MECHANISMS OF VASCULAR DISEASE:

A REFERENCE BOOK FOR VASCULAR SPECIALISTS

Edited by Robert Fitridge and Matthew Thompson Completely Updated Edition 2011

BARR SMITH PRESS

Mechanisms of Vascular Disease

Mechanisms of Vascular Disease: A Reference Book for Vascular Specialists

Robert Fitridge

The University of Adelaide, The Queen Elizabeth Hospital, Woodville, Australia

Matthew Thompson St George's Hospital Medical School, London, UK

BARR SMITH PRESS

An imprint of The University of Adelaide Press

Published in Adelaide by

The University of Adelaide, Barr Smith Press Barr Smith Library The University of Adelaide South Australia 5005 press@adelaide.edu.au www.adelaide.edu.au/press

The University of Adelaide Press publishes peer-reviewed scholarly works by staff via Open Access online editions and print editions.

The Barr Smith Press is an imprint of the University of Adelaide Press, reserved for scholarly works which are not available in Open Access, as well as titles of interest to the University and its associates. The Barr Smith Press logo features a woodcut of the original Barr Smith Library entrance.

© The Contributors 2011

This book is copyright. Apart from any fair dealing for the purposes of private study, research, criticism or review as permitted under the Copyright Act, no part may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without the prior written permission. Address all inquiries to the Director at the above address.

This CIP cataloguing for this work is as follows;

Mechanisms of vascular disease : a reference book for vascular surgeons / Robert Fitridge, Matthew Thompson, [editors].

- 1. Blood vessels, Diseases.
- 2. Blood vessels, Surgery.
- I. Fitridge, Robert
- II. Thompson, M. M.

For the full Cataloguing-in-Publication data please contact National Library of Australia: cip@nla.gov.au

ISBN (paperback) 978-0-9871718-2-5

Book design: Midland Typesetters

Cover design: Emma Spoehr, based on a diagram by Dave Heinrich of the Medical Illustration and Media Unit, Flinders Medical Centre

Paperback edition printed by Griffin Press, South Australia

Table of Contents

Contributors vii Detailed Contents xi

- 1. Endothelium 1 Paul Kerr, Raymond Tam, Frances Plane (Calgary, Canada)
- Vascular smooth muscle structure and function 13 David Wilson (Adelaide, Australia)
- 3. Atherosclerosis 25 Gillian Cockerill, Qingbo Xu (London, UK)
- 4. Mechanisms of plaque rupture 43 Ian Loftus (London, UK)
- Current and emerging therapies in atheroprotection 79 Stephen Nicholls, Rishi Puri (Cleveland, USA)
- Molecular approaches to revascularisation in peripheral vascular disease 103 Greg McMahon, Mark McCarthy (Leicester, UK)
- Biology of restenosis and targets for intervention 115 *Richard Kenagy (Seattle, USA)*
- 8. Vascular arterial haemodynamics 153 Michael Lawrence-Brown, Kurt Liffman, James Semmens, Ilija Sutalo (Melbourne & Perth, Australia)
- 9. Physiological haemostasis 177 Simon McRae (Adelaide, Australia)
- 10. Hypercoagulable states 189 Simon McRae (Adelaide, Australia)
- 11. Platelets in the pathogenesis of vascular disease and their role as a therapeutic

target 201 Sandeep Prabhu, Rahul Sharma, Karlheinz Peter (Melbourne, Australia)

- 12. Pathogenesis of aortic aneurysms 227 Jonathan Golledge, Guo-Ping Shi, Paul Norman (Townsville & Perth, Australia; Boston, USA)
- 13. Pharmacological treatment of aneurysms 247 Matthew Thompson, Janet Powell (London, UK)
- Aortic dissection and connective tissue disorders 255 Mark Hamilton (Adelaide, Australia)
- 15. Biomarkers in vascular disease 277 Ian Nordon, Robert Hinchliffe (London, UK)
- Pathophysiology and principles of management of vasculitis and Raynaud's phenomenon 295 *Martin Veller (Johannesburg, South Africa)*
- 17. SIRS, sepsis and multiorgan failure 315 Vishwanath Biradar, John Moran (Adelaide, Australia)
- Pathophysiology of reperfusion injury 331 Prue Cowled, Robert Fitridge (Adelaide, Australia)
- 19. Compartment syndrome 351 Edward Choke, Robert Sayers, Matthew Bown (Leicester, UK)
- 20. Pathophysiology of pain 375 Stephan Schug, Helen Daly, Kathryn Stannard (Perth, Australia)

- 21. Postamputation pain 389 Stephan Schug, Gail Gillespie (Perth, Australia)
- 22. Treatment of neuropathic pain 401 Stephan Schug, Kathryn Stannard (Perth, Australia)
- 23. Principles of wound healing 423 Gregory Schultz, Gloria Chin, Lyle Moldawer, Robert Diegelmann (Florida, USA)
- 24. Pathophysiology and principles of varicose veins 451 Andrew Bradbury (Birmingham, UK)
- Chronic venous insufficiency and leg ulceration: Principles and vascular biology 459 *Michael Stacey (Perth, Australia)*

- Pathophysiology and principles of management of the diabetic foot 475 David Armstrong, Timothy Fisher, Brian Lepow, Matthew White, Joseph Mills (Tucson, USA)
- Lymphoedema Principles, genetics and pathophysiology 497 *Matt Waltham (London, UK)*
- 28. Graft materials past and future 511 Mital Desai, George Hamilton (London, UK)
- 29. Pathophysiology of vascular graft infections 537 *Mauro Vicaretti (Sydney, Australia)*

Index 549

List of Contributors

David G Armstrong The University of Arizona Southern Arizona Limb Salvage Alliance Tucson, AZ USA

Vishwanath Biradar Intensive Care Unit The Queen Elizabeth Hospital Woodville, SA Australia

Matthew Bown Department of Vascular Surgery University of Leicester Leicester UK

Andrew W Bradbury University Department of Vascular Surgery Birmingham Heartlands Hospital Birmingham UK

Edward Choke Department of Vascular Surgery University of Leicester Leicester UK

Gillian Cockerill Department of Clinical Sciences St George's Hospital Medical School London UK Prue Cowled Department of Surgery University of Adelaide The Queen Elizabeth Hospital Woodville, SA Australia

Helen Daly Royal Perth Hospital Perth, WA Australia

Mital Desai University Department of Vascular Surgery Royal Free Hospital University College London UK

Robert F Diegelmann Department of Biochemistry Medical College of Virginia Richmond, VA USA

Timothy K Fisher Rashid Centre for Diabetes and Research Sheikh Khalifa Hospital Ajmon UAE

Robert A Fitridge Department of Surgery University of Adelaide The Queen Elizabeth Hospital Woodville, SA Australia Gail Gillespie Royal Perth Hospital Perth, WA Australia

Jonathan Golledge Vascular Biology Unit School of Medicine & Dentistry James Cook University Townsville, QLD Australia

George Hamilton University Department of Vascular Surgery Royal Free Hospital University College London UK

Mark Hamilton Department of Surgery University of Adelaide The Queen Elizabeth Hospital Woodville, SA Australia

Robert J Hinchliffe St George's Vascular Institute St George's Hospital London UK

Richard D Kenagy Department of Surgery University of Washington Seattle, WA USA

Paul Kerr Department of Pharmacology University of Alberta Alberta Canada Michael MD Lawrence-Brown Curtin Health Innovation Research Institute Curtin University Perth, WA Australia

Brian Lepow The University of Arizona Department of Surgery Southern Arizona Limb Salvage Alliance Tucson, AZ USA

Kurt Liffman CSIRO Material Science & Engineering and School of Mathematical Sciences Monash University Melbourne, Vic Australia

Ian Loftus Department of Vascular Surgery St George's Hospital London UK

Mark J McCarthy Department of Surgery and Cardiovascular Sciences University of Leicester Leicester UK

Greg S McMahon Department of Surgery and Cardiovascular Sciences University of Leicester Leicester UK

Simon McRae Adult Haemophilia Treatment Centre SA Pathology Adelaide, SA Australia Joseph L Mills The University of Arizona Southern Arizona Limb Salvage Alliance Tucson, AZ USA

Lyle Moldawer Department of Surgery University of Florida Gainesville, FL USA

John L Moran Faculty of Health Sciences University of Adelaide The Queen Elizabeth Hospital Woodville, SA Australia

Stephen Nicholls The Heart and Vascular Institute Cleveland Clinic Cleveland, OH USA

Ian M Nordon St George's Vascular Institute St George's Hospital London UK

Paul E Norman School of Surgery University of WA Fremantle, WA Australia

Karlheinz Peter Baker IDI Heart & Diabetes Institute Melbourne, Vic Australia

Frances Plane Department of Pharmacology University of Alberta Alberta Canada Janet T Powell Imperial College London UK

Sandeep Prabhu Baker IDI Heart & Diabetes Institute Alfred Hospital Melbourne, Vic Australia

Rishi Puri The Heart and Vascular Institute Cleveland Clinic Cleveland, OH USA

Stephan A Schug Royal Perth Hospital Perth, WA Australia

Gregory S Schultz Department of Obstetrics and Gynaecology University of Florida Gainesville, FL USA

Rahul Sharma Baker IDI Heart & Diabetes Institute Alfred Hospital Melbourne, Vic Australia

Guo-Ping Shi Department of Cardiovascular Medicine Brigham & Women's Hospital Harvard Medical School Boston, MA USA

Michael Stacey University Department of Surgery Fremantle Hospital Fremantle, WA Australia Ilija D Sutalo CSIRO Material Science & Engineering and Curtin Health Innovation Research Instutute Curtin University Highett, Vic

Raymond Tam Department of Pharmacology University of Alberta Alberta Canada

Matthew Thompson St Georges Hospital Medical School London UK

Martin Veller Department of Surgery University of Witwatersrand Johannesburg South Africa

Mauro Vicaretti Department of Vascular Surgery Westmead Hospital Westmead, NSW Australia Matt Waltham Academic Department of Surgery St Thomas' Hospital London UK

Matthew L White Vascular and Endovascular Surgery University of Arizona Tucson, AZ USA

David P Wilson School of Medical Sciences Discipline of Physiology University of Adelaide Adelaide SA Australia

Qingbo Xu Department of Cardiology Kings College University of London UK

Detailed Contents

CHAPTER 1 – ENDOTHELIUM

Paul Kerr, Raymond Tam, Frances Plane

Introduction 1 Endothelium-dependent regulation of vascular tone 2 Angiogenesis 7 Haemostasis 8 Inflammation 9 Conclusions 10 References

CHAPTER 2 – VASCULAR SMOOTH MUSCLE STRUCTURE AND FUNCTION

David Wilson

Introduction 13 Smooth muscle (vascular) structure Cytoskeleton 14 Contractile myofilament Functional regulation of vascular smooth muscle: Neuronal, hormonal, receptor mediated 15 Smooth muscle function 17 Myofilament basis of smooth muscle contraction and relaxation Smooth muscle contraction and relaxation 18 Ion channels important in the regulation of smooth muscle function Regulation of cellular Ca²⁺ Sources of cytosolic Ca²⁺ entry 19 Potassium channels Endothelial regulation of smooth muscle vasodilatation 20

Smooth muscle proliferation and vascular remodeling 20 Summary 22 References

CHAPTER 3 – ATHEROSCLEROSIS

Gillian Cockerill, Qingbo Xu

Introduction 25 Atherosclerotic lesions 26 Fatty streaks Plaque or atheroma Hypercholesterolemia and oxidised-LDL 27High-density lipoproteins role in atheroprotection 28 Hypertension and biomechanical stress 29 Biomechanical stress-induced cell death Biomechanical stress and inflammation 31 Biomechanical stress-induced smooth muscle cell proliferation 32 Infections and heat shock proteins Infections Heat shock proteins 33 Infections and HSP expression Infections, sHSP and innate immuntiy 34 Immune responses 36 MHC class II antigens and T cells Oxidised LDL as a candidate antigen HSP60 as a candidate antigen 37 B2-gylcoprotein Ib as a candidate antigen Inflammation

