential values are −12 and −27 mV for salinities 0.51 and 0.17 M,
respectively.
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The electrostatic force is calculated using DLVO theory (see
S-1−S-7 in Appendix S1, Supporting Information). The
following electrostatic constants are chosen for the conditions
of seawater injection into a sandstone reservoir: Hamaker
constant corresponds to quartz−quartz interaction in aqueous
environment and sandstone reservoirs, A132 = 2.0 × 10−21 J (see
refs 43−46); ζ-potentials for quartz particles and cake matter,
ζ1= ζ2= −12 mV, correspond to seawater salinity of 0.51 M of
Na+ equivalent;7,43,47 the permittivity of free space (vacuum) is
ε0 = 8.854 × 10−12 C2 J−1 m−1; εr = 78.0 is the relative
permittivity for water (see Khilar and Fogler7 and Elimelech et
al.47); Boltzmann constant, kB = 1.3806504 × 10−23 J/K; atomic
collision diameter in Lennard-Jones potential is σLJ = 0.5 nm
(Khilar and Fogler,7 Das et al.48); the inverse Debye length, κ =

2.35 × 109 m−1, is calculated by (eq S-7 in Supporting
Information) for seawater with Z = 1 for sodium chloride and
seawater salinity Cm = 510 mol/m3. For the case of medium
salinity of 0.17 M, the inverse Debye length becomes κ = 1.35
× 109 m−1.
The total energy potential for electrostatic particle−rock

interaction is shown in Figure 3 for high and medium salinities
and two particle sizes. High salinity provides strong attraction
for both size particles with favorable deposition conditions. The
medium salinity also provides favorable conditions for particle
deposition on the cake surface; however, the energy minimum
is shallower, which leads to formation of thinner external filter
cake.

Figure 4. Ratio of permeate, drag, gravitational, and lifting forces to electrostatic force for (a) rs = 0.5 μm and (b) rs = 3 μm (μ = 0.001 Pa S; ρw =
1000 kg/m3; ρs = 2600 kg/m3; rw = 0.1 m; ϕc = 0.1; Hf = 100 m; Q0 = 1.157 × 10−4 to 0.0347 m3/s).
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The tangential flux through a well cross-section is expressed
via dimensionless particle Reynolds number, defined as

ρ
μ

=
u r

Ret
w t s

(22)

Figure 4 shows the comparison of permeate, drag, gravitational,
and lifting forces with electrostatic force. When the well rate Q0
varies from 1.157 × 10−4 to 0.0347 m3/s, constant particle size
rs = 0.5 μm, water density ρw = 1000 kg/m3, and viscosity μ =
0.001 Pa·s, Reynolds number varies from 2 × 10−8 to 6 × 10−6

(Figure 4a). For rs = 3.0 μm, the Reynolds number varies from
7 × 10−6 to 2 × 10−4 (Figure 4b). Two salinities of seawater,
0.51 M and medium salinity 0.17 M, are considered. In this
figure, tangential rate is assumed to be half of the injection rate
because of rate variation along the injection interval.
For all the cases,the lifting force is negligible if compared

with the electrostatic force. Because they both act in the same

direction, the lifting force is neglected in the model for cake
equilibrium (see eq 1). Gravitational force is negligible if
compared with electrostatic force for all the cases except for the
case of medium salinity and large particles; the ratio Fg/Fe
varies from 10−4 to 10−1. However, the lever arm for
gravitational force exceeds that for normal force by 102−103
times, so the torque of gravitational force has the same order of
magnitude as that of electrostatic force. Therefore, gravity must
be accounted for in the mechanical equilibrium model (eq 1).
Permeate and drag forces have the same order of magnitude as
the electrostatic force.
Now let us analyze how the main factors affect the cake

thickness and profile along the well. The following data are
used for calculations: Q0 = 0.0116 m3/s, σ = 0.2, E = 40 GPa, rs
= 2 μm, Hf = 100 m, pw = 27.6 MPa, pres = 13.8 MPa, ρw = 1000
kg/m3, ρs = 2600 kg/m3, salinity = 0.51 M, k = 10−13 m2, kc =

Figure 5. Effect of the injection rate on cake thickness profile.

