National nursing research institute opens

A new national centre for nursing research will be launched at a major conference being held this week by the University of Adelaide and the Royal Adelaide Hospital.

Called the Joanna Briggs Institute for Evidence Based Nursing, the centre has been established in recognition of the need for a collaborative approach to research and its integration into clinical practice.

The institute will form a network of six research centres nationwide, linking expert nursing researchers, clinicians and managers from South Australia with those in New South Wales, Queensland, Victoria, Tasmania and Western Australia.

Based within the University of Adelaide's Department of Clinical Nursing at the Royal Adelaide Hospital, the institute takes its name from Joanna Briggs — a South Australian nurse who was appointed the first matron of the RAH in 1856.

Professor Alan Pearson, head of the University of Adelaide's Department of Clinical Nursing at the Royal Adelaide Hospital, the institute takes its name from Joanna Briggs — a South Australian nurse who was appointed the first matron of the RAH in 1856.

Professor Penny Boumelha, has been appointed Head of the University of Adelaide's Division of Humanities and Social Sciences.

Professor Boumelha is the third Divisional Head appointed by the University in recent weeks following an organisational restructure earlier in the year. She also joins the University's 11-person Senior Management Group.

Announcing the appointment, Vice-Chancellor Professor Mary O'Kane said Professor Boumelha had been instrumental in achieving the establishment of a Chair of Creative Writing, a joint project between the University and the State Department for the Arts and Cultural Development. She has been a member of the University Council since 1993.

Professor Boumelha said she looked forward to encouraging further recognition of the value of study in the humanities and social sciences.

In terms of student numbers, Humanities & Social Sciences is the largest Division at the University.

—David Ellis

—Patricia Cree
Collective Society

I write in appreciation of the conference “Are we to be a Collective Society?”, which was held at the Centre for Australian Studies within the University on 28 October, 1996.

It reminded those who attended of our mutual responsibility for the poorly housed, the young unemployed, our reduced health and legal services and the needs of the first Australians.

This free conference, organised by members of the Politics Department and other colleagues, enabled an enthusiastic audience to discuss their responsibilities as citizens without the barrier of high enrolment fees which are often paid in the continuing education agencies of this State.

Colin Lawton
Lowth Mitchell

A matter of money

Equity in access is a principle which universities should support, rather than one which supports bodies, between public and private, interstate and from outside the University. What impressed me most was Carol’s speech which reflected on her education from a personal perspective. Carol compared her life and the launching of her book in 1990 with her life now and the launching of her new book. She went on to say, “I don’t wish to sound depressed or depressing but if I were asked about her life now and the launching of her book in 1990, I think of our climate survey, the summit, rather than on the one which supports minds and bodies, between public and private, rather than one which supports and thrives on those distinctions”. Her words immediately made me think of our climate survey, the summary of which is contained in this copy of the Adelaean.

I find it worrying that the results should show we are very concerned about the current workplace environment; there is concern about staff being heard by Senior Management, and concern about opportunity for advancement. Clearly we must focus on what needs most to be improved and on what is most important to our staff. I am told by the consultants who advised our climate survey reference group that as a University we differ from high performing organisations recently surveyed. In those organisations staff perceive that the provision of high quality services and the satisfaction of the client group are critical to the organisation’s success. It may be a question of example; as we learn to focus more on all our clients, both internal and external, we too will see the resultant preoccupation with the economic aspects of our operation to deflect us from the task of improving satisfaction and service delivery. Clearly we must allow the resultant preoccupation with the economic aspects of our operation to deflect us from the task of improving satisfaction and service delivery.

Given the fact that student numbers have grown from 350,000 to 605,000 since 1983, governments have a need to reconsider our role as a teaching institution. Quite apart from anything else, it will oblige us to carefully cost our undergraduate fees. That will be a difficult task. It may be that to keep fees within reasonable limits there will always be the need for some across the board non-refundable government contribution to capital and recurrent funding. That circumstance may provide a legitimate reason to differentiate between undergraduate fees paid by local as opposed to overseas students. But otherwise I cannot see that there should be any differentiation between the two. Neither should undergraduate fee income be used to subsidise the cost of postgraduate study. All in all, we will have to make our costing much more transparent. I see nothing wrong with that.

Of course, there are some dangers. Above all else, the introduction of up-front fee-paying students should not be used as a pretext by governments to reduce the number of publicly funded places in universities. Likewise, we will have to be astute to ensure that we do not admit undeserving students just for the money. We must resist the temptation to pass them when they deserve to fail. The temptation to do so exists under the present system of funding, and will exist whatever the method of funding.

The challenge for universities such as ours is not to allow the resultant preoccupation with the economic aspects of our operation to deflect us from the task of maintaining uncompromisingly high academic standards in a teaching environment which is as free from government regulation as we can make it.

Mary O’Kane
New Adelaide Scholarships to help students fund Uni study

School leavers, others new to higher education, and outstanding students from around Australia will benefit from a new University of Adelaide scholarships package.

University Vice-Chancellor Mary O’Kane says the Adelaide Achiever Scholarships will provide support for outstanding students.

School leavers and others new to higher education will be eligible for 30 scholarships, each of $1000, applied to most of the University’s Bachelor courses.

Students who transfer to Adelaide to undertake Honours, and others who transfer part-way through a degree, will be eligible for up to 50 scholarships of $2000 to assist with accommodation and other student expenses.

Students in agricultural and natural resource sciences, humanities and social sciences, economics, performing arts, architecture, engineering, mathematical sciences and science will be eligible for these new scholarships.