C-reactive protein 38 CD40/CD40L

Summary and perspectives 39 References

CHAPTER 4 – MECHANSIMS OF PLAQUE RUPTURE

Ian Loftus

Introduction 43 Evidence for the 'plaque rupture theory' 44 Coronary circulation Cerebral circulation The role of individual components of the arterial wall The endothelium 45 The lipid core 47 The cap of the plaque 49 Smooth muscle cells and collagen production 50 Macrophages and collagen degradation 51 The vessel lumen 56 The role of angiogenesis in plaque rupture The role of infectious agents in plaque rupture 57 Risk prediction of plaque instability 58 Imaging Blood markers 59 Therapy aimed at plaque stabilisation HMG Co-A reductase inhibitors 60 MMP inhibition Tissue inhibitors of metalloproteinases (TIMPs) 61 Synthetic MMP inhibitors Doxycycline ACE inhibitors Summary 62 References 63

CHAPTER 5 – CURRENT AND EMERGING THERAPIES IN ATHEROPROTECTION

Stephen Nicholls, Rishi Puri

Background 79 Pathology Risk factor modification 80 Statins, LDL lowering and C-reactive protein The complexity of HDL 84 The controversy of trigylcerides 87 Hypertension Risk factor modification in the diabetic patient 89 Glycaemic control Global risk factor reduction in diabetics 91 The metabolic syndrome 92 Future targets 93 Conclusion References 94

CHAPTER 6 – MOLECULAR APPROACHES TO REVASCULARISATION IN PERIPHERAL VASCULAR DISEASE

Greg S McMahon, Mark J McCarthy

Introduction 103 Mechanisms of vascular growth Vasculogenesis Angiogenesis 104 Neovessel maturation 105 Microvascular network maturation 106 Arteriogenesis Therapeutic induction of vascular growth 107 Delivery of molecular activators of vascular growth Angiogenic activators 108 Arteriogenic activators 109 Clinical trials for angiogenic therapy of peripheral vascular disease Conclusions 110 References

CHAPTER 7 – BIOLOGY OF RESTENOSIS AND TARGETS FOR INTERVENTION

Richard Kenagy

Introduction 115 Mechanisms of restenosis Thrombosis 116 Remodelling Intimal hyperplasia 123 Sequence of events after injury Origin of intimal cells 125 Inflammation 126 Role of ECM production 127 The contribution of specific factors to restenosis Growth factors/cytokines Inhibitors 128 Coagulation and fibrinolytic factors 129 Matrix metalloproteinases Extracellular matrix/receptors Targets for intervention 130 Intracellular signalling molecules mTOR and microtubules Transcription factors miRNA 131 Inflammation targets Brachytherapy Extracellular targets and cell-based therapies Angiotensin pathway Cell-based therapies 132 Differential effects on endothelium and SMCs Delivery devices Prevention versus reversal of restenosis Conclusions 133 References 134

CHAPTER 8 – VASCULAR ARTERIAL HAEMODYNAMICS

Michael Lawrence Brown, Kurt Liffman, James Semmens, Ilija Sutalo

Introduction 153

Laplace's law of wall of tension 154 Newtonian fluid 155 Non-Newtonian fluid Poiseuille flow 158 Bernoulli's equation Young's modulus and pulsatile flow 159 Mass conversion 161 Reynold's number Arterial dissection, collateral circulation and competing flows 163 Shear stress and pressure 164 Forces on graft systems 165 Case 1 – The cylindrical graft 168 Case 2 – The windsock graft Case 3 - The curved graft 169 Case 4 – The symmetric bifurcated graft Computational modelling 170 Recent development and future directions 171 Conclusions 172 References 173

CHAPTER 9 – PHYSIOLOGICAL HAEMOSTASIS

Simon McRae

Introduction 177 Primary haemostasis Platelets Platelet adhesion Platelet activation and shape change 179 Platelet aggregation 180 Interactions between primary and secondary haemostasis 181 Secondary haemostasis The coagulation cascade 182 Initiation 183 Amplification Propagation 184 Normal inhibitors of coagulation Fibrinolysis 185 Conclusions 186 References

CHAPTER 10 – HYPERCOAGULABLE STATES

Simon McRae

Introduction 189 Classification of thrombophilia Inherited thrombophilia 190 Type 1 conditions Antithrombin deficiency Protein C and Protein S deficiency Type 2 conditions 191 Factor V Leiden The prothrombin (G20210A) gene mutation FVL/PGM compound heterozygotes Other inherited conditions Acquired thrombophilia 192 Antiphospholipid antibodies Heparin induced thrombocytopenia Myeloproliferative disorders 193 Potential reasons for performing thrombophilia testing Patients with venous thrombosis and their relatives Providing an understanding of the aetiology of a thrombotic event Determining risk of recurrence and therefore optimal duration of anticoagulation 194 Determining the need for primary prophylaxis in asymptomatic family members 195 Making decisions regarding the use of the oral contraceptive pill 196 Determining the need for thromboprophylaxis during pregnancy Patients with arterial thrombosis Potential detrimental effects of thrombophilia testing 197 Conclusion References

CHAPTER 11 – PLATELETS IN THE PATHOGENESIS OF

VASCULAR DISEASE AND THEIR ROLE AS A THERAPEUTIC TARGET

Sandeep Prabhu, Rahul Sharma, Karlheinz Peter

Introduction 201 Platelet function - Adhesion and activation Platelet adhesion 202 Platelet activation 203 Mediators of platelet activation and 'outside in' signalling Thrombin and collagen 204 Adenosine diphosphate (ADP) Thromboxane A2 (TXA2) Adrenaline 206 Second messenger systems 207 Physiological consequences of platelet activation The GP IIb/IIIa receptor and 'insideout' signalling Granule exocytosis 208 Activation-induced conformational change of platelets Platelets and atherosclerosis 209 Role of platelets in the initiation of the atherosclerosis Role of the platelets in the progression of the atherosclerosis Role of platelets in vulnerable plaques and plaque rupture Current and future anti-platelet agents 210Aspirin (salicylic acid) Thienopyridines 211 Clopidogrel Prasugrel 213 Ticlopidine Ticagrelor GPIIb/IIIa Antagonists Other anti-platelet agents and promising new deleopments 214 Platelet function testing 215 Light-transmission aggregometry

Whole blood aggregometry 217 VerifyNow® Assay Flow cytometry 218 **References**

CHAPTER 12 – PATHOGENESIS OF AORTIC ANEURYSMS

Jonathan Golledge, Guo-Ping Shi, Paul E Norman

Introduction 227 Differences between thoracic and abdominal aortic aneurysms 228 Summary of current theories and stages of AAA evolution Atherosclerosis and AAA Immune mechanisms in AAA 229 Extracellular matrix dysfunction 232 Infection 233 **Biomechanical forces** Angiogenesis Intra-luminal thrombus Extracellular matrix proteolysis 234 Genetics 236 AAA rupture 237 Biomechanical factors in aneurysms rupture The role of enzymes in AAA rupture Role of intraluminal thrombus in aneurysm rupture 238 Future research References

CHAPTER 13 – PHARMACOLOGICAL TREATMENT OF ANEURYSMS

Matthew Thompson, Janet T Powell

Background 247 Screening programmes Pathophysiology 248 Therapeutic strategies Beta blockade Modification of the inflammatory response 249 Non-steroidal anti-inflammatories Matrix metalloproteinase (MMP) inhibition Anti-chlamydial therapy 250 Drugs acting on the renin/angiotensin axis HMG Co-A reductase inhibitors 251 The future – Data from recent experimental studies References

CHAPTER 14 – PATHOPHYSIOLOGY OF AORTIC DISSECTION AND CONNECTIVE TISSUE DISORDERS

Mark Hamilton

Introduction 255 Embryology of thoracic aorta and arch vessels Haemodynamics of thoracic compared to abdominal aorta 257 Sizes of normal aorta Classification of aortic syndromes Acute/Chronic DeBakey classification of class 1 dissection – Type 1, 2, and 3 Stanford classification 258 European task force Pathogenesis of thoracic aortic dissection Classical thoracic aortic dissection (class 1 dissection) 260 Intramural haematoma (class 2 aortic dissection) 261 Penetrating aortic ulcer (class 4 aortic dissection) 262 Complications of acute aortic syndromes 263 Visceral ischaemia /malperfusion syndromes Fate of the false lumen Aneurysmal degeneration and rupture 264 Connective tissue disorders and acute aortic syndromes

Marfan syndrome Fibrillin and Marfan syndrome 265 The role of transforming growth factor beta in development of the vascular system in health and disease 266 Ehlers-Danlos syndrome 267 Diagnosis of Ehlers-Danlos syndrome 268 Loeys-Deitz syndrome 270 Familial thoracic aortic aneurysm disease 271 Bicuspid aortic valve 273 Turners Syndrome Summary 274 Reference list

CHAPTER 15 – BIOMARKERS IN VASCULAR DISEASE

Ian M Nordon, Robert J Hinchliffe

Introduction 277 What is a biomarker? Types of biomarkers A classical clinical example 278 Potential value of biomarkers in vascular disease 279 Biomarker discovery steps 280 AAA biomarkers Circulating extracellular matrix markers 281 Matrix-degrading enzymes 283 Proteins associated with thrombosis Markers of inflammation 284 Biomarkers of AAA rupture 285 Biomarkers following endovascular repair Inflammation 287 Lipid accumulation Apoptosis Thrombosis Proteolysis 288 Challenges in biomarkers discovery Future work Conclusion 289 References

CHAPTER 16 – PATHOPHYSIOLOGY AND PRINCIPLES OF MANAGEMENT OF VASCULITIS AND RAYNAUD'S PHENOMENON

Martin Veller

Vasculitides 295 Introduction Classification of vasculitides 296 Clinical presentation of vasculitides Investigations of vasculitides Principles of treatment of vasculitides 297 The vasculitides of specific interest to vascular surgeons 298 Giant cell arteritis Takayasu's arteritis 299 Thromboangitis obliterans (Buerger's disease) 300 Behcet's disease 301 Polyarteritis nodosa 302 Vasculitides secondary to connective tissue diseases 303 Systemic lupus erythematosus (SLE) Antiphospholipid antibody syndrome (APS) 304 Rheumatoid arthritis 305 Scleroderma Infective vasculitides 306 Human immunodeficiency virus (HIV) Pathophysiology and principles of Raynaud's phenomenon 307 Prevalence of Raynaud's phenomenon 308 Clinical findings in Raynaud's phenomenon 309 Diagnosis of Raynaud's phenomenon Prognosis 310 Treatment Recommendations 311 References 312

CHAPTER 17 - SIRS, SEPSIS AND

MULTIORGAN FAILURE

Vishwanath Biradar, John Moran

Epidemiology 315 Historical perspectives and definition 316 Risk factors for sepsis 317 Causative agents Pathophysiology of sepsis innate immunity and toll-like receptors (TLRs) 319 Proinflammatory response Coagulation cascade Multiorgan dysfunction syndrome (MODS) 320 Epithelial and endothelial dysfunction Immune suppression and apoptosis Sepsis, circulatory failure and organ dysfunction Management 322 Steroids 323 Recombinant human activated protein C (rhAPC) 324 Glucose control 325 Renal replacement therapy 3-hydroxy-3-methylglutaryl-coenzyme reductase inhibitors (HMG-CoA) 326 Other adjuvant therapies in sepsis Cytokines and anticytokine therapies Pooled immunoglobulin (IVIG) Acute respiratory distress syndrome (ARDS) 327 References

CHAPTER 18 – Pathophysiology of

REPERFUSION INJURY Prue Cowled, Rob Fitridge

Introduction 331 Ischaemia ATP and mitochondrial function Gene expression during ischaemia 332 Reperfusion 333 Reactive oxygen species