Figure 6. Effect of filter cake porosity on the cake thickness profile.
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1.1 × 10−16 m2, ϕc = 0.1, re = 500 m, rw = 0.12 m, μ = 0.001 Pa·
s, λ = 25 m−1, β = 300, α = 0.09, c0=1 ppm, ϕ = 0.3.
To investigate the effect of injection rate, Q0, on the cake

thickness, three values of injected rate are considered: Q0 =
0.0058, 0.0116, and 0.0347 m3/s. The injection rate increase
causes the increase of detaching drag force (eq S-8 in
Supporting Information) and attaching permeate force (eq S-
10 in Supporting Information), exhibiting two competitive
effects. However, Figure 5 shows that the higher injection rate
leads to thinner filter cakes. Therefore, the effect of drag force
dominates over the permeate force effect. This is explained by
the low value of the lever arm ratio, ln/ld, causing higher torque
for the detaching drag force.
Blue and red curves in Figure 5 correspond to injection rate

lower than the critical value Qcr. As a result, the cake is built up
from the top of the reservoir z/Hf = 0. The critical rate, as
calculated from eq 13, is equal to 0.025 m3/s. The cake profile
is determined from eq 16. The rate corresponding to the black

curve is above the critical value; therefore, the cake is built up in
the lower well section. The profile of cake is given by eq 21.
Figure 6 shows the effect of filter cake porosity on the cake

thickness profile. Because small variation of particle form can
significantly affect the cake porosity,49 this effect is important
for well behavior prediction. As follows from the calculations
using the Kozeny−Carman equation50,51 (eq S-12 in
Supporting Information), increase in the cake porosity ϕc =
5%, 9%, and 13% corresponds to ratios kc/rs

2 = 3.08 × 10−6,
1.95 × 10−5, and 6.45 × 10−5, respectively. The increase of ratio
kc/rs

2 can be interpreted as cake permeability increase under the
same particle size. The higher the cake permeability, the larger
the rate q, the greater the permeate force (eq S-10 in
Supporting Information), and the thicker the cake. Simulta-
neously, the higher the rate q, the lower the tangential rate (Q),
the smaller the drag force (eq S-8 in Supporting Information),
and the thicker the cake, i.e., for the example considered, the
effects of both forces cause the same result of thicker cake for
greater cake porosity.

Figure 7. Effect of Young’s modulus on cake thickness profile.

Figure 8. Effect of Poisson’s ratio on cake thickness profile.
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The effect of Young’s modulus on cake thickness is presented
in Figure 7. The cake profiles are compared for three Young’s
modulus values: 20, 40, and 80 GPa. The higher the Young’s
modulus, the smaller the contact deformation area size ln (see
refs 6 and 39−41), the smaller the attaching torque, and the
thinner the cake. As shown in Figure 7, this effect takes place in
the upper part of the well. In the lower well section, the cake
thinning causes increase of the normal rate (q), decrease of
tangential rate (Q), and reduction in the drag force (eq S-8 in
Supporting Information). It results in a thicker cake profile.
The qualitative effect of Poisson’s ratio on the cake profile is

the same as that of Young’s modulus. The greater the Poisson’s
ratio, the smaller the normal lever arm ln (see refs 39−41). The
black curve in Figure 8 is located below the other curves in the
upper well section and above the other curves in the lower
section of the well. However, the quantitative effect of Poisson’s
ratio on the cake thickness is negligible.
Figure 9 shows that the higher the pressure drawdown, the

thicker the cake. Indeed, the increase of Δp results in higher

normal rate, larger attaching permeate force (eq S-10 in
Supporting Information), and thicker cake. Simultaneously,
tangential rate decreases along with the drag force, leading to
the thicker cake as well. The example studied in this work
corresponds to water injection into the reservoir with intensive
pressure depletion, where the drawdown increases under the
constant injection rate.
Moreover, the increase of salinity leads to the increase of

attractive attaching electrostatic force, resulting in the thicker
cake. Figure 10 exhibits this effect in the upper well section.
Three curves correspond to ζ-potentials of ζ1 = ζ2 = −12, −18,
and −27 mV for salinities of 0.51, 0.34, and 0.17 M,
respectively. On the other hand, the larger cake thickness
results in a smaller normal rate (q), and a larger tangential rate
(Q). This yields larger detaching drag force and thinner cake
(blue curve is above the red one in the lower well section).