As well, some 30 students from financially disadvantaged backgrounds will receive valuable full or half scholarships for the cost of the Higher Education Contribution Scheme (HECS). Ten full HECS scholarships and 20 half HECS scholarships will be awarded to eligible students in any of the University’s undergraduate courses.

“With higher HECS expected to apply from next year, we want to play our part in ensuring outstanding students don’t miss out on university study because of the cost,” Professor O’Kane says.

The University also offers a range of other undergraduate scholarship assistance, including help with the cost of international student exchanges and summer research scholarships, as well as some 1600 scholarship opportunities for postgraduate study.

More information about the scholarships can be obtained from the University’s Student Information Office, telephone 1800 061 459.

—Patricia Cree

Developing the next generation of indigenous leaders

Aboriginal and Torres Strait Islander participation and success in higher education will be given a boost by a unique housing initiative affiliated with the University of Adelaide.

From February 1997, the Mattanya Housing Association will provide affordable and secure housing, specifically designed for indigenous students of the University of Adelaide.

Most importantly, Mattanya — the Kaurna word for “owner” — offers the academic and community support needed for Aboriginal and Torres Strait Islander students to reach their full potential.

The Chair of Mattanya, Mercy Glastonbury, said Mattanya aimed to promote academic excellence and support the development of future Aboriginal and Torres Strait Islander leaders.

Mattanya’s stunning facilities are in Finniss Street, North Adelaide. The two refurbished heritage houses contain single bedroom, self-catering accommodation for 38 students and a resident Academic Director, who will oversee the development of an indigenous community of scholars.

Ms Glastonbury, who is also the Director of Wilto Yerlo on the University of Adelaide, said that in recent years there had been a significant increase in the number of Aboriginal and Torres Strait Islander students at the University.

Today, there were 130 students enrolled across most disciplines at all levels. The University also has two programs of national significance — the Centre for Aboriginal Studies in Music and the Aboriginal Land Management Program.

“For some indigenous Students, universities can be alienating places,” Ms Glastonbury said.

“In addition, there is unquestionably a link between a student’s academic success and the quality of housing.

“Feedback from parents and potential students indicates that tertiary study opportunities for indigenous students from interstate or

Review of Senior M management and A adminstrative Structures

The Vice-Chancellor, Professor Mary O’Kane, has decided to initiate a review of the University’s senior management and administrative structures.

The review will be conducted by Emeritus Professor David Penington, former Vice Chancellor of the University of Melbourne who will visit the University beginning 9-10 December and is expected to submit a report early in 1997.

Professor O’Kane said she believed the time was ripe for such a review.

“The aim of the review will be to achieve the best possible collegial policy development within a management structure adapted to the new higher education environment in which we find ourselves,” Professor O’Kane said.

ACADEMY FELLOWSHIP

Dr Chris Mortensen from the Department of Philosophy was among nineteen Australian scholars elected as Fellows of the American Academy of the Humanities last month.

Dr Mortensen’s publications include works on the philosophy of mathematics, science, ethics and his recent book Inconsistent Mathematics, on the philosophy of mind, and on aesthetics.

POPULATION CONFERENCE

More than 250 delegates from around the world are converging on the University of Adelaide to discuss the future of Australia’s population.

The Australian Population Association International Conference will be held from 3-6 December in the Napier Building, North Terrace Campus.

The conference is the major biennial gathering of demographers, policy makers, planners, academics, researchers and practitioners from the government and public sectors in Australia and overseas.

Almost 100 papers will be presented during the conference which this year focuses on “Australia’s population into the Next Millennium”.

Issues to be discussed include the growth and distribution of population, age and health, migration, housing, indigenous populations, and Australia’s involvement in Asia.

ASO LEADER’S LAST CONCERT

William Hennessey will give his last performance as leader of the Australian String Quartet on Friday 6 December in Elder Hall.

Mr Hennessey, a senior lecturer in the Elder Conservatorium, will take up the position of Head of Strings at Melbourne University in 1997.

For this final performance he has chosen Schubert’s two-cello Quintet, with former ASO member (and fellowBOUNDING member) Janis Lars playing the additional cello part.

The free concert will start at 11:00pm but early arrival is recommended because organisers are expecting a full house.

GLENELG SHORELINE MODEL

A scale model showing the future of Adelaide’s Glenelg shoreline has been built by the Department of Civil and Environmental Engineering for EngFest, the commercial arm of the Faculty of Engineering.

The model, measuring 25 metres by 15 metres, represents about one kilometre of the Glenelg beach. EngTest is using the 1:50 scale model to study the possible effects of the proposed Glenelg Safe Harbour and Marina on the beach.

EngTest’s commercial arm is making models of the proposed project, as well as the existing beach, to help determine how the breakwater will perform.

The test program involves creating one-in-100-year storms with waves equivalent to four metres in height. Sophisticated computer technology measures the wave height inside and outside the breakwater.

The test was built at the Department of Transport’s Walkley Heights depot and is part of EngFest’s involvement in S/TAMPS (Southern Testing And Research Services). On completion of the project, it will be used by Civil and Environmental Engineering students, and by engineers and managers of small and large companies.

GLENELG SHORELINE MODEL

A scale model showing the future of Adelaide’s Glenelg shoreline has been built by the Department of Civil and Environmental Engineering for EngFest, the commercial arm of the Faculty of Engineering.

The model, measuring 25 metres by 15 metres, represents about one kilometre of the Glenelg beach. EngTest is using the 1:50 scale model to study the possible effects of the proposed Glenelg Safe Harbour and Marina on the beach.

EngTest’s commercial arm is making models of the proposed project, as well as the existing beach, to help determine how the breakwater will perform.