Eicosanoids 334 Nitric Oxide 335 Endothelin 336 Cytokines Neutrophil and endothelial interactions 338 Complement activation 340 Tissue destruction 341 Proteases and metalloproteinases Apoptotic cell death during ischaemiareperfusion injury No-reflow phenomenon 342 Therapeutic approaches to IRI Ischaemic preconditioning Ischaemic post-conditioning 343 Conditioning effects of volatile anaesthetics Pharmacological treatments 344 Summary 345 References

CHAPTER 19 – COMPARTMENT SYNDROME

Edward Choke, Robert Sayers, Matthew Bown

Definition 351 Acute limb compartment syndrome Incidence Anatomy/physiology 352 Aetiology/pathophysiology Clinical presentation 354 Investigation 355 Treatment 357 Complication of LCS 359 Outcome 360 Acute abdominal compartment syndrome Incidence 361 Actiology Pathological effects of raised intraabdominal pressure 362 Clinical presentation 363 Investigation Treatment 364 Complications of surgical decompression

xvii

Outcome 367 References 368

CHAPTER 20 – PATHOPHYSIOLOGY OF PAIN

Stephan Schug, Helen Daly, Kathryn Stannard

Introduction 375 Peripheral mechanisms Nociception/transduction Conduction 376 Spinal cord mechanisms Ascending systems 377 Descending control Pain modulation 378 Peripheral sensation Central sensitisation in the dorsal horn Neuropathic pain 379 Mechanisms of neuropathic pain Peripheral mechanisms Spontaneous ectopic discharge Altered gene expression Spared sensory neurons Involvement of the sympathetic nervous system 380 Collateral sprouting Effects of bradykinin Central mechanisms Wind up Central sensitization 381 Central disinhibition Expansion in receptive field size (recuruitment) Immediate early gene expression Anatomical re-organisation of the spinal cord Contribution of glial cells to pain conditions 382 Symptoms of neuropathic pain Stimulus-dependent pain Stimulus-independent pain 383 Sympathetically maintained pain (SMP) Neuropathic pain syndromes

Peripheral neuropathies Central neuropathies 385 References

CHAPTER 21 – POST-AMPUTATION PAIN

Stephan Schug, Gail Gillespie

Introduction 389 Classification and incidence of postamputation pain syndromes Stump pain Phantom sensation 390 Phantom limb pain Pathophysiology of post-amputation pain syndromes Peripheral factors Spinal factors 391 Supraspinal factors Current pathophysiological model of postamputation pain syndromes 392 Prevention of post-amputation pain Perioperative lumbar epidural blockade Peripheral nerve blockade 393 NMDA antagonists Evaluation of the patient with postamputation pain syndromes Examination Therapy of post-amputation pain syndromes 394 Calcitonin Ketamine Analgesic and Co-analgesic compounds Opioids 395 Gabapentin Clonazepam Lidocaine Carbamazepine Tricyclic antidepressants (TCA) Selective serotonin reuptake inhibitors Baclofen Capsaicin Symptomatic treatment of pain components 396 Neuropharmacological therapies

Invasive therapies Electroconvulsive therapy (ECT) Nerve blockade Spinal cord stimulation Implantable intrathecal delivery systems Dorsal root entry zone (DREZ) lesions Psychological therapy 397 Future aims References

CHAPTER 22 – TREATMENT OF NEUROPATHIC PAIN

Stephan Schug, Kathryn Stannard

Introduction 401 Principles of treatment Pharmacological treatment 402 Opioids Recommendations for clinical use of opioids Tramadol Mechanism of action Efficacy 403 Adverse effects Recommendations for clinical use of tramadol in neuropathic pain Antidepressants Tricyclic antidepressants (TCAs) Mechanism of action 404 Adverse effects Selective serotonin re-uptake inhibitors (SSRIs) Serotonin/Noradrenaline reuptake inhibitors (SNRIs) 405 Recommendations for clinical use of antidepressants as analgesics Anticonvulsants Mechanism of action 406 Individual medications Clonazepam Gabapentin Pregabalin 407 Carbamazepine Sodium valproate 408

Phenytoin Lamotrigene Recommendations for clinical use of anticonvulsants as analgesics Local anaesthetics and antiarrhythmics 409 Mechanism of action Lignocaine Mexiletine Recommendations for clinical use of lignocaine and mexiletine in neuropathic pain N-methyl-D-aspartate-receptor antagonists (NMDA) Ketamine 410 Other NMDA antagonists Miscellaneous compounds for systemic use Clonidine Efficacy Baclofen Levodopa 411 Cannabinoids Topical treatments Lignocaine 5% medicated plaster Capsaicin 412 Mechanism of action Efficacy Non-pharmacological therapy Transcutaneous electrical nerve stimulation (TENS) Spinal cord stimulation (SCS) 413 Sympathetic nerve blocks Neurosurgical destructive techniques Cognitive behavious therapy References 414

CHAPTER 23 – PRINCIPLES OF WOUND HEALING

Gregory Schultz, Gloria Chin, Lyle Moldawer, Robert Diegelmann

Introduction 423 Phases of acute wound healing Haemostasis

Inflammation 426 Neutrophils 427 Macrophages 428 Proliferative phase 429 Fibroblast migration 430 Collagen and extracellular matrix production Angiogenesis 431 Granulation 432 Epithelialization Remodelling 433 Summary of acute wound healing 435 Comparison of acute and chronic wounds Normal and pathological responses to injury Biochemical differences in the molecular environments of healing and chronic wounds 436 Biological differences in the response of chronic wound cells to growth factors 439 From bench to bedside Role of endocrine hormones in the regulation of wound healing Molecular basis of chronic non-healing wounds Chronic venous stasis ulcers 441 Pressure ulcers Future concepts for the treatment of chronic wounds 442 Bacterial biofilms in chronic wounds 443 Conclusion 445 References

CHAPTER 24 – PATHOPHYSIOLOGY AND PRINCIPLES OF MANAGEMENT OF VARICOSE VEINS

Andrew Bradbury

Introduction 451 Anatomy Histology 452 Physiology Varicose veins 453 Valvular abnormalities Muscle pump failure 455 Venous recirculation Recurrent varicose veins New varicose veins Persistent varicose veins True recurrent varicose veins 456 Cellular and molecular biology of varicose veins Conclusion 457 References

CHAPTER 25 – CHRONIC VENOUS INSUFFICIENCY AND LEG ULCERATION: PRINCIPLES AND VASCULAR BIOLOGY

Michael Stacey

Definitions 459 Chronic venous insuffiency Leg ulceration Assessment of cause of leg ulceration 460 Epidemiology 461 Pathophysiology Venous abnormality Effect of ambulatory venous hypertension on the tissues in the leg 463 Influence of venous disease on the wound healing process 465 Genetic associations with venous ulceration 466 Assessment of venous function 467 Treatment of venous ulceration Compression therapy Dressings 468 Surgery Prevention of venous ulcer recurrence 470Sclerotherapy and other techniques to obliterate surface and perforating veins Other therapies 471 References

CHAPTER 26 – Pathophysiology and Principles of Management

David Armstrong, Timothy Fisher, Brian Lepow, Matthew White, Joseph Mills

OF THE DIABETIC FOOT

Introduction 475 Pathophysiology of the diabetic foot 476 Neuropathy Structural abnormalities/gait abnormalities Angiopathy 478 Diagnosis History and rapid visual screening Neurological examination 479 Monofilament testing Vibration testing Dermatologic examination 480 Anatomy of occlusive disease - vascular examination Prediction of wound healing: assessment of perfusion 481 Arterial imaging Soft tissue imaging 482 Classification systems 483 Diabetes mellitus foot risk classification University of Texas wound classification system Clinical problems and principles of management 484 Ulceration Epidemiology and risk factors Offloading Non-vascular surgical treatment 485 Class I – Elective 486 Class II - Prophylactic Class III – Curative Class IV – Emergency (urgent) Post-operative management Infections 487 Charcot arthopathy Prevention 490 Conclusion 492 References

CHAPTER 27 – LYMPHOEDEMA – PRINCIPLES, GENETICS AND PATHOPHYSIOLOGY

Matt Waltham

Introduction 497 Classification of lymphoedema Classification of primary lymphoedema 498 The genetics of lymphangiogensis in primary lymphoedema 500 Milroy's disease Lymphoedema – distichiasis syndrome 501 Hypotrichosis – lymphoedema – telangiectasia syndrome 502 Meige disease (primary non-syndromic lymphoedema) Other primary lymphoedema disorders 503 Structure and development of the lymphatic circulation Clinical aspects of lymphoedema 505 Summary References

CHAPTER 28 – GRAFT MATERIALS PAST AND FUTURE

Mital Desai, George Hamilton

The pathophysiology of graft healing 511 The peri-anastomotic area Healing of prosthetic grafts 512 The healing process of the anastomosis Graft porosity and permeability Physical properties of prosthetic materials 514 Tubular compliance Anastomotic compliance mismatch The compliance hypothesis of graft failure Synthetic grafts 515 Newer developments of Dacron grafts Modifications and newer developments of PTFE grafts 517 Polyurethane grafts

Newer developments of polyurethane vascular grafts 518 Biological vascular grafts 519 Newer developments of biological vascular grafts 520 Prosthetic graft modifications Modifications to reduce graft infection Modifications to improve patency 521 Nanocomposite grafts Endothelial cell seeding 522 Single stage seeding Two stage seeding Vascular tissue engineering Non-degradable polymer and cell seeding 523 Bioresorbable and biodegradable polymers Combined bioresorbable and tissue engineered grafts 524 Mechanical conditioning of seeded vascular cells Alternative scaffolds Tissue-engineered grafts 525 Graft materials for aortic endografts 526 The future References 527

CHAPTER 29 – PATHOPHYSIOLOGY OF VASCULAR GRAFT INFECTIONS

Mauro Vicaretti

Introduction 537 Natural history of prosthetic vascular graft infections Mechanism of graft contamination at operation 538 Pathogenesis of graft infections Bacteriology of vascular graft infections Investigations for detection of prosthetic graft infections 539 History and physical examination Laboratory investigations Diagnostic imaging 540 Management of prosthetic graft infections Prevention Reduction of prosthetic vascular graft infection with rifampicin bonded gelatin sealed Dacron 541 Established infection Antibiotic therapy Operative management Conclusion 542 References

Acknowledgements

The Editors gratefully acknowledge the outstanding contributions of each Author involved in this reference book. We would also like to acknowledge the invaluable efforts of Ms Sheona Page who has worked tirelessly on this project. We would also like to thank Prue Cowled PhD and Ms Cayley Wright for their assistance.