Figure 9. Effect of pressure difference on cake thickness profile.

Figure 10. Effect of water salinity on cake thickness profile.
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6. DISCUSSION

The presented model assumes a homogeneous reservoir.
However, the exact formulas presented in eqs 16 and 21 for
cake profile can be extended for layer-cake reservoir k = k(z)
with isolated layers.
The developed model can be modified for the case of

fractured injector. Assume constant pressure in the fracture and
formation of the uniform cake with the constant thickness over
the vertical. The flow in the reservoir near the fracture surface
becomes one-dimensional and linear. The flow description has
the same structure as eqs S-14−S-23 in Supporting
Information, changing the axi-symmetric flow using coordinates
(r, t) to the linear−parallel flow (x, t) (see ref 9). It changes the
leak-off rate in eq 4 and expressions for permeate velocity in eq
7. The modified implicit solution (eq 21) presents cake
thickness variation along the flow in the fracture.
Another approach to filter cake formation during the

injection into fractured wells is proposed in ref 52. The
model is developed for extrusion of the polymer gels during the
injection and can be applied for formation of external filter cake
during injection of water with solid particles. The traditional
cake model assumes the formation of uniform cake on the
fracture wall (see refs 10, 11, 26, 32, and 33), while the
wormhole flow structure in the fracture is assumed in ref 52.
The model describes formation and development of wormholes
and their healing with time by newly injected particles. The
flow and cake geometry in the wormhole model is essentially
three-dimensional.
The main elements of the mathematical model (eqs 1−5)

torque balance as a condition for mechanical equilibrium of the
cake, expressions for different forces and lever arm ratio, and
Hertz’s theory to determine the particle−rock contact area
are verified by the laboratory tests.32,33 In previous papers on
stabilized cake in “short” wells, the model has also been verified
by the analysis of several oil field wells.32,33 The only new
element of the basic model for stabilized cake in “long” wells
developed in the present work is a common volumetric balance
(eq 4), which does not require validation.
However, the comparison between cake profiles as obtained

from the mathematical modeling and from direct measure-
ments in controlled laboratory experiments or in wells would
significantly enhance the reliability of the developed model. Yet,
to the best of our knowledge, the measurements of cake
thickness variation in long wells are not available in the
literature.
The cake profile along the well determines the well index;

thus, its reliable modeling is important for well behavior
prediction. However, the information about particle properties
such as size, shape, Young’s modulus, and Poisson’s ratio is
often unavailable under field conditions. Existence of numerous
poorly determined model parameters makes the prediction
unreliable. The formulation of the particular cases, where the
number of model parameters can be reduced, increases the
prediction reliability.
As is shown in section 5, the lifting force can be neglected, so

the determination of the empirical lifting factor is not necessary.
As is shown in ref 32, the lever arms ln and ld in eq 1 are not

randomly distributed as in the case of an asperous surface, but
are defined by the elastic particle and rock properties. The
normal lever arm (ln) can be determined as a size of the contact
deformation area using Hertz’s theory. For high Young’s
modulus values that are typical for sandstone rocks and

particles, the contact deformation area is small (ln ≪ ld),
allowing us to assume that the tangential lever arm (ld) is equal
to the particle size (rs). The above speculations permit further
decrease of the empirical model parameters by two.

7. CONCLUSIONS
Derivation of the equation for nonuniform cake profile in long
wells accounting for electrostatic force, for varying permeate
correction factor, and using Hertz’s theory for lever arm ratio
calculations allows us to draw the following conclusions:

• The forces affecting thickness of external filter cake are
drag, electrostatic, permeate, and gravitational forces
together with the external torque (moment). Lifting
force can be neglected.

• Neglecting the lifting force yields reduction of the
number of model coefficients by one (by the lifting
factor).

• Using Hertz’s contact deformation theory for calculation
of the normal lever arm further decreases the number of
model coefficients by one (by the normal lever arm) if
compared with the torque model for asperities.

• For sandstone minerals with high Young’s modulus,
where the contact area size is significantly smaller than
the particle radius, the tangential level arm is
approximately equal to the particle radius, also yielding
the reduction of the number of model constants by one
(by the tangential lever arm).