The test program involves creating one-in-100-year storms with waves equivalent to four metres in height. Sophisticated computer technology measures the wave height inside and outside the breakwater.

The test was built at the Department of Transport’s Walkley Heights depot and is part of EngFest’s involvement in S/TAMPS (Southern Testing And Research Services). On completion of the project, it will be used by Civil and Environmental Engineering students, and by engineers and managers of small and large companies.

The model, measuring 25 metres by 15 metres, represents about one kilometre of the Glenelg beach. EngTest is using the 1:50 scale model to study the possible effects of the proposed Glenelg Safe Harbour and Marina on the beach.

EngTest’s commercial arm is making models of the proposed project, as well as the existing beach, to help determine how the breakwater will perform.

The test program involves creating one-in-100-year storms with waves equivalent to four metres in height. Sophisticated computer technology measures the wave height inside and outside the breakwater.

The test was built at the Department of Transport’s Walkley Heights depot and is part of EngFest’s involvement in S/TAMPS (Southern Testing And Research Services). On completion of the project, it will be used by Civil and Environmental Engineering students, and by engineers and managers of small and large companies.
The plastic vial filled with tiny flies and larvae is more than just a tool of trade for geneticists Robert Saint and Helena Richardson — it’s a source of inspiration.

"When you look at that, it strikes you how amazing it is that one cell can develop into such a complex organism," says Professor Saint.

Professor Saint, the Professor and Head of Genetics at the University of Adelaide, and Dr Helena Richardson, an Australian Research Council Fellow in the Department of Genetics, are the rare joint winners of an ARC Special Investigator Award, worth $680,000 over the next three years.

The tiny fly is Drosophila melanogaster and it is the model organism for the pair’s impressive work examining how genes function and control cell proliferation during animal development.

Among their discoveries, Professor Saint and Dr Richardson identified a gene, the presence of which is essential for cell proliferation. This gene is over-expressed in some forms of breast cancer — cancer being inappropriate cell proliferation.

The pair also discovered a new class of regulatory genes and were first to show that a member of this class of genes is essential for normal embryonic development.

The award means that Professor Saint and Dr Richardson will have secure funding for the next three years, removing the time-consuming task of writing grant applications. "The award gives us an opportunity to be even more adventurous," Professor Saint said.

The geneticists’ work examines the broad questions of how development is regulated by the genetic information stored in the chromosomes of a cell, including how differential gene activity controls cell division, and how that control feeds into the way that an animal develops.

How does a cell “know” when to divide and when not to divide? Which genes are active or inactive during cell proliferation? A cell has to stop the process of division before it differentiates into different kinds of tissue. How do genes control this process?

“We are trying to identify the genes involved in the regulation of these processes and understand how they work together,” Professor Saint said.

"We are looking to discover the answers to fundamental questions about a fundamental biological process.

"It is difficult to predict specific applications, but there is a very wide base because it’s such a fundamental process. It could have implications for development disorders in humans and animals or be used for the modification of animal or plant characteristics."

Continued on Page 5

Special investigators get down to basics

A group of obscure native Australian mammals, sometimes forgotten in conservation debates, could prove a key to understanding why human sperm counts in many parts of the world are falling.

Three University of Adelaide researchers are joining forces to try and unlock some of the mysteries of male fertility, and infertility, in Australia’s native rodents and other placental mammals.

Placental mammals — particularly native mice and rats — have tended to be overshadowed in conservation research by Australia’s better-known marsupials and monotremes.

But in a project which has implications for everything from the search for the male pill to rescuing endangered wildlife, researchers Bill Breed, Simon Maddocks and Eleanor Perce are now where there are at most only a few hundred individuals left. If they are to survive, they are going to sit around in captivity and die, without us preserving their germ plasm, it’s a wasted opportunity.”

Dr Maddocks said he also hoped studying the testes of native placental mammals might help throw light on one of the great puzzles of the 20th century: the steep decline in human sperm counts in some parts of the world over the past 50 years.

Researchers overseas have speculated that the decline might be caused by exposure to man-made substances such as oestrogen-like hormones and suppressing sperm production. If so, they say, human fertility might be under threat.

Dr Maddocks cautions that the synthetic oestrogen claim is but one possible cause, and believes other factors may be at work — such as sperm being made and stored at warmer-than-natural temperatures due to changed clothing and work habits.

Sperm production is best at temperatures slightly lower than body heat, and he argues that close-fitting underwear, obesity and long hours of sitting down are at least as problematic as environmental chemicals.

Because the huge diversity of testicle size among native rodents is matched by a huge diversity in sperm production and quality, comparing such details in different species could give important clues to what might be happening with humans.

Dr Maddocks said his senior colleague, Professor Brian Setchell had recently collated a body of evidence which showed there had been no matching decline in sperm counts among a variety of livestock and other animals.

—David Mussared
Scientists should worry less about cancer-causing chemicals used by farmers and industry, and more about the carcinogens made inside people’s bodies.

That’s according to University of Adelaide toxicologist Philip Burcham, who is breaking new ground for his discipline by studying endogenous poisons — made inside the body — instead of external (exogenous) chemicals.

Until now, he said, toxicology had been preoccupied with exogenous chemical threats. However, it was now time for the discipline to ‘mature a bit’, and to assess the risks posed by endogenous chemicals.

Dr Burcham said only about five per cent of human cancers were thought to be caused by artificial chemicals from pollution or the workplace. But up to 70 per cent might be triggered by chemicals released during the breakdown of food.

“We put a lot of resources in minimising exposure to modern chemicals, which are potent, but we may be making a mountain out of a molehill,” he said.