Abbreviation List

a1-Pl	a1-protease inhibitor
5-HT	5-Hydroxytryptamine/Serotonin
AAA	Abdominal aortic aneurysm
AAS	Acute aortic syndrome
AAV	Adeno-associated viruses
ACE	Angiotensin converting enzyme
ACS	Acute coronary syndrome
ACS	Abdominal compartment syndrome
ACTH	Adrenocorticotropic hormone
ADAMTS	A disintegrin and metalloproteinase with thrombospondin motifs
ADP	Adenosine diphosphate
AIDS	Acquired immune deficiency syndrome
ALI	Acute lung injury
AMP	Adenosine monophosphate
AMPA	α -amino-3 hydroxy-5-methylisoxazole
ANA	Anti-nuclear antibody
ANCA	Anti-neutrophil cytoplasmic antibody
AOD	Aortic occlusive disease
AP1	Activated protein 1
APC	Activated protein C
APC	Antigen presenting cell
APLAS	Antiphospholipid antibody syndrome
ApoAl	Apolipoprotein Al
ApoE	Apolipoprotein E
APS	Antiphospholipid antibody syndrome
APTT	Activated partial thromboplastin time

ARDS	Acute respiratory distress syndrome
AT	Antithrombin
ATP	Adenosine triphosphate
AVP	Ambulatory venous thrombosis
β2-GPI	β2-glycoprotein Ib
bFGF	Basic fibroblast growth factor
ВКСа	Large conductance calcium activated potassium channel
BMPs	Bone morphogenetic proteins
BMS	Bare metal stent
CAD	Coronary artery disease
CaM	Calmodulin
CAM	Cell adhesion molecule
cAMP	Cyclic adenosine monophosphate
ССК	Cholecystokinin
cGMP	Cyclic guanine monophosphate
CD	Cluster of differentiation
CD40L	Cluster of differentiation 40 ligand
CEA	Carotid endarterectomy
CETP	Cholesteryl ester transfer protein
CFD	Computational fluid dynamics
CG	Cationized gelatin
CGRP	Calcitonic gene regulated peptide
CHD	Coronary heart disease
CI	Confidence interval
CIMT	Carotid intimal-media thickness
c-JNK	c-Jun N-terminal kinase
CK-MB	Creatinine kinase (Myocardial specific)
CNCP	Chronic noncancer pain
cNOS	Constitutive nitric oxygen synthase enzyme
COX-1	Cyclooxygenase-1
COX-2	Cyclooxygenase-2
CROW	Charcot restraint orthotic walker
CRRT	Continuous renal replacement therapy

CRP	C-reactive protein		
CRPS	Complex regional pain syndromes		
СТ	Computational tomography		
СТА	Computed tomographic angiography		
CTD	Connective tissue disorders		
CTGF	Connective tissue growth factor		
CYP	Cytochrome P450		
CVD	Cardiovascular disease		
CVI	Chronic venous insufficiency		
DAG	Diacylglycerol		
DES	Drug-eluting stent		
DRG	Dorsal root ganglion		
DNA	Deoxyribonucleic acid		
DSA	Digital subtraction arteriography		
DTS	Dense tubular system		
DVT	Deep vein thrombosis		
EC	Endothelial cell		
ECM	Extracellular matrix		
EDCF	Endothelium-derived contracting factor		
EDH	Endothelium-dependent hyperpolarisation		
EDS	Ehlers-Danlos syndrome		
EET	Epoxyeicosatrienoic acids		
ELAM-1	Endothelial-leukocyte adhesion molecule-1		
ELG	Endoluminal grafts		
ELISA	Enzyme linked immunosorbent assay		
Ε _κ	Equilibrium potential		
E _M	Membrane potential		
eNOS	Endothelial nitric oxide synthase enzyme		
EPC	Endothelial progenitor cells		
EPCR	Endothelial protein C receptor		
ePTFE	Expanded polytetrafluoroethylene		
ERK	Extracellular signal-regulated kinase		
ESR	Erythrocyte sedimentation rate		

ET	Essential thrombocytosis		
ET-1	Endothelin 1		
EVAR	Endovascular aortic aneurysm repair		
EVLA	Endovenous LASER ablation		
FDA	Food and drug administration		
FDPs	Fibrin degradation products (soluble)		
FGF	Fibroblast growth factor		
FGF-2	Fibroblast growth factor 2		
FMN	Flavin mononucleotide		
FVL	Factor V Leiden		
GABA	Gamma-aminobutyric acid		
GABA B	Gamma-aminobutyric acid subtype B		
G-CSF	Granulocyte colony stimulating factor		
GMCSF	Granulocyte-macrophage colony stimulating factor		
GP	Glycoprotein		
GPCR	G-protein coupled receptor		
GSV	Great saphenous vein		
HDL	High density lipoprotein		
HDL-C	High density lipoprotein cholesterol		
HIF	Hypoxia inducible factor		
HIT	Heparin induced thrombocytopenia		
HIV	Human immunodeficiency virus		
HLA	Human leukocyte antigen		
HMG Co-A	Hydroxymethylglutaryl coenzyme-A		
HMW	High molecular weight		
HPETE	Hydroperoxyeicosatetraenoic acid		
HETE	Hydroxyeicosatetraenoic acids		
HR	Hazard ratio		
hsCRP	High-sensitive C-reactive protein		
HSP	Heat shock protein		
HUV	Human umbilical vein		
IAH	Intra-abdominal hypertension		

xxviii Mechanisms of Vascular Disease

IAP	Intra-abdominal pressure
IAPP	Intra-abdominal perfusion pressure
ICAM-1	Inter-cellular adhesion molecule-1
ICAM-2	Inter-cellular adhesion molecule-2
ICP	Intra-compartmental pressure
ICU	Intensive care unit
IFN	Interferon
IGF-1	Insulin-like growth factor-1
IHD	Ischemic heart disease
IL	Interleukin
IL-1	Interleukin-1
IL-1 α	Interleukin-1 alpha
IL1-β	Interleukin-1 beta
IL-6	Interleukin-6
IL-8	Interleukin-8
ILT	Intraluminal thrombus
IKCa	Intermediate conductance calcium-activated potassium channels
IMH	Intramural haematoma
IMP	Inosine monophosphate
iNOS	Inducible nitric oxide synthase enzyme
IP(3)	1,4,5-inositol triphosphate
IRI	Ischemia reperfusion injury
IVIG	Intravenous pooled immunoglobulin
IVUS	Intravascular ultrasound
KGF	Keratinocyte growth factor
KGF-2	Keratinocyte growth factor-2
LAP	Latency associated peptide
LCS	Limb compartment syndrome
LDL	Low density lipoprotein
LDS	Loeys-Dietz syndrome
LLC	Large latent complex
LEC	Lymphatic endothelial cells

LFA-1	Lymphocyte function-associated antigen-1		
LO	Lipoxygenase		
LOX	Lysyl oxidase		
LOPS	Loss of protective sensation		
LPA	Lysophosphatidic acid		
LPS	Lipopolysaccharide		
LTA	Lipoteichoic acid		
LTGFBP	Latent TGF binding protein		
MAC-1	Macrophage-1 antigen		
MAPK	Mitogen activated protein kinase		
MCP-1	Monocyte chemoattractant protein-1		
M-CSF	Macrophage-colony stimulating factor		
MFS	Marfan syndrome		
MHC	Major histocompatibility		
MI	Myocardial infarction		
MIP-1	Macrophage inflammatory protein-1		
MLC ₂₀	Myosin light chain ₂₀		
MLCK	Myosin light chain kinase		
MLCP	Myosin light chain phosphatase		
MMP	Matrix metalloproteinase		
MODS	Multiple organ dysfunction syndrome		
MRA	Magnetic resonance angiography		
MRI	Magnetic resonance imaging		
mRNA	Messenger RNA		
MRSA	Methicillin resistant Staphylococcus aureus		
MRSE	Methicillin resistant Staphylococcus epidermidis		
MRTA	Magnetic resonance tomographic angiography		
MTHFR	Methylenetetrahydrofolate reductase		
MT-MMP	Membrane-type MMP		
MVPS	Mitral valve prolapse syndrome		
NADPH	Nicotinamide adenine dinucleotide phosphate		
NGF	Nerve growth factor		

ΝϜκΒ	Nuclear factor kappa B		
NiTi	Nitinol		
NJP	Non-junctional perforators		
NMDA	N-methyl-D-aspartate		
NNH	Number needed to harm		
NNT	Number needed to treat		
NO	Nitric oxide		
NOS	Nitric oxide synthase enzyme		
NSAID	Non-steroidal anti-inflammatory drug		
NV	Neovascularisation		
OCP	Oestrogen/progesterone contraceptive pill		
OPN	Osteopontin		
OPG	Osteoprotegerin		
OR	Odds ratio		
OxLDL	Oxidised low density lipoprotein		
PAD	Peripheral arterial disease		
PAF	Platelet activating factor		
PAI	Plasminogen activator inhibitor		
PAI-1	Plasminogen activator inhibitor-1		
PAR	Protease activated receptor		
PAR-1	Protease activated receptor-1		
PAR-4	Protease activated receptor-4		
PAU	Penetrating aortic ulcer		
PC	Protein C		
PCA	Poly (carbonate-urea) urethane		
PCI	Percutaneous coronary intervention (angioplasty)		
PCWP	Pulmonary capillary wedge pressure		
PDGF	Platelet-derived growth factor		
PDGFβ	Platelet-derived growth factor- β		
PDS	Polydioxanone		
PECAM-1	Platelet-endothelial cell adhesion molecule-1		
PEDF	Pigment epithelium-derived factor		
PES	Paclitaxel-eluting stent		

PET	Positron emission tomography
PF4	Platelet factor 4
PGI ₂	Prostacyclin
PGG ₂	Prostaglandin G ₂
PGH ₂	Prostaglandin H ₂
PGEI ₂ /PGI ₂	Prostaglandin I_2
PGN	Peptidoglycan
PHN	Postherpetic neuropathy
PHZ	Para-anastomotic hyper-compliant zone
PI3K	Phosphatidylinositol 3-kinase
PIP2	Phosphatidylinositol 4,5-bisphosphate
PLC	Phospholipase C
PLOD	Procollagen lysyl hydroxylase
PMCA	Plasma membrane Ca ²⁺ APTases
PMN	Polymorphonuclear leukocyte
POSS	Polyhedral oligomeric silsesquioxanes
PPAR	Peroxisomal proliferation activating receptor
PPI	Proton pump inhibitor
PRV	Polycythaemia rubra vera
PS	Protein S
PSGL-1	P-selectin glycoprotein ligand-1
PT	Prothombin time
PTCA	Percutaneous coronary angioplasty
PTFE	Polytetrafluoroethylene
PTS	Post-thrombotic syndrome
PUFA	Polyunsaturated fatty acid
PVI	Primary valvular incompetence
rAAA	Ruptured AAA
Rac	Ras activated cell adhesion molecule
RANTES	Regulated upon activation, normal T cell expressed and secreted
RAS	Renin angiotensin system
RCT	Randomised controlled trial

RF	Rheumatoid factor
RFA	Radiofrequency ablation
rhAPC	Recombinant human activated protein C
RNA	Ribonucleic acid
ROS	Reactive oxygen species
RR	Relative risk
RSD	Reflex sympathetic dystrophy
S1P	Sphingosine-1-phosphate
SAPK	Stress-activated protein kinase
SCF	Stem cell factor
SCS	Spinal cord stimulation
ScvO2	Superior vena cava venous oxygen saturation
SDF-1	Stromal-cell-derived factor-1
SERCA	Sarco/endoplasmic reticulum CaATPases
SEP	Serum elastin peptides
SES	Sirolimus-eluting stent
SEPS	Subfascial endoscopic perforator surgery
SFA	Superficial femoral artery
SFJ	Sapheno-femoral junction
SIRS	Systemic inflammatory response syndrome
SKCa	Small conductance calcium-activated potassium channels
SLE	Systemic lupus erythematosus
SMA	Smooth muscle alpha actin
SMC	Smooth muscle cell
SMP	Sympathetically maintained pain
SNARE	Soluble N-ethylmaleimide-sensitive factor activating protein receptors
SNP	Single nucleotide polymorphisms
SNRI	Serotonin/Noradrenaline reuptake inhibitors
SPJ	Sapheno-popliteal junction
SPP	Skin perfusion pressure
SR	Sarcoplasmic reticulum
SSRIs	Selective serotonin re-uptake inhibitors
SSV	Small saphenous vein

SVT	Superficial thrombophlebitis		
STIM1	Stromal interacting molecule 1		
ΤαCΕ	$TNF\alpha$ converting enzyme		
TAAD	Thoracic aortic aneurysm disease		
TAD	Thoracic aortic dissection		
TAFI	Thrombin-activatable fibrinolysis inhibitor		
Tc-99 MDP	Technetium-99 methylene diphosphonate		
TCA	Tricyclic antidepressant		
ТСС	Total contact cast		
TCR	T-cell receptor		
TENS	Transcutaneous electrical nerve stimulation		
TF	Tissue factor		
TFPI	Tissue factor pathway inhibitor		
TGF	Transforming growth factor		
TGF-α	Transforming growth factor-alpha		
TGF-β	Transforming growth factor-beta		
TGL	Triglycerides		
Th	T helper		
TIA	Transient ischemic attack		
TIMP	Tissue inhibitors of metalloproteinase		
TLR	Toll-like receptors		
TNF	Tumour necrosis factor		
TNF-α	Tumour necrosis factor-alpha		
tPA	Tissue-type plasminogen activator		
TRP	Transient receptor potential		
TRPC	Transmembrane receptor potential canonical		
TRPV1	Transmembrane receptor potential Vanilloid-type		
TXA2	Thromboxane A2		
uPA	Urokinase		
UT	University of Texas		
VCAM	Vascular cell adhesion molecule		
VCAM-1	Vascular cell adhesion molecule-1		
VEGF	Vascular endothelial growth factor		

xxxiv Mechanisms of Vascular Disease

VEGF-R	Vascular endothelial growth factor receptor		
VIP	Vasoactive intestinal peptide		
VLA-1	Very late activating antigen-1		
VOCC	Voltage operated calcium channels		
VPT	Vibratory perception threshold		
VSMC	Vascular smooth muscle cells		
VTE	Venous thromboembolism		
VV	Varicose veins		
vWF	von Willebrand factor		
ХО	Xanthine oxidase		