• Nonuniform profile of external filter cake on well wall in
thick reservoirs during water injection or drilling can be
described by an implicit formula.

• There exists a critical well rate corresponding to zero
cake thickness. If the rate is below the critical value, the
external cake is built up in the overall injection interval. If
the rate is above the critical value, there is no cake in the
upper part of the wellbore; the cake starts at the depth
where the tangential rate reaches the critical value.

• The most significant factors affecting cake thickness are
injection rate, cake porosity, water salinity, and Young’s
modulus.
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■ NOMENCLATURE

A132 = Hamaker constant, ML2T−2, J
Cm = Molar concentration of ith ion, mol L−3,mol m−3

c0 = Injected suspended particle concentration, ppm
E = Young’s modulus, ML−1T−2, N m−2

Es = Young’s modulus of solid particle, ML−1T−2, N m−2

e = Electron charge, C
Fd = Drag force, MLT−2, N
Fe = Electrostatic force, MLT−2, N
Fg = Gravitational force, MLT−2, N
Fl = Lifting force, MLT−2, N
Fp = Permeate force, MLT−2, N
h = Separation distance, L, m
hc = Cake thickness, L, m
h̃c = Dimensionless stabilized cake thickness
h̃c0 = Dimensionless stabilized cake thickness at z ̃ = 0
Hf = Reservoir thickness, L, m
j = Impedance
K = Composite Young’s modulus, ML−1T−2, N m−2

k = Reservoir permeability, L2, m2

kB = Boltzmann constant, ML2T−2K−1

kc = Cake permeability, L2, m2

ld = Lever arm for tangential forces, L, m
ln = Lever arm for normal forces, L, m
m = Slope of impedance growth during deep bed filtration
ME = External moment, ML2T−2, N m
n∞ = Bulk number density of ions, L−3, m−3

pc = Pressure at r = rw, ML−1T−2, N m−2

pres = Reservoir pressure, ML−1T−2, N m−2

pw = Well pressure, ML−1T−2, N m−2

Q = Tangential rate along the well, L3T−1, m3 s−1

Q̃ = Dimensionless tangential rate along the well
Q0 = Injection rate, L3T−1, m3 s−1

q = Permeate (normal) flow rate, L3T−1, m3 s−1

Ret = Particle Reynolds number
r = Radius, L, m
re = Reservoir drainage radius, L, m
rs = Particle radius, L, m
rw = Well radius, L, m
T = Absolute temperature, K
t = Time, T, s
ttr = Dimensionless transition time (PVI)
up = Permeate velocity, L T−1, m s−1

ut = Tangential velocity at particle center, LT−1, m s−1

V = Energy of interaction, ML2T−2, J
Zi = Valence of ith ion
z = Distance from top of the reservoir, L, m
z ̃ = Dimensionless distance from top of the reservoir

Greek letters

α = Critical porosity fraction
β = Formation damage coefficient
εr = Relative permittivity of water
ε0 = Free space permittivity, C2J−1L−1

κ = Inverse Debye length, L−1, m−1

λ = Filtration coefficient, L−1, m−1

λcw = Characteristic wavelength of interaction, L, m
μ = Dynamic viscosity, ML−1T−1, kg m−1s−1

νi = Number concentration of ith ion, L−3, m−3

σ = Poisson’s ratio
σs = Poisson’s ratio of solid particle
σLJ = Atomic collision diameter, L, m
ρw = Water density, ML−3, kg m−3

ρs = Particle density, ML−3, kg m−3

Δp = Pressure drawdown, ML−1T−2, N m−2

Δρ = Density difference between particle and water, ML−3,
kg m−3

σLJ = Atomic collision diameter, L, m
ϕ = Porosity
ΦH = Permeate force factor
ζ = Zeta potential, ML2T−2, mV
ω = Drag force coefficient

Abbreviation
PVI = Pore volume injected

Subscripts
BR = Born repulsion (for energy potential)
c = Cake
cr = Critical
d = Drag
DLR = Double layer repulsion (for energy potential)
e = Electric
g = Gravity
l = Lifting
i = Index for ions
LVA = London−van der Waals (for energy potential)
n = Normal
p = Permeate
res = Reservoir
s = Solid particle
w = Well
0 = Initial condition (boundary value)
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