“Traditionally toxicologists have been concerned with synthetic chemicals which are used in industry or which are released into the environment by industry.”

“While these synthetic chemicals present significant risks to individuals in some occupations, the rest of us are exposed in such low doses that they are unlikely to contribute to disease.”

Dr Burcham, from the University’s Department of Clinical and Experimental Pharmacology, has spent the past three years using a National Health and Medical Research Council (NHMRC) grant to study how food digestion and normal metabolic processes can spawn toxic chemicals.

Scientists have long known that food uptake by body cells produces some highly reactive by-products, including tiny, negatively charged molecules called hydroxyl radicals. Hydroxyl radicals react readily with DNA, causing mutations which may lead to cancer.

However, Dr Burcham said hydroxyl radicals were highly unstable, and it was difficult to see how they could find their way through a cell’s interior to reach the DNA in its central nucleus. The radicals were so unstable they would react with the first molecule they encountered on the way, and would be destroyed.

Instead of attacking DNA, he said, the radicals were more likely to react with fatty membranes within the cell. A hydroxyl radical reacting with a membrane might be just the first link in a cancer-causing chain.

Cell membranes are made up of long, chain-like lipid molecules, which are broken up when they react with hydroxyl radicals. Among the products of such reactions are peroxyl radicals, which are much larger and more stable molecules than hydroxyl radicals.

Dr Burcham said because peroxyl radicals were less reactive than hydroxyl radicals, they could survive longer and travel further within a cell, and that might make them as dangerous to DNA as the more unstable hydroxyl radicals.

Dr Burcham and his colleague Louise Harkin have been examining in detail, initially using bacteria, whether or not peroxyl radicals can cause significant damage to DNA. They have found that they can.

They have shown, in the test tube, that peroxyl radicals can react with DNA, causing subtle mutations by snipping out single letters from the genetic code.

If the same process happens in large animals, Dr Burcham said, peroxyl radicals might well prove to be important contributors to the kind of DNA damage which can trigger cancer.

He said such cellular and genetic damage was a natural process, which was part and parcel of human aging. But he said diet could have a major influence on how fast it happened.

Dr Burcham said health studies around the world had shown repeatedly that people whose diets included large amounts of fruits and vegetables were less likely to suffer from cancer. Why, however, remained a mystery.

It was well-known that fruit and vegetables contained high levels of antioxidants such as beta-carotene and vitamin E, he said, and recent research had shown these were especially effective in mopping up peroxyl radicals in cell membranes.

Dr Burcham said he suspected people’s ‘internal dose’ of peroxyl radicals — and perhaps their cancer risk — was influenced by the amount they ate of food containing polyunsaturated fatty acids, which oxidised readily to produce hydroxyl radicals. Consuming such lipid-rich food, coupled with a low intake of antioxidants, might raise the risk, he said.

So far Dr Burcham has shown the mutagenic effects of peroxyl radicals only in test-tube conditions. But he is now seeking funding for the next step: testing the entire chemical chain reaction in living cells or whole animals.

And what advice can he give to people to minimise their risk of cancer?

“Do what your mum says,” he said. “Eat lots of fruit and vegetables.”
3D program sows seeds of better design

A new computer program that generates complex 3D building designs has been developed by a collaborative research team involving the University of Adelaide and Carnegie Mellon University in the United States.

The program, called SEED (Software Environment for the Early phases of Building Design), assists designers by partially automating many design tasks. The designer controls which aspects are automated and how they are automated. One example task is the design of a detailed two-storey house, which can be generated and appear on the computer screen within minutes.

Following a series of rules, the computer program starts with a hallway, then generates rooms around the hallway, followed by a flight of stairs, the second floor, and a roof. It then wraps a wall around, puts in doors and windows, chimneys and porches, until a whole house has been created — all at the touch of a keystroke.

"In essence, the process 'grows' a building, and with one set of rules we estimate there could be anything up to six trillion different house designs," said Dr Rob Woodbury, leader of the project in the University's Department of Architecture.

He said the idea behind the computer program, the first of its kind in the world, was to produce a tool that could help building designers do a better, more creative job.

"Designers are really interested in finding alternatives, but our current manual techniques of finding alternatives are very bad at that, because humans are really not very smart when it comes to systematic exploration of ideas," Dr Woodbury said.

"So if we had a system that was able to give us many different alternative solutions, we'd have a very useful tool that, as designers, would allow us to improve what we do."

Research into the automatic generation of spatial designs has spanned the past 20 years and has involved various researchers around the world.

Dr Woodbury and his students began research eight years ago; this particular project was started at Carnegie Mellon four years ago. About five Adelaide researchers are involved, with some 20 from Carnegie Mellon.

One of the advantages of the program is that it can take into account local building codes and design standards, making sure the end product meets specific needs.

Dr Woodbury said the US Army Corps of Engineers had already sponsored the United States arm of the project for the possible design of town-house-style barracks for soldiers. Australia's large home building companies were also a potential market for the SEED program, he said.

"The large home builders spend a lot of time developing housing that can be built very inexpensively, and to do that they systemise their construction methods. Trouble is, the design variation isn't all that great, so everybody ends up with virtually the same house."

"Some of the companies give prospective clients the ability to alter the floor plan, but they don't allow people to fundamentally change the spatial organisation of the house. Such alterations are important in Australia, and crucial when Australian companies export to other countries, with different cultures and expectations," he said.

"A system like this, using a housing firm's construction systems, could provide just what we need." Dr Woodbury said the development of such a tool also had benefits for students.

"When you spend a lot of time exploring alternatives in this way, it starts to influence the way you think about designing, and therefore it starts to affect the way you teach."