17 • SIRS, Sepsis and Multiorgan Failure

VISHWANATH BIRADAR, JOHN L MORAN

The Queen Elizabeth Hospital, 28 Woodville Rd, Woodville South, Adelaide, South Australia

EPIDEMIOLOGY

Sepsis remains a common reason for intensive care unit (ICU) admission and is a leading cause of mortality. This disease is now recognized to be a time-sensitive emergency, because patients stand the best chance for survival when effective therapeutic interventions are delivered as early as possible. However, consistent data are lacking regarding the incidence and outcome of sepsis in ICUs globally. Data extrapolated from a cohort study conducted by Finfer et al in 2004 across twenty three closed ICUs multidisciplinary showed that the incidence of severe sepsis among adult patients was 0.77 patients per 1000 population (95% CI, 0.76-0.79). There were 752 episodes of severe sepsis identified in 691 patients, equating to 11.8 patients with severe sepsis per 100 ICU admissions (95% CI, 10.9–12.6).¹ The EPISEPSIS study group conducted a nationwide, prospective, multicentre survey of patients with severe sepsis in 206 French ICUs over two consecutive weeks. They estimated the incidence of severe sepsis to be 0.95 cases per 1000 in the French population.² In the United States between

1979 and 2000 an annualized increase of 8.7% in the incidence of sepsis was noted. (From about 164,000 cases (0.82 per 1000 population) to nearly 660,000 cases (2.4 per 1000 population)).³

Sepsis is estimated to affect 18 million people worldwide each year and kill 1400 people each day. According to an epidemiological study, sepsis affects about 700,000 people annually in the United States alone, with an overall mortality rate of 30%, or more than 50% in patients with septic shock and/or multiple system organ failure.³ From a financial perspective, sepsis represents a major burden to the health care system in most developed countries since septic patients require admission and aggressive treatment in the ICUs. Table 17.1 gives the overall information on the incidence and mortality of severe sepsis in different parts of the world. Despite differences in study methodology, comparison between continents, countries and regions is possible, with some consistent themes emerging:

 Severe sepsis represents a substantial health-care burden in all developed nations;

- 2) The overall incidence is increasing;
- The overall mortality rate is declining; and
- The nature of infections is changing, with infections caused by gram-positive organisms increasing in frequency.⁴

HISTORICAL PERSPECTIVE AND DEFINITION

The word 'sepsis' $[\sigma\eta\psi\iota\zeta]$, is the original Greek word for the 'decomposition of animal or vegetable organic matter in the presence of bacteria'.⁹ The word was first noted in Homer's poems, where 'sepsis' is a derivative of the verb form sepo $[\sigma\eta\pi\omega]$, which means 'I rot'. The term is also found in the writings of the physician and philosopher Hippocrates (circa 400 BC) in his Corpus Hippocraticum. Hippocrates viewed sepsis as the dangerous, odiferous, biological decay that could occur in the body.¹⁰

In 1991, the American College of Chest Physicians (ACCP) and the Society of Critical Care Medicine (SCCM) convened a 'Consensus Conference' in an attempt 'to provide a conceptual and a practical framework to define the systemic inflammatory response to infection, which is a progressive injurious process that falls under the generalized term 'sepsis' and includes sepsisassociated organ dysfunction as well'.¹¹ They proposed the phrase 'Systemic Inflammatory Response Syndrome' (SIRS) which described the inflammatory process, independent of its cause. The systemic inflammatory response was seen in association with a large number of clinical conditions. Apart from infectious processes, other common non-infectious pathologic processes include pancreatitis, ischemia, multiple trauma, and tissue injury. When SIRS is the result of confirmed infectious process, it is termed 'SEPSIS', and is frequently associated with the development of multiple organ dysfunction and failure. This is the most common cause of death in patients who have severe sepsis.12 The 1991 ACCP-SCCM Consensus Conference also introduced the term 'Multiple Organ Dysfunction Syndrome' (MODS). MODS was defined as 'the presence of altered organ function in an acutely ill patient such that homeostasis cannot be maintained without intervention.'13

In 2001, several North American and European intensive care societies agreed to revisit the definitions for sepsis and related conditions. This international sepsis definitions conference (Group of experts and opinion leaders represented by SCCM,

TABLE 17.1: Reported Incidence and Outcome of Severe Sepsis in Different Parts of the World.

Country of origin	Severe sepsis per 100 ICU admission	Incidence per 1000 population	ICU mortality	Hospital mortality
Australia & New Zealand⁴	11.8	0.77	26.5 ¹	37.5 ¹
United States ³	11.85	2.4	NR	17.9*
France ²	15.3 ⁶	0.95	NR	41.9
United Kingdom ⁷	28.7	0.66	30.8	44.7
Brazil ⁸	17.4	NR	NR	47

* Sepsis overall (not severe sepsis), NR: Not Reported

ACCP, The European Society of Intensive Care Medicine (ESICM), The American Thoracic Society (ATS), and the Surgical Infection Society (SIS)) revisited the 1992 sepsis guidelines. They expanded the list of signs and symptoms of sepsis to reflect clinical bedside experience; no evidence exists to support a change to the definitions.¹⁴ Infection was defined as a microbial phenomenon characterised by an inflammatory response to the presence of microorganisms or the invasion of normally sterile host tissue by microorganisms.

The SIRS concept is valid to the extent that a systemic inflammatory response is non specific and can be triggered by a variety of infectious and non-infectious conditions.

Current definitions do not allow for precise staging of the host response to infection and categorical definitions, such as SIRS, severe sepsis, and septic shock, have important limitations. Despite this, the SIRS concept has been globally adopted by clinicians and investigators, Table 17.2.

RISK FACTORS FOR SEPSIS

Factors which are potentially responsible for the growing incidence of sepsis and septic shock include:

- 1) Increased awareness and sensitivity of the diagnosis,
- Increased use of cytotoxic and immunosuppressant agents,
- 3) Malnutrition,
- 4) Alcoholism,
- 5) Malignancy,
- 6) Diabetes mellitus,
- Increasing number of transplant recipients and transplantation procedures,
- 8) Increasing number of patients who have compromised immune status,
- 9) Acquired immunodeficiency syndrome,

- Increasing use of aggressive invasive procedures in patient management and diagnosis,
- 11) Increasing number of resistant microorganisms and
- 12) Increasing number of elderly patients.

Causative agents

endotoxin-Gram-positive organisms, containing Gram-negative organisms, fungi and other microbial pathogens can trigger sepsis. Gram-negative bacteria are responsible for most clinical sepsis, although in the past decade the spectrum of invading microorganisms appears to be shifting to Gram-positive bacteria and fungi. In a recent Australian study, infection was confirmed by positive culture in about 58% of episodes. Of the organisms cultured, 48.3% were gram-positive and 38.5% gram-negative; other organisms, including yeasts, fungi, legionellae and mycobacteria accounted for the remaining 13.2%.

PATHOPHYSIOLOGY OF SEPSIS

The pathophysiology of sepsis is a complex process. Pertinent factors include the bacterial density of contamination and the underlying immune status. SIRS is a result of uncontrolled activation of innate immune effector mechanisms which serve to localize and control bacterial invasion and to initiate repair of injured tissue. The innate immune system, comprising cellular (polymorphonuclear leukocytes, macrophages, natural killer cells, dendritic cells) and humoral components (complement and coagulation systems), is activated in early sepsis. Components of the innate immune response from the first line of defence are involved in the recognition and destruction of pathogens and allow time for acquired immune response to be effective. The host-microbe interaction leads to the

TABLE 17.2: Definitions of Systemic Inflammatory Response Syndrome (SIRS) and	I
Different Degrees of Severity of Sepsis. ¹⁵	

Condition	Description
SIRS	 Two or more of the following conditions: Temperature >38.5°C or <35.0°C; Heart rate of >90 beats/min; Respiratory rate of >20 breaths/min or PaCO₂ of <32mmHg; and White blood cell count of >12,000cells/mL, <4000cells/mL, or >10% immature (band) forms
Sepsis	SIRS in response to documented infection (culture or Gram stain of blood, sputum, urine, or normally sterile body fluid positive for pathogenic microorganism; or focus of infection identified by visual inspection)
Severe sepsis	 Sepsis and at least one of the following signs of organ hypoperfusion or organ dysfunction: Areas of mottled skin; Capillary refilling of ≥3 seconds; Urinary output of <0.5mL/kg for at least 1 hour or renal replacement therapy; lactate >2mmol/L; Abrupt change in mental status or abnormal EEG findings; Platelet count of <100,000cells/mL or disseminated intravascular coagulation; Acute lung injury/Acute Respiratory Distress Syndrome; and Cardiac dysfunction (echocardiography)
Septic shock	 Severe sepsis and one of the following conditions: Systemic mean blood pressure (BP) of <60mmHg (<80mmHg if previous hypertension) after 20 to 30mL/kg starch or 40 to 60mL/kg saline solution, or pulmonary capillary wedge pressure (PCWP) between 12 and 20mmHg. Need for dopamine of >5mcg/kg/min, or nor adrenaline or epinephrine of <0.25mcg/kg/min to maintain mean BP at >60mmHg (80mmHg if previous hypertension)
Refractory septic shock	Need for dopamine at >15mcg/kg/min, or nor adrenaline or adrenaline at >0.25mcg/kg/min to maintain mean BP at >60mmHg (80mmHg if previous hypertension)

activation of several mediators within the innate immune system, including proinflammatory and anti-inflammatory cytokines and the coagulation cascade. The consequences of a systemic proinflammatory reaction include endothelial damage, microvascular dysfunction, impaired tissue oxygenation and organ injury. The consequences of an excessive antiinflammatory response include anergy and immunosuppression. addition, In

pro- and anti-inflammatory processes may interfere with each other, creating a state of what has been termed destructive immunologic dissonance.¹⁶ The entire process is often described as uncontrolled, maladaptive, or dysregulated. Sepsis may therefore pathologically be described as an autodestructive process that permits the extension of a normal pathophysiologic response to infection that can result in MODS.¹⁷

Innate immunity and toll-like receptors (TLRs)

SIRS is a consequence of uncontrolled activation of innate immune responses triggered when 'pattern recognition' receptors sense the presence of molecular signatures that are present in the pathogens. Pre-eminent among such pattern recognition receptors are TLRs which serve as primary sensors of the innate immune system.¹⁸ Various TLRs have been identified in humans; TLR4 is expressed on the cell surface and serves as the primary sensor for endotoxins (also called lipopolysaccharides (LPS)) which are a constituent of the outer membrane of Gram-negative bacteria. The exoskeleton of Gram-positive bacteria is comprised of peptidoglycan (PGN) and lipoteichoic acid (LTA) which is sensed by TLR2.¹⁹

Proinflammatory response

The primitive, but effective, local inflammatory processes (adherence, chemotaxis, phagocytosis, bacterial killing) are highly regulated at various levels, mainly through the production of macrophage cytokines. Once a macrophage has been triggered and activated during the invasion of tissue by bacteria, it secretes cytokines (tumor necrosis factor (TNF), interleukins (IL)) and other mediators into the cell's microenvironment. These cytokines and other multiple mediators act in concert, initiating and then amplifying the resultant generalised inflammatory processes. The overwhelming systemic inflammatory response that follows manifests itself in the shock syndrome characterised by endothelial damage, coagulopathy, loss of vascular tone, myocardial dysfunction, tissue hypoperfusion, and MODS. However, several randomised human clinical trials involving antagonism of pro-inflammatory cytokines and anti-endotoxin strategies have either failed to improve survival, or reported worsened survival. A potential reason for failure of these immunomodulatory strategies could have been that sepsis is a heterogeneous disorder, and the timing of the intervention(s) may have been inappropriate.

