A multi-objective optimisation framework for scheduling environmental flow management alternatives in a river reach of the SA River Murray

Joanna M. Szemis, Holger R. Maier and Graeme C. Dandy

Capability and expertise in water addressing water management issues of national significance.
Background Information

- Rivers, wetlands and floodplains have been altered
 - Land conversions
 - Over-allocation of water
 - Construction of barriers (e.g. dams, weirs)

- Altered hydrological regime \rightarrow reduced connectivity
 \rightarrow changed ecology and caused poor health

- Environmental flow management
 - Schedule alternatives (e.g. flow releases)
 - Mimic natural flow regime
 - Key to maintaining ecological integrity

- Timing
- Frequency
- Magnitude
- Duration
- Rate of change
Problem: Scheduling Environmental Flow

- Scheduling environmental flow management alternatives is not an easy task

OPTIMISATION
- Timing
- Frequency
- Magnitude
- Duration
- Rate of change

Management Alternatives
(e.g. flow releases & regulators)

Fixed amount of Environmental Water

System Constraints
(e.g. Qmax)
Optimisation

- Selecting the best solution based on objectives and constraints
- Can solve complex problems with competing objectives and develop a trade-off curve

Optimisation Algorithm (e.g. Ant Colony Algorithm) → Simulation Model (e.g. Hydrological)

Water Research Centre

- Least water allocation solution
- Ecological Outcomes (maximise)
- Water Allocation (minimise)

Dominated solution
Non-dominated solution

Best ecological outcomes solution
Trade-off
Understand the system
Transparency
Presentation Outline

- Optimisation Framework

- Case Study
 - South Australian River Murray
 - Lock 1 and 2

- Analysis Conducted
 - Trade-off
 - Different system constraints
 - Key Results
Framework

Problem Formulation

Select Objective Functions and Identify Constraints

Develop EFMA Schedule

Calculate Objective Function/s

Termination Criteria met?

Optimisation

Yes

Final set of EFMA Schedules

No
Problem Formulation

Murray Flow Assessment Tool

5 year schedule
Monthly

SA Border flow releases
Wetland regulators

Duration and Magnitude

Identify wetlands and floodplains

Identify ecological indicator

Identify time period and interval

Identify Management Alternatives

Identify sub-options
Framework

- Objective Functions
 - Maximise ecological outcomes (MFAT)
 - Minimise water allocation

- Constraints
 - Maximum flow rate at the SA border

- Environmental Flow Management Schedule Development
 - Decision tree graph
 - Sequential nature and conditional dependencies
Framework

- Calculate Objective Functions
 - Simple water balance model for river, wetlands and floodplains
 - Backwater curves
 - Area vs. depth curves (DEM, baseline survey and wetland management plans)
 - Coupled with MFAT

- Selection of Optimisation Algorithm
 - Pareto Ant Colony Optimisation (Doerner et al. 2007)
 - Based on foraging behaviour of ants
 - Can solve non-linear complex problems
 - Construction of solution using a graph
Analysis Conducted

- Two studies conducted

1. Impact of system constraints
 - Maximum flow rate at the border (1,200-3,000 GL/month)

2. Impact of additional regulators
 - Increasing the number of operational wetland regulators

- Impact on optimal trade-off curve
- Impact of effectiveness of various allocations
Impact of system constraints

Temporary wetlands and floodplains are inundated

Breakpoint
Impact of system constraints

- 4000 GL/yr
- 3200 GL/yr
- 2750 GL/yr
- Current
Impact of additional regulators

- 1,200 GL/mth
- 1,800 GL/mth
Impact of additional regulators

- Investigation 1
- Investigation 6
- Investigation 7
- Investigation 3
- Investigation 8
- Investigation 9

Environment (GL/yr) vs. MFAT Score

- 4000 GL/yr
- 3200 GL/yr
- 2750 GL/yr
- Current
Summary

- Scheduling environmental flow management alternatives is a complex problem

- Multi-objective optimisation framework

- Demonstrated using case study in Murray River

- Two studies conducted
 - Maximum flow rates have significant impact
 - Additional regulators reduce the water allocation

- Inform decision making
THANK YOU
• Ecological Response of the wetland and floodplain
 - Murray Flow Assessment Tool (Young et al, 2003)
 - A score given from 0 (poor) to 1 (good)

\[
WVHC = x_1 AHC_w + x_2 RHC_w
\]

where:

\(WVHC\) = Annual Wetland Vegetation Habitat index

\(AHC_w\) = Adult Habitat Condition

\(RHC_w\) = Recruitment Habitat Condition

\(x_1\) and \(x_2\) are normalized weights = 0.5
- Adult Habitat Condition (AHC_w)

$$AHC_w = ID^3 \sqrt{FT_w \times PD \times RD}$$

where:

ID = Inundation Depth

FT_w = Inundation Timing

PD = Depth Duration

RD = Rate of Depth Change