"Some of my colleagues and I are finding that our students are now producing much stronger, more disciplined architecture, because they're really responding to the new way of looking at design," he said.

—David Ellis

Woomera telescope shines again

The CANGAROO gamma ray telescope at Woomera has been given a new lease on life — thanks to a fresh coat of aluminium.

The 3.8-metre telescope was dismantled in October and the dish (pictured above being lifted by a crane) transported to the Anglo-Australian Observatory in Coonabarabran, New South Wales, where it received a new aluminium mirror coating.

For the past five years the telescope has been used by researchers from the universities of Adelaide and Tokyo to study energy sources in space as part of the CANGAROO (Collaboration of Australia and Nippon for a Gamma Ray Observatory in the Outback) project.

Highlights have included studies of the Crab Nebula and galactic pulsars.

The Australian spokesman for CANGAROO, Dr John Patterson from the University of Adelaide's Department of Physics & Mathematical Physics, and Professor Tadashi Kifune from the University of Tokyo, drove the two-tonne dish from Woomera to Coonabarabran and back again.

Dr Patterson said the refurbishment was a great success. The new aluminium mirror had doubled the telescope's sensitivity, improving its ability to search for energy emissions from space.

The 3.8-metre telescope will continue to be used for research until construction of a new 10-metre gamma ray telescope is completed at Woomera in 1998.

—David Ellis
ARC and NHMRC GRANTS
1997 Grants, Fellowships and Scholarships

(AIncluding total amounts awarded for 1997 and indicative amounts awarded for subsequent years 1998 and 1999)

AUSTRALIAN RESEARCH COUNCIL LARGE GRANTS
DIVISION OF AGRICULTURAL AND NATURAL RESOURCES SCIENCE
Department of Environmental Sciences & Management
Professor HP Possingham and Dr IR Noble: Animal population dynamics in a dynamic landscape: model and test - $40,000 ($35,000 $40,000)
Department of Plant Science
Professor GB Fincher: Thaumatin-like proteins and (1-3)-Beta-glucanases in patho-plant interactions - $77,000 ($68,000 $71,000)
Professor RD Graham, Dr Z Rengel and Dr CF Jenner: Transport of iron, iodine and copper to wheat grains - $41,000 ($30,000 $45,000)
Department of Soil Science
Professor PJ Langridge and Dr D Hayman (Genetics): Sexual reproduction in the grasses: molecular biology of self-incompatibility in grain - Phaseolus vulgaris - $57,900 ($45,000 $58,000)
Associate Professor KW Shepherd: Molecular characterisation of recombinant L genes in flax having altered resistance to flax rust - $87,000 ($64,000 $66,000)
Associate Professor KW Shepherd: Cytological and genetic homology of wheat and barley chromosomes - $74,000 ($74,000 $74,000)
Department of Civil and Environmental Engineering
Professor JM Oades: Retention of organic matter in soils - $69,000 ($64,000 $63,000)
DIVISION OF ENGINEERING AND MATHEMATICAL SCIENCES
Department of Applied Mathematics
Dr PG Taylor, Professor AE Krzesinski and Dr SA Berezner: Management of telecommunications network reliability - $80,000 ($55,000 $57,000)
Dr NG Eshraghian: A smart imager with visual calibration of a stereo head or single camera - $76,000 ($64,000 $63,000)
Department of Chemical Engineering
Dr APJ Middeberg and Dr CMM Franco: Studies into the optimal design of a new immobilised membrane bioreactor with integrated product recovery for lactic acid production - $50,000 ($50,000 $50,000)
Department of Civil and Environmental Engineering
Dr MC Griffith and Mr JL Wilson: The seismic integrity of walls and connections and indicative amounts awarded for sub- - $58,000 ($50,000 $60,000)
Associate Professor KW Shepherd and Dr CMM Franco: seismic integrity of walls and connections and indicative amounts awarded for sub- - $58,000 ($50,000 $60,000)
Department of Mechanical Engineering
Dr CH Hansen: Multi-axis and multi-mount active vibration isolation - $76,000 ($67,000 $65,000)
Dr RM Kelso and Professor AJ Smits: Transverse jets: their flow structure, mixing and control - $55,000 ($36,000 $38,000)
Professor RE Luxton: An exploration of continuously unstable jet flows - $81,000 ($64,000 $33,000)
Department of Pure Mathematics
Dr CM O'Keefe and Dr T Penttila: Generalized quadrangles and flocks - $56,000 ($58,000 $60,000)

DIVISION OF HEALTH SCIENCES
Department of Medicine
Dr GA Wittwer, Professor M Horowitz and Professor J Morley: Regulation of food intake, energy balance, and fat storage in S. Cesticaudata (fat failed dunnat) - $43,000 ($34,000 $45,000)
Department of Obstetrics and Gynaecology
Dr DJ Kennaway: Tampering with the biological clock: the impact of perinatal drug administration - $62,000 ($61,000 $61,000)

DIVISION OF HUMANITIES AND SOCIAL SCIENCES
Centre for Asian Studies
Dr JT Makeham: Exegesis of the anabests: A history of the Chinese commentary tradition (stage II) - $30,000 ($27,000 $40,000)
Professor AJ Watson and Associate Professor C Findlay (Economics): The development of financial markets and institutions in rural China: the relationship between macro economic reform and growth - $50,000 ($52,000 $58,000)
Department of Politics
Professor D McEachern: Australian forest policy: political discourse and illusive resolutions - $21,000 ($23,000)