Coagulation cascade

Inflammatory mediators, such as TNF, initiate coagulation through the induction of tissue factor expression, monocyte/macrophages, primarily on polymorphonuclear and endothelial cells. The activation of the coagulation cascade leads to fibrin and clot formation. There is also loss of native anticoagulant function, indicated by decreased activity and circulating levels of protein C. A cross-talk between inflammatory and coagulation pathways leads to self-amplifying loops of activation of endothelium, leading to the formation of microthrombi and further endothelial damage, thus setting the stage for the development of consumptive coagulopathy. Despite improved understanding of the coagulation pathway, it remains unclear why Activated Protein C improved 'survival' in a landmark clinical trial,²¹ while strategies targeted at other components of the coagulation cascade, such as tissue factor pathway inhibitor and antithrombin III, had no impact on mortality.²² In addition to the complex coagulation cascade and hyperpermeable state of endothelium, vasomotor tone of the vessel is also affected. Vasoconstrictive (endothelin, thromboxane A2, and platelet activating factor (PAF)) and vasodilatory (nitric oxide and prostacyclin) metabolites are produced in certain circumstances with important consequences in terms of microcirculatory homeostasis and maintenance of tissue perfusion.¹⁹.

MULTIORGAN DYSFUNCTION SYNDROME (MODS)

The precise mechanisms of cell injury and resulting organ dysfunction in sepsis are not clearly understood. Multiorgan dysfunction syndrome is associated with widespread endothelial and parenchymal cell injury, some of which can be explained by hypoxic hypoxia, direct cytotoxicity or apoptosis.

Epithelial and endothelial dysfunction

Epithelial cells line the organs involved in MODS, including liver, lung, and intestines. Increased permeability and loss of the epithelial cell barrier is hypothesized to play a role in MODS. Increased permeability of the lung epithelial cells leads to acute lung injury (ALI) or acute respiratory distress syndrome (ARDS). The reactive oxygen species, lytic enzymes, and vasoactive substances (nitric oxide, endothelial growth factors) lead to microcirculatory injury, which is compounded by the inability of the erythrocytes to navigate the septic microcirculation. These changes are accompanied by peripheral vasodilatation, hypotension, tissue hypoperfusion, increased permeability, and increased peripheral oedema leading to hypoxic hypoxia frequently observed in severe sepsis. Direct cytotoxicity due to endotoxin, TNF-alpha, and nitric oxide may cause damage to mitochondrial electron transport, leading to disordered energy metabolism. This is called cytopathic or histotoxic anoxia which is an inability to utilize oxygen even when it is available.

Immune suppression and apoptosis

Few patients die shortly after the onset of sepsis due to profound hypotension or hypoxemia whilst many will have prolonged ICU course and may die following nosocomial infection. The interaction between proinflammatory and anti-inflammatory mediators plays an important role in determining the outcome of sepsis. Activated CD4 T cells are programmed to secrete cytokines with either of two distinct and antagonistic profiles. They secrete cytokines with inflammatory (type 1 helper T-cell [Th1]) properties, including TNF, interferon-1 and interleukin-2, or cytokines with anti-inflammatory (type 2 helper T-cell [Th2]) properties for example, interleukin-4 and interleukin-10. The factors that determine whether CD4 T cells have Th1 or Th2 responses are currently unknown but may be influenced by the type of pathogen, the size of the bacterial inoculum, and the site of infection.¹⁷ Programmed cell death (apoptosis) is a normal cellular process. Sepsis is accompanied by increased apoptosis of lymphoid cells, and, to a lesser extent, parenchymal cells. Ingestion of apoptotic cells by macrophages may lead to a Th2 response, while ingestion of necrotic cells favours a Th1 response, thus apoptosis contributes to immunosuppression. The proinflammatory cytokines may delay apoptosis in activated macrophages and neutrophils, but other tissues, such as the gut epithelium, may undergo accelerated apoptosis. Endogenous release of steroids during stress increases apoptosis. Therefore, derangement of apoptosis appears to play a critical role in the tissue injury involved in sepsis.

Sepsis, circulatory failure and organ dysfunction

The widespread disruptions in severe sepsis can result in profound cardio-circulatory dysfunction. This manifests itself as shock. The dysfunction involves the cardiac, peripheral vascular (macrovascular) and microcirculatory elements of the circulation, depending on the degrees of cardiac or vascular dysfunction and the volume status of the patient. The clinical picture ranges from cold, clammy and under-perfused to one of hyperdynamic shock. However in clinical practice, hyperdynamic shock is seen much more frequently.²³

Landry and Oliver²⁰ enumerated the primary mechanisms for vascular smooth muscle relaxation in sepsis to include of ATP-sensitive potassium activation channels in the plasma membrane, activation of inducible nitric oxide synthase, and vasopressin deficiency. There are numerous vasoregulatory mediators in septic shock, and distant organs, including the brain, adrenal glands, liver, and heart; all influence vascular tone.²² Another potential factor that may contribute to persistence of vasodilation is impaired compensatory secretion of antidiuretic hormone (vasopressin). Low doses of vasopressin may be effective in raising blood pressure in patients refractory to other vasopressors and may have other potential physiologic benefits. However, the recent VASST trial, a randomized, controlled trial comparing norepinephrine alone to norepinephrine plus vasopressin at 0.03 units/ min, showed no difference in outcome in the intent to treat population.²⁴

The situation in septic shock is further complicated by widespread microcirculatory dysfunction, further impairing tissue oxygen delivery, and diminished mitochondrial activity resulting in impaired oxygen extraction. The microcirculation is a key target organ for injury in the sepsis syndrome. Sepsis is associated with a decrease in the number of functional capillaries (capillarity), which causes an inability to extract oxygen maximally. These changes may be due to extrinsic compression of the capillary by tissue oedema, endothelial swelling, and plugging of the capillary lumen by leukocytes or red blood cells (which lose their normal deformability properties in sepsis). Nitric oxide plays a pivotal and multifaceted role in the complex pathophysiology of sepsis in maintaining microcirculatory homeostasis and patency, especially when the microcirculation sustains an insult (as with sepsis).²⁵ In the healthy state and under pathologic conditions, NO maintains microcirculatory homeostasis by regulating microvascular tone, leukocyte adhesion, platelet aggregation, microthrombi formation, and microvascular permeability. Direct or indirect effects of one or more circulating myocardial depressing substances results in myocardial depression, ventricular dilatation and/or decreased left ventricular ejection fraction further affecting circulation.26

Endothelial injury and the inflammatory process due to neutrophil entrapment in the pulmonary vasculature leads to disturbed capillary blood flow and enhanced microvascular permeability, resulting in interstitial and alveolar oedema.²⁷ ARDS is a frequent and well described manifestation of severe sepsis. Mechanisms by which sepsis and endotoxinemia might lead to acute renal failure are incompletely understood. Sepsis often results in acute renal failure due to acute tubular necrosis and systemic hypotension, direct renal vasoconstriction and release of various cytokines are contributing factors.²⁷ Nervous system involvement in sepsis can be central, causing encephalopathy, or peripheral resulting in neuropathy. At least 25% of patients admitted to medical or surgical intensive care units for more than seven days have some degree of acquired paresis. Neurological manifestations of sepsis includes limb muscle weakness and atrophy, reduced or absent deep tendon reflexes, loss of peripheral sensation to light touch and pin prick with relative preservation of cranial nerve function.28

MANAGEMENT

Treatment of sepsis and septic shock rests upon the triad of hemodynamic resuscitation, antimicrobial therapy and source control. Establishing vascular access and initiating aggressive fluid resuscitation should be the initial priority when managing patients with severe sepsis or septic shock. Relative intravascular hypovolaemia is common and rapid large volume infusions of intravenous fluids, appropriate vasopressor and inotropic support are indicated as initial therapy unless there is coexisting clinical or radiographic evidence of heart failure. Rivers et al.29 in a single centre randomised controlled trial (RCT) demonstrated decreased mortality by initiating protocolized resuscitation of patients with sepsis induced shock in the first 6 hours. The goals of initial resuscitation involved the use of crystalloids or colloids to maintain central venous pressure of 8-12mmHg and a mean arterial pressure (MAP) of at least 65mmHg with fluid and norepinephrine or dopamine as the initial vasopressor of choice. Dobutamine may be indicated in patients with myocardial dysfunction as indicated by elevated cardiac filling pressures and low cardiac output. Treatment goals, assuring vital organs are perfused are; to maintain a urine output 0.5mL/kg/hr and a superior vena caval oxygen saturation (ScvO₂) or mixed venous oxygen saturation (SvO₂) less than 70% or 65% respectively. Rivers et al reported a mortality reduction from 47% in the control group to 31% in the treatment group. There is no evidence for the use of dopamine to increase urine output as a treatment goal. The Saline versus Albumin Fluid Evaluation (SAFE Study) was the largest randomised controlled trial ever performed in the critical care population. It involved almost 6997 critically ill patients (that is, not specifically with sepsis), run by the Australian and New

Zealand Intensive Care Society Clinical Trials Group (ANZICS CTG). Patients were eligible if clinicians judged that fluid was needed to treat intravascular volume depletion, and were treated with either 4% albumin (n = 3497) or 0.9% (n = 3500) saline. The two groups had similar baseline characteristics. Death from any cause during the 28 days after randomisation was the primary outcome measure. There were 726 deaths in the albumin group, as compared with 729 deaths in the saline group (relative risk of death, 0.99; 95% CI, 0.91 to 1.09; P = 0.87). There were no significant differences between the groups in the mean (±SD) numbers of days spent in the ICU $(6.5 \pm 6.6 \text{ in the albumin group})$ and 6.2 ± 6.2 in the saline group, P = 0.44), days spent in the hospital $(15.3 \pm 9.6 \text{ and}$ 15.6 ± 9.6 , respectively; P = 0.30), days of mechanical ventilation $(4.5 \pm 6.1 \text{ and}$ 4.3 ± 5.7 , respectively; P = 0.74), or days of renal-replacement therapy $(0.5 \pm 2.3 \text{ and}$ 0.4 ± 2.0 , respectively; P = 0.41).³⁰

The Surviving Sepsis Campaign (SSC), an initiative of the ESICM, the International Sepsis Forum and SCCM was developed to improve the management, diagnosis, and treatment of sepsis. The most recent version was published early in 2008.³¹ As per these SSC guidelines, the Rivers study was considered as Grade B evidence. However, there were also concerns raised regarding the widespread implementation of this study into practise in other jurisdictions. One of these was the high mortality in the control group (47%). Mortality in other studies reporting severe sepsis has been quoted as 30-35%,^{7,32} which could suggest that while Early Goal Directed Therapy may have a beneficial effect when baseline mortality is high, it may be less effective when baseline outcomes are better. The other concern was that introduction of this treatment paradigm would have huge implications for staffing and infrastructure

in the emergency department and ICU. The ScvO₂ may be used as warning signal in critically ill patients and act as a marker instead of SvO₂ in emergency departments and ICU in the early stages of hemodynamic optimisation. Following initial resuscitation, it is uncertain whether goal- directed therapy should be based on ScvO₂ instead of SvO₂. Studies have provided indirect support for the use of lactate in goal-directed therapy, but there is as yet insufficient evidence for its use as a resuscitation end point. Single centre studies frequently either lack the scientific rigor or external validity required to support widespread changes in practice and their premature incorporation into guidelines may make the conduct of definitive studies difficult.³³ more ARISE (Australasian Resuscitation In Sepsis Evaluation) is a phase III, multi-centre, ANZICS CTG (Australia, New Zealand Intensive Care Society- Clinical Trails Group) endorsed, randomised, controlled study evaluating early goal-directed therapy in 1600 patients presenting to the Emergency Department with severe sepsis across Australian, New Zealand and Hong Kong hospitals. The study is being conducted over 2.5 years through the Australian and New Zealand Intensive Care Research Centre, Department of Epidemiology and Preventive Medicine, Monash University. This study will hopefully directions towards provide more this topic.