DIVISION OF PERFORMING ARTS, LAW, ARCHITECTURE AND URBAN DESIGN, ECONOMICS AND MANAGEMENT
Department of Architecture
Dr RF Woodbury and Dr PW Eklund (Computer Science): Exploring large scale architectural designs - $50,000 ($50,000 $50,000)

DIVISION OF SCIENCE
Department of Biochemistry
Dr S Dalton: Defining the role of Cad45p in control of DNA replication licensing activity - $87,000 ($82,000 $84,000)
Associate Professor JB Egan: Operant conditioning and developmental switch of coliphage T6 - $40,000 ($40,000 $40,000)
Professor JT Wiskich: Experimental determination of the role of alternative oxidase in plant responses to stress - $58,000 ($58,000 $60,000)
Department of Physics and Mathematical Physics
Dr PG Bouwknecht: Quasiclassical particles in two-dimensional conical field theories - $53,000 ($55,000 $50,000)
Professor JR Prescott, Professor DJ Hunley and Dr GB Robertson: Lumin- escence dating on a million year time scale - $60,000 ($57,000 $52,000)
Dr FJ Protheroe: Neutrino, gamma ray and radio emission by astrophysical objects, and their contribution to the extragalactic background - $59,000 ($53,000 $55,000)
Dr AT Taylor: Radiophysical studies of meteor - $58,000 ($55,000 $57,000)

Department of Physiology
Dr GB Daniels: Pulmonary Surfactant Immobilisation Membrane Bioreactor and Integrated Product Recovery for Lactic Acid Production - $24,000 ($24,000 $24,000)

SPECIAL INVESTIGATOR AWARD
DIVISION OF SCIENCE
Department of Genetics
Professor R Saint & Dr H Richardson: Special Investigator Award - Molecular Biology - $25,000 ($25,000 $25,000)

COLLABORATIVE RESEARCH GRANTS
DIVISION OF AGRICULTURAL AND NATURAL RESOURCES SCIENCE
Department of Animal Sciences
Dr WS Pitchford, Dr BD Siebert and Professor CDK Botten: Genetics of Beef Quality Traits: Fat Metabolism - $57,200 ($57,200 $57,200)

Department of Environmental Science and Management
Professor HP Possingham and Dr B Lindemann: Spatial Population Modelling of Forest Birds for Guiding Native Forest Management - $31,948 ($30,000 $35,960)

Department of Horticulture, Viticulture and Oenology
Professor M Sedgley, Mr MD Tugwell and Dr MR Bennett: The Development of Improved Scion and Rootstock Cultivars - $55,870 ($56,769 $57,666)

DIVISION OF ENGINEERING AND MATHEMATICAL SCIENCES
Centre for GaAs VLSI Technology
Dr N Burgess, Dr D Abbott and Professor K Gray (Electronic and Electronic Engineering): Integrated Circuits for Interactive Mobile Multimedia Personal Communication Systems - $100,000 ($80,000 $80,000)

Department of Computer Science
Dr PW Eklund and Dr SD Kirby (Key Centre for Computer Science): Emergency Service Response to Flood and Bushfire in 3D Urban Environments - $70,000 ($70,000 $70,000)

Department of Mechanical Engineering
Dr GJ Nadhan, Dr D-K Zhang (Chemical Engineering) and Dr JP Smart: Development of Low NOx Dual Fuel Burners for Rotary Kilns Utilising a Processing Jet Flow - $100,000 ($95,000 $95,000)

DIVISION OF HUMANITIES AND SOCIAL SCIENCES
Department of Labour Studies
Dr RBroomhill and Professor G Huxley (Key Centre for Social Applications of GIS): A Strategic Spatial Model for Burnett for Rotary Kilns Utilising a Processing Jet Flow - $100,000 ($95,000 $95,000)

ARC LARGE GRANTS SHARED WITH OTHER INSTITUTIONS
The following University of Adelaide staff have informed the Research Branch that they are co-Chief Investigators on successful ARC Large Grant applications for which the first named Chief Investigator is a staff member at another institution.

DIVISION OF AGRICULTURAL AND NATURAL RESOURCES SCIENCES
Professor H Possingham, Environmental Science and Management and Dr M Bull (School of Biological Sciences, Flinders University): Population dynamics of a parasite-host interaction - $80,000 ($80,000)

DIVISION OF ENGINEERING AND MATHEMATICAL SCIENCES
Professor EO Tuck, Applied Mathematics and Dr MR Kenison (Australian Maritime College): Dynamic squat of ships moving over a flat or undulating bot- - $42,000 ($32,000)

DIVISION OF PERFORMING ARTS, LAW, ARCHITECTURE AND URBAN DESIGN, ECONOMICS AND MANAGEMENT
Dr NM Nightingale, Law School and Mr DJ Davies, (School of Law, Flinders University): Do men and women have property in their persons? - $37,000 ($27,000)

DIVISION OF SCIENCE
Professor SF Lincoln, Chemistry and Dr KP Wainwright (Chemistry Department, Flinders University): Metal ion activated molecular receptors - $77,000 ($76,000 $76,000)

Any other members of staff who are co-Chief Investigators in projects which have attracted grants administered by other institutions are requested to provide the Research Branch with details as soon as possible. This will enable the Branch to take the necessary action to ensure that the University of Adelaide receives the appropriate credit towards its Research Quantum for your contribution to those projects.
DIVISION OF PERFORMING ARTS, LAW, ARCHITECTURE AND URBAN DESIGN, ECONOMICS AND COMMERCE
Centre for International Economic Studies
Assoc Professor C Findlay and Professor P Drysdale: Measuring impediments to International Trade, Services and Their Impact on the Australian Economy - $100,000 ($100,000 $100,000)