Appropriate cultures should properly be obtained before initiating antibiotic therapy but this should not prevent administration of antimicrobial therapy. It is recommended that empiric antibiotic therapy be administered within 1 hour of the identification of severe sepsis. In the presence of septic shock, each hour delay in achieving administration of effective antibiotics appears to be associated with a measurable increase in mortality.³⁴ Rapid diagnostic methods (polymerase chain reaction, micro-arrays) might aid in the earlier identification of pathogens.³⁵ Specific anatomical diagnosis of infection and measures to control the source within the first 6 hours following presentation is recommended.³¹ A procalcitonin-guided strategy to treat suspected bacterial infections in non-surgical patients in intensive care units could also reduce antibiotic exposure with no apparent adverse outcomes. A prospective, parallel-group, multicentre, open-label, randomised trial demonstrated procalcitonin guided strategy resulted in significantly more days without antibiotics when compared with control group (14.3 days [SD 9.1] versus 11.6 days [SD 8.2]; absolute difference 2.7 days, 95% CI .0.4 to 4.1, p<0.0001).³⁶

Steroids

Use of corticosteroids in patients with septic shock has been controversial for several decades and continues to be controversial despite the publication of several trials including two recent large RCT's. Sepsis may be associated with relative adrenal insufficiency in a substantial subset of patients.

Annane *et al*^{β 7} in a multi-centre French randomised 300 trial, patients with septic shock to receive either placebo or hydrocortisone 50mg intravenously every six hours (plus fludrocortisone 50mcg enterally once a day) within eight hours of onset of septic shock. Treatment continued for seven days. Based upon a high-dose ACTH (adrenocorticotropic (250mcg)hormone) stimulation test, the patients were classified as having adequate adrenal reserve (maximum increase in serum cortisol of >9mcg/dL) (248nmol/L) or inadequate adrenal reserve (maximum cortisol increase of $\leq 9mcg/dL$ (248nmol/L). This study showed significant shock reversal and reduction

of mortality rate in patients with relative adrenal insufficiency. Based on this study many clinicians still use steroids in certain subsets of septic patients.

However, a recent large, European multicenter trial CORTICUS,³⁸ which was a double blinded randomised trial assigning 499 patients with septic shock to receive hydrocortisone or placebo intravenously every six hours for five days, followed by a tapering regimen, failed to show a survival benefit with steroid therapy for septic shock irrespective of the presence or absence of relative adrenal insufficiency. The therapeutic guiding role of the ACTH stimulation test was cast into doubt by this trial.

Similarities between the two studies included a beneficial steroid effect on time to shock reversal, no evidence for increased risk of neuromuscular weakness, and no hyperglycaemia. Differences between the two studies Annane³⁷ and CORTICUS trial³⁸ respectively include: Entry window (8 vs. 72 hours; SBP <90mmHg (>1 hour vs. <1 hour); additional treatment with (fludrocortisone vs. no fludrocortisone); treatment duration (7 vs. 11 days); weaning (none vs. present); differences in steroid effects according to the response to ACTH test (yes vs. no) and increased risk of superinfection (no vs. yes).

Another major difficulty regarding the use of steroid is the lack of definitive data regarding the appropriate cutoff values for 'relative' adrenal insufficiency in the shock state. Significant variability exists in the results of cortisol assay among research centres and whether they estimate free or total cortisol assay. Free and total cortisol may vary significantly based upon the protein concentration. Which steroid is also a pertinent question; there is little evidence for steroids other than hydrocortisone.

Recombinant human activated protein C (rhAPC)

Coagulation plays a central role during inflammatory processes, particularly those due to infection. Drotrecogin alfa (activated) or recombinant human activated protein C is a 54 kilodalton recombinant glycoprotein with antithrombotic, profibrinolytic, and anti-inflammatory properties. Protein C is an inactive zymogen synthesized in the liver. When coupled to thrombomodulin on the endothelial surface, protein C is converted to Activated Protein C by thrombin. Significant decreases in protein C levels have been well documented in sepsis and specifically in septic shock.³⁹ The conversion of protein C to activated protein C may be impaired during sepsis as a result of the down-regulation thrombomodulin by inflammatory of cytokines. This led to interest in therapeutic administration of activated protein C (and similar agents) in early sepsis. It has now become the first biological therapy to report a mortality benefit in human RCT of sepsis. The Recombinant Human Activated Protein C Worldwide Evaluation in Severe Sepsis (PROWESS)²¹ was a randomized, double-blind, placebo-controlled, multicenter trial. Patients with systemic inflammation and organ failure due to acute infection were randomised to placebo or to receive rhAPC (24µg/kg/hr) for 96 hours. The primary end point was death from any cause at 28 days. Nearly 1700 patients were randomized but the study was stopped early when an interim analysis showed a survival benefit in the treatment arm. Based upon post-hoc analyses of the study data, drotrecogin alpha was of greater benefit in the most severely ill patients, including those with an APACHE (Acute Physiology and Chronic Health Evaluation) II score ≥ 25 and patients with multiple organ dysfunction. This formed the basis for the

FDA decision to license rhAPC for use in sepsis.

A subsequent trial of rhAPC in patients with a low risk of death was halted after an interim analysis for lack of effectiveness.40 Another trial, involving the paediatric population who had severe sepsis, was stopped after approximately 400 patients had been enrolled, again because of futility. The Surviving Sepsis Guidelines³¹ suggest its use (if there are no contraindications) in adult patients with sepsis- induced organ dysfunction associated with a clinical assessment of high risk of death, most of whom will have Acute Physiology and Chronic Health Evaluation (APACHE) II >25. However, there has been considerable criticism of the PROWESS trial and Australian and New Zealand Intensive Care Society does not recommend the use of rhAPC within practice guidelines.⁴¹ The decision regarding administration of rhAPC is likely best made based upon clinicians assessment of high risk of death due to multiorgan failure versus the risk of bleeding complications.

Currently another trial 'Efficacy and Safety of Drotrecogin Alfa (Activated) in Adult Patients with Septic Shock' is in progress. The purpose of this placebo-controlled study is to determine if drotrecogin alfa (activated) treatment provides significant mortality reduction and organ function improvement in patients with septic shock compared with placebo treatment in patients receiving the current standard of care for septic shock. This study will also assess the effectiveness of drotrecogin alfa (activated) in reducing 28-day mortality in patients with septic shock and concomitant severe protein C deficiency at baseline.

Glucose control

Hyperglycaemia is reported to be associated with poor clinical outcomes in critically

ill patients. In 2001, Van Den Berghe and colleagues⁴² demonstrated significant mortality benefit by intensive insulin infusion titrated to strict euglycaemia in critically ill surgical patients. However, a second study by the same author which targeted medical ICU patients using the same strict glycaemic control failed to show survival benefit. With the available evidence, most clinicians agree that glycaemic control is a desirable intervention in critically ill patients although the optimal blood glucose range is still controversial. A blood glucose level of 140 to 180 mg/dL (7.7 to 10mmol/L) appears to be an acceptable target. A more stringent target (80 to 108mg/dL [4.5 to 6mmol/L]) was associated with higher incidence of hypoglycaemia and significantly higher 90-day mortality in the recently published (Australasian based) NICE SUGAR trail. This study randomised 6104 patients; 3054 were assigned to undergo intensive control 81 to 108mg/dL (4.5 to 6.0mmol/L) and 3050 to undergo conventional control blood glucose $\leq 180 \text{mg/dL}$ (<10.0nmol/L). Severe hypoglycaemia was reported in 6.8% of the intensive-control group and 0.5% of the conventional-control group (P<0.001).43

Renal replacement therapy

Continuous Renal Replacement Therapy (CRRT) involves either dialysis based solute removal) or filtration (convection-based solute and water removal) treatments that operate in a continuous mode. Haemofiltration (HF) refers to the use of a hydrostatic pressure gradient to induce the filtration (or convection) of plasma water across the membrane of the hemofilter. Hemofiltration has been described as a technique which can lower cytokine levels. In a single-centre, randomized, controlled study in which continuous renal-replacement therapy was the sole treatment approach, survival improved when the intensity of therapy was increased from an assigned effluent rate of 20ml/kg/hr to either 35 or 45ml/kg/hr.44 Bellomo and colleagues recently reported the results of the Randomized Evaluation of Normal versus Augmented Level (RENAL) Replacement Therapy Study, which was conducted at multiple centers in Australia and New Zealand. In the RENAL Study,45 1508 patients with severe acute kidney injury who required intensive care were randomly assigned to receive continuous venovenous hemodiafiltration at a total effluent flow rate of either 25ml or 40ml/kg/hr. In both treatment groups, 44.7% of patients died in the first 90 days after randomization (odds ratio, 1.00; 95% CI, 0.81 to 1.23). Overall, 94.4% of patients who were alive after 90 days no longer required dialysis, with similar rates of recovery of kidney function in both treatment groups.

3-hydroxy-3-methylglutarylcoenzyme reductase inhibitors (HMG-CoA)

The therapeutic use of HMG-CoA reductase inhibitors, also known as statins, has become widespread as lipid lowering agents in the prevention and treatment of major cardiovascular diseases. There is evidence that statins have beneficial effects on the perioperative risk of cardiac complications and sepsis. Statins appear to have actions on vascular nitric oxide through the balance of inducible and endothelial nitric oxide synthase. Statins also have anti-inflammatory properties, exemplified by reduced plasma concentrations of the inflammatory cytokines tumour necrosis factor (TNF- α) and interleukin (IL-6). Various cohort studies have been published in favour of statins reducing mortality in sepsis. A meta-analysis of cohort studies (including one randomised trial) demonstrated a protective effect for statins in patients with sepsis and/or other infections compared to placebo for various infection-related outcomes; (0.61 (95% CI, 0.48-0.73) for 30-day mortality).⁴⁶ Current ongoing RCTs of statins in sepsis are to be watched with interest.

Other adjuvant therapies in sepsis

Cytokines and anticytokine therapies

Granulocyte Colony Stimulating Factor (G-CSF) is a cytokine involved in myelopoiesis with a predominant effect on the polymorphonuclear leukocyte (PMN). Studies in humans with pneumonia have had encouraging results but with no mortality benefit. TNF plays a central role in the inflammatory process; but phase III clinical trials of TNF antibodies and TNF fusion proteins led to negative results. Similarly, studies on antagonising interleukin-1, a cytokine with similar properties, also led to negative results.

Pooled immunoglobulin (IVIG)

Immunoglobulin has been used for sepsis states such as meningococcal and pneumococcal infections with some documented survival benefit. The mechanism of action is most likely immunomodulatory and binding and inactivation of the bacterial derived superantigen. Its use has been suggested in toxic shock syndrome due to Streptococcus pyogenes and Staphylococcus aureus. A large randomised trial of 653 patients with severe sepsis failed to demonstrate any benefit of IVIG. The 28-day mortality rate was 37.3% in the placebo group and 39.3% in the IVIG group and thus not significantly different (p = 0.6695).⁴⁷ Many clinical studies and meta-analyses have examined the utility of IVIG, but there exists insufficient data to make a firm recommendations for its use in sepsis and septic shock.