DIVISION OF SCIENCE
Department of Geology & Geophysics
Assoc Prof B McGowan: Geologic evolution of the Gambier Basin in the central southern Australian continental margin: A focus for petroleum, minerals and hydrogeology - $45,000 ($45,000 $40,000)

SPECIAL RESEARCH CENTRES
DIVISION OF SCIENCE
Department of Physics and Mathematical Physics
Professor AW Thomas and Dr AG Williams: Centre for Subatomic Structure of Matter - $400,000 ($400,000 $400,000)

RESEARCH INFRASTRUCTURE (EQUIPMENT AND FACILITIES) GRANTS
DIVISION OF AGRICULTURAL AND NATURAL RESOURCE SCIENCES
Department of Horticulture, Viticulture and Oenology
Professor M Sedgley, Dr P Gibson and Professor G Fincher (Plant Science): Plant Tissue Culture and Transformation Facility - $300,000

DIVISION OF SCIENCE
Department of Biochemistry
Assoc Prof JC Wallace, Prof GJ Barratt and Assoc Prof AH Bretag: The South Australian Facility for Molecular Recognition - $300,000

Department of Chemistry
Professor JH Lawrie, Professor RL Nathan and Professor RH Prager: Adelaide Regional Mass Spectrometry Facility - $150,000

Department of Geology & Geophysics
Dr J Foden, Dr S Turner, Dr AC Crawford, Prof R Vane and Assoc Prof J Jago: Ultrahigh Abundance Sensitivity Thermal Ionisation Mass Spectrometer - $250,000

FELLOWSHIPS
DIVISION OF AGRICULTURAL AND NATURAL RESOURCE SCIENCES
Department of Plant Science
Dr JN Pearson (Australian Postdoctoral Research Fellowship): Transport of iron, copper and iodine to developing wheat grains

DIVISION OF ENGINEERING AND MATHEMATICAL SCIENCES
Department of Pure Mathematics
Dr N Joshi (Australian Senior Research Fellowship): Asymptotics and the integrability of nonlinear differential and difference equations

Dr BM Polster (Australian Postdoctoral Research Fellowship): Towards a unifying theory of topological circle planes—classification, subgeometries, moduli spaces and related finite and infinite incidence structures

DIVISION OF HUMANITIES AND SOCIAL SCIENCES
Department of History
Dr SMJ Holton (Aust Senior Research Fellowship): Saints and citizens: Kinship, religion and social action in the lives of nineteenth century Ocker woman

DIVISION OF SCIENCE
Department of Biochemistry
Dr IB Dodd (Australian Postdoctoral Research Fellowship): Stability in a transcriptional switch: repression despite dominance

Department of Geology & Geophysics
Dr M Hand (Australian Research Fellowship): Heat production and thermal regimes in Australian low-pressure high-temperature metamorphic terrains

Department of Physics and Mathematical Physics
Dr AW Schreiber (Aust Research Fellowship): Variational treatment of strong coupling quantum electrodynamics

NATIONAL HEALTH AND MEDICAL RESEARCH COUNCIL
MEDICAL RESEARCH PROJECT GRANTS
DIVISION OF HEALTH SCIENCES
Department of Anaesthesia and Intensive Care
Professor WB Runciman and Dr DN Upton: Pharmacokinetics of gases: Development of integrated experimental and modelling methods - $75,811.16 ($57,438.75 $59,004.08)

Department of Medicine
Professor P-L Batter, Dr MA Clay, Dr K-A Rye and Dr P Cilton: Inhibition of adhesion molecule expression by high density lipoproteins - $112,293.91 ($113,859.24 $116,992.16)

Professor M Horowitz, Professor J Dent & Dr W-M Sun: Gastric motility and blood glucose control in diabetes mellitus - $86,427.88 ($89,529.83 $92,899.25)

Professor JG Bristow, Dr YL Zhong, Dr MA Lai, Professor ES De La Lande and Dr P Mohan: Mechanisms of effects of organic nitrates on smooth muscle, platelets and myocardium - $105,746.91 ($107,555.83 $109,362.50)

Department of Obstetrics and Gynaecology
Associate Professor RJ Norman, Dr A Dharmarajan, Dr S Maddocks (Animal Sciences) and Dr SA Robertson: Cyclic AMP stimulating factors in ovulation and luteal function - $60,866.24 ($62,433.83 $63,999.16)

Dr SA Robertson, Dr RF Seamark & Professor JS Robinson: Seminal plasma and sperm as determinants of the maternal immune response to pregnancy - $61,073.90 ($63,001.77 $64,930.24)

Department of Pathology
Dr EG Cleary and Dr JS Kumaatilake: Analysis of dermal responses, in human and mouse skin, to defined ultraviolet irradiation - $89,159.03 ($92,899.25 $94,931.25)

Department of Surgery
Dr DI Watson, Dr PJ Hewlett, Dr A Roche and Professor GJ Maddern: Investigation of tumour microenvironments and dissemination during laparoscopic surgery - $61,073.90 ($63,001.77 $64,930.24)

DIVISION OF SCIENCE
Department of Biochemistry
Dr FA Recknagel and Dr K Walker: Impact of water extraction on the ivermectin resistance of Artiella sp. from South Australia

Department of Horticulture, Viticulture and Oenology
Professor GB Fincher, Professor M Sedgley and Dr SJ Logue: The secretion and movement of hydrolytic enzymes in germinating barley grain. Research on a novel barley xylanohydrolase and limit dextrinase

DIVISION OF ENGINEERING AND MATHEMATICAL SCIENCES
Department of Civil and Environmental Engineering
Professor RF Warner and Mr M Turner: Safety and ductility of indeterminate concrete structures containing high-strength, low-elongation steels