Acute respiratory distress syndrome (ARDS)

ARDS is an acute (rapid onset) syndrome with bilateral infiltrates on chest x-ray; no evidence of elevated left atrial pressure (the pulmonary capillary wedge pressure is ≤18 mmHg if measured) and a ratio of arterial oxygen tension to fraction of inspired oxygen (PaO₂/ FiO₂) is less than 201mmHg. Conventional therapy, aimed at tidal volumes (V) of 12-15ml/kg, generated lung volumes that overstretched alveoli resulting in volutrauma (secondary lung injury). The landmark Acute Respiratory Distress Syndrome Network multicenter trial randomly assigned 861 mechanically ventilated patients with ARDS and acute lung injury to receive low tidal volume ventilation (tidal volume of 6 mL/kg) or conventional mechanical ventilation (tidal volume of 12mL/kg). Mechanical ventilation using a lower tidal resulted in decreased mortality and an increase in the number of days without ventilator use.48 The overall goal was to maintain acceptable gas exchange and avoid alveolar over-distension, tolerating hypercapnia if indicated; thus minimizing the adverse effects of mechanical ventilation.

REFERENCES

- Finfer S, Bellomo R, Lipman J, et al. Adult-population incidence of severe sepsis in Australian and New Zealand intensive care units. *Intensive Care Med* 2004; **30**: 589–596.
- Brun-Buisson C, Meshaka P, Pinton P, et al. EPISEPSIS: a reappraisal of the epidemiology and outcome of severe sepsis in French intensive care units. *Intensive Care Med* 2004; **30**: 580–8.
 - Martin GS, Mannino DM, Eaton S, Moss M. The epidemiology of sepsis in

the United States from 1979 through 2000. *N Engl J Med* 2003; **348**: 1546–54.

- Craig JF. The epidemiology of sepsis is Australasia different? *Crit Care Resusc* 2006; 8: 219–222
- Pittet D, Rangel-Frausto S, Li N, et al. Systemic inflammatory response syndrome, sepsis, severe sepsis and septic shock: incidence, morbidities and outcomes in surgical intensive care unit patients. *Intensive Care Med* 1995; 21: 302–9.
- Brun-Buisson C, Doyon F, Carlet J, et al. Incidence, risk factors, and outcome of severe sepsis and septic shock in adults. A multicenter prospective study in intensive care units. French Intensive Care Unit Group for Severe Sepsis. *JAMA* 1995; 274: 968–74.
- Harrison D, Welch C, Eddleston J. The epidemiology of severe sepsis in England, Wales and Northern Ireland, 1996 to 2004; secondary analysis of a high quality clinical database, the ICNARC Case Mix Programme Database. *Crit Care* 2006; **10** (2): R42.
- Silva E, Pedro Mde A, Sogayar AC, et al. Brazilian Sepsis Epidemiological Study (BASES study). *Crit Care* 2004; 8: R251–60.
- Geroulanos S, Douka ET. Historical perspective of the word 'sepsis' [letter]. *Intensive Care Med* 2006; **32**: 2077.
- Duane JF, Joseph E. Parrillo, Kumar A. Sepsis and Septic Shock: A History. *Crit Care Clin* 2009; 25: 83–101.
- Bone RC, Balk RA, Cerra FB, et al: American College of Chest Physicians/ Society of Critical Care Medicine Consensus Conference: Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. *Chest* 1992; **101**: 1644–1655,

- Balk RA. Severe Sepsis and Septic Shock. Definitions, epidemiology, and clinical manifestations. *Crit Care Clin* 2000; 16(2): 179–192
- Consensus Conference Committee. American College of Chest Physicians/ Society of Critical Care Medicine consensus conference: definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. *Crit Care Med* 1992; 20: 864–74.
- Mitchell M, Levy, Mitchell P. Fink, John C. Marshall, Edward Abraham, Derek Angus, Deborah Cook, Jonathan Cohen, Steven M. Opal, Jean-Louis Vincent, Graham Ramsay. 2001 SCCM/ESICM/ACCP/ATS/ SIS International Sepsis Definitions Conference. *Crit Care Med* 2003; (31)4: 1250–1256.
- 15. Annane D, Bellissant E, Cavaillon JM. Septic shock. *Lancet* 2005; **365**: 63.
- Bone RC. Immunologic dissonance: a continuing evolution in our understanding of the systemic inflammatory response syndrome (SIRS) and the Multiple Organ Dysfunction Syndrome (MODS). *Ann Intern Med* 1996; (15)**125**: 680–687.
- Hotchkiss RS, Karl IE. The pathophysiology and treatment of sepsis. *N Engl J Med* 2003; **348**: 138: 150.
- Kumagai Y, Takeuchi O, Akira S. Pathogen recognition by innate receptors. *J Infect Chemother* 2008; 14: 86–92.
- Sunil AD. Inflammatory and immune responses in sepsis. Critical Care Update 2009; V Nayyar, JV Peter, R Krishen, S Srinivasan (Eds). Jaypee Bros Medical Publishers Itd New Delhi 2010; 13: 143–151.
- 20. Landry DW, Oliver JA. The

pathogenesis of vasodilatory shock. *N Engl J Med* 2001; **345**: 588–595.

- Bernard GR, Vincent JL, Laterre PF, et al. Efficacy and safety of recombinant human activated protein c for severe sepsis. *N Engl J Med* 2001; 344: 699–709.
- Curtis NS, Shepherd W. New concepts in sepsis. *Current Opinion in Crit Care* 2002, 8: 465–472.
- 23. O. Okorie Nduka, Joseph E. Parrillo. The pathophysiology of septic shock. *Crit Care Clin* 2009; **25**: 677–702.
- James AR, Keith RW. et al. Vasopressin versus Norepinephrine Infusion in Patients with Septic Shock. N Engl J Med 2008; 358: 877–887.
- 25. Trzeciak S, Cinel I, Dellinger P et al. (Microcirculatory Alterations in Resuscitation and shock (MARS) Investigators) Resuscitating the Microcirculation in Sepsis: The Central Role of Nitric Oxide, Emerging Concepts for Novel Therapies, and Challenges for Clinical Trials. *Acad Emerg Med* 2008; **15**(5): 399–413.
- Bone RC. The pathogenesis of sepsis. Ann Intern Med 1991; 115: 457–69.
- Ghosh S, Latimer RD, Gray BM, et al. An Endotoxin-induced organ injury. *Crit Care Med* 1993; 21: S19–24.
- Deem, S, Lee, CM, Curtis, JR. Acquired neuromuscular disorders in the intensive care unit. *Am J Respir Crit Care Med* 2003; 168: 735–739.
- 29. Rivers E, Nguyen B, Havstad S, et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. *N Engl J Med* 2001; **345**: 1368–1377.
- 30. The SAFE Study Investigators. A Comparison of Albumin and Saline

for Fluid Resuscitation in the Intensive Care Unit. *N Engl J Med* 2004; **350**: 2247–56.

- Dellinger RP, Levy MM, Carlet JM, et al. Surviving Sepsis Campaign: International guidelines for management of severe sepsis and septic shock. *Intensive Care Med* 2008; 34: 17–60.
- 32. Abraham, E., K. Reinhart, et al. Efficacy and safety of tifacogin (recombinant tissue factor pathway inhibitor) in severe sepsis: a randomized controlled trial. *JAMA* 2003; **290**(2): 238–47.
- Bellomo R, Warrillow SJ, Reade MC. Why we should be wary of singlecentre trials. *Crit Care Med* 2009; 37(12): 3114–3119.
- 34. Kumar A, Roberts D, Wood KE, et al. Duration of hypotension prior to initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. *Crit Care Med* 2006; **34**: 1589–1596.
- Tenover FC: Rapid detection and identification of bacterial pathogens using novel molecular technologies: Infection control and beyond. *Clin Infect Dis* 2007; 44: 418–423.
- 36. Bouadma L, Luyt CE, Tuback F et al. Use of procalcitonin to reduce patients' exposure to antibiotics in intensive care units (PRORATA trial): a multicentre randomised controlled trial. *The Lancet* 2010; **375**(9713): 463–474.
- Annane D, Sebille V, Charpentier C, et al. Effect of treatment with low doses of hydrocortisone and fludrocortisone on mortality in patients with septic shock. JAMA 2002; 288: 862–871.
- Sprung CL; Annane D; Keh D; Moreno R. et al. Hydrocortisone therapy for patients with septic shock. *N Engl J Med* 2008; **358**(2): 111–24.

- Mesters RM, Helter brand J, Utterback BG, et al. Prognostic value of protein C concentrations in neutropenic patients at high risk of severe septic complications. *Crit Care Med* 2000; 28(7): 2209–2216.
- 40. Abraham E, Laterre PF, Garg R, et al. Drotrecogin alfa (activated) for adults with severe sepsis and a low risk of death. *N Engl J Med* 2005; **353**: 1332–1341.
- Peter H and Cooper DJ. The Surviving Sepsis Campaign: International guidelines for management of severe sepsis and septic shock: 2008 and the Australian and New Zealand Intensive Care Society (ANZICS). *Crit Care Resusc* 2008; 10: 6–8.
- 42. Van den Berghe G, Wouters P, Weekers F, et al: Intensive insulin therapy in critically ill patients. *N Engl J Med* 2001; 345: 1359–1367.
- NICE-SUGAR Study Investigators, Finfer S, Chittock DR, et al. Intensive versus conventional glucose control in critically ill patients. *N Engl J Med* 2009; **360**(13): 1283–97.
- 44. Ronco C, Bellomo R, Homel P, et al. Effects of different doses in continuous veno-venous haemofiltration on outcomes of acute renal failure: a prospective randomized trial. *Lancet* 2000; **355**: 26–30.
- The RENAL Replacement Therapy Study Investigators. Intensity of continuous renal-replacement therapy in critically ill patients. *N Engl J Med* 2009; **361**: 1627–38.
- Tleyjeh IM, Kashour T, Hakim FA et al. Statins for the Prevention and Treatment of Infections: A Systematic Review and Meta-analysis. *Arch Intern Med* 2009; 169(18): 1658–1667.
- 47. Werdan K, Pilz G, Bujdoso O, et al. Score-based immunoglobulin G

therapy of patients with sepsis: The SBITS study. *Crit Care Med* 2007; **35**(12): 2693–2701.

48. The Acute Respiratory Distress Syndrome Network. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. *N Engl J Med* 2000; **342**(18): 1301–8.

Cover diagram by David Heinrich of the *Medical Illustration and Media Unit, Flinders Medical Centre*. (See chapter 18)

MECHANISMS OF VASCULAR DISEASE

Edited by Robert Fitridge and Matthew Thompson

Chapter 1: Endothelium Chapter 2: Vascular smooth muscle structure and function Chapter 3: Atherosclerosis Chapter 4: Mechanisms of plaque rupture **Chapter 5**: Current and emerging therapies in atheroprotection **Chapter 6:** Molecular approaches to revascularisation in peripheral vascular disease **Chapter 7:** Biology of restenosis and targets for intervention **Chapter 8:** Vascular arterial haemodynamics **Chapter 9:** Physiological haemostasis **Chapter 10:** Hypercoagulable states **Chapter 11:** Platelets in the pathogenesis of vascular disease and their role as a therapeutic target **Chapter 12**: Pathogenesis of aortic aneurysms **Chapter 13:** Pharmacological treatment of aneurysms Chapter 14: Aortic dissection and connective tissue disorders Chapter 15: Biomarkers in vascular disease Chapter **16:** Pathophysiology and principles of management of vasculitis and Raynaud's phenomenon Chapter 17: SIRS, sepsis and multiorgan failure **Chapter 18:** Pathophysiology of reperfusion injury **Chapter 19:** Compartment syndrome **Chapter 20:** Pathophysiology of pain Chapter 21: Postamputation pain **Chapter 22:** Treatment of neuropathic pain **Chapter 23:** Principles of wound healing **Chapter 24:** Pathophysiology and principles of varicose veins **Chapter 25:** Chronic venous insufficiency and leg ulceration: Principles and vascular biology Chapter 26: Pathophysiology and principles of management of the diabetic foot **Chapter 27:** Lymphoedema – Principles, genetics and pathophysiology **Chapter 28:** Graft materials past and future Chapter 29: Pathophysiology of vascular graft infections

BARR SMITH PRESS An imprint of The University of Adelaide Press