Department of Computer Science
Mr PW Eklund, Mr KR Johnson and Mr SD Kirkby: Distributed Spatial Knowledge Representation and Reasoning

FELLOWSHIPS
DIVISION OF MEDICINE
Department of Obstetrics and Gynaecology
Dr M Makrides (Australian Applied Health Sciences Fellowship): Iron supplementation during pregnancy: effects on maternal and child health

Dr SA Robertson (R Douglas Wright Fellowship Award): Leukocyte Networks in Early Mammalian Pregnancy

DIVISION OF SCIENCE
Department of Physiology
Dr KL Galatoff (Australian Postdoctoral Research Fellowship): Restriction of fetal growth alters endocrine control of postnatal growth

NHMRC SCHOLARSHIPS
DIVISION OF HEALTH SCIENCES
Department of Clinical and Experimental Pharmacology
Mr D Foster (Dora Lush Postgraduate Scholarship): Metabolism and Disposition of Methadone in a Methadone Maintenance Population

Department of Dentistry
Mr D Brennan (NHMRC Postgraduate Scholarship): Factors Influencing Service Provision

Department of Medicine
Mr P Cowan (NHMRC Medical Scholarship): Role of IL-12 p40 in Transplanta- tion and Use in a Gene Therapy Strategy

NATIONAL HEART FOUNDATION
GRANT-IN-AYD
DIVISION OF HEALTH SCIENCES
Department of Pathology
Dr MA Gibson and Dr EG Cleary: Defining genetic mutations and their pathogenic consequences in patients with ‘atypical’ marfan syndrome - $47,885 ($46,658)
View from behind the mask

In September, University of Adelaide Drama student Jodie Edwards fascinated her fellow students when she presented a luncheon performance of the Indonesian masked dance Tari Topeng Cirebon. Ms Edwards has now just completed her Honours year, and as a result of her research she has been awarded a scholarship enabling her to study traditional Indonesian dance and music at the Akademi Seni Tari Topeng Cirebon. Eventually extended to almost a year-long scholarship that began the next day that I discovered the importance of Tari Topeng Cirebon.

As a dancer from a young age, I was immediately drawn to the dramatic and dynamic dance style of Tari Topeng Cirebon. As a child raised in Indonesia I was given the opportunity to join a performance style. The dancer moved towards a box and removed an object from within. She continued to grasp the object in her hand while pacing about the stage. Eventually she seated herself to be of cloth. As the music became softer she stood, feet planted in a wide stance, and tightened the cloth upon her face. Suddenly the music seemed to cease and the dancer continued to dance with a mask. As the dancer moved around the stage, her movements became more purposeful. The music seemed to guide her every move, and she appeared to be dancing in complete control. The performance ended with a final bow from the dancer, who then walked off stage, leaving the audience in awe of the performance.

Jodie Edwards performs the dance of Klama. “Klama is old and short tempered, arrogant and wrathful while full of anger and lust. His emotions are uncontrollable, swinging from one extreme to the other as he paces around the stage in anger, often fearfully, by the audience. This dance takes much physical strength, physical and stamina. It is considered to be the dramatic climax in the sequence of dances.”

Asking my friend which dance and seemed unlike any other I had heard before. I was high excitement mouths, I was high, peanut shells being nibbled by wooden steps with hanging over our heads and smoke from clove cigarettes excited mouths, I was high. I stood, by this unusual composition, asking my friend which dance seemed to ensure the audience to preserve indigenous performance art. The dancer moved towards a box and removed an object from within. She continued to grasp the object in her hand while pacing about the stage. Eventually she seated herself to be of cloth. As the music became softer she stood, feet planted in a wide stance, and tightened the cloth upon her face. Suddenly the music seemed to cease and the dancer continued to dance with a mask. As the dancer moved around the stage, her movements became more purposeful. The music seemed to guide her every move, and she appeared to be dancing in complete control. The performance ended with a final bow from the dancer, who then walked off stage, leaving the audience in awe of the performance.

CAMPUS NEWS

• Like many areas of the University, SUV has been asked to operate on a reduction in University support. However, in this case, the reduction is to be 33%, and follows a three year period where our allocation was reduced by a factor of three.

In that same instant that instant the cloth was yanked down its territory. Dance movement, bird-like eye movement, hand movements, by this unusual composition, asking my friend which dance seemed to ensure the audience to preserve indigenous performance art. The dancer moved towards a box and removed an object from within. She continued to grasp the object in her hand while pacing about the stage. Eventually she seated herself to be of cloth. As the music became softer she stood, feet planted in a wide stance, and tightened the cloth upon her face. Suddenly the music seemed to cease and the dancer continued to dance with a mask. As the dancer moved around the stage, her movements became more purposeful. The music seemed to guide her every move, and she appeared to be dancing in complete control. The performance ended with a final bow from the dancer, who then walked off stage, leaving the audience in awe of the performance.

Jodie Edwards

• The recent speech given at the University by Minister for Education, Employment, Training and Youth Affairs, Amanda Vanstone, can be heard on ‘On Campus’ on Friday 6 December at 6pm (repeat 7 December at 2pm).
Ben's appeal for help from staff

A University of Adelaide staff member is appealing for help to save his family from a disease-ridden and war-torn refugee camp in Uganda.

Many staff, students and visitors to the University of Adelaide would know Mr Ben Yang, who is the Community Relations Officer at the Thebarton Campus.

Ben's family has suffered greatly during the civil war in Sudan, which has raged for more than a decade. Since 1989 many of his close family members have been forced to live in the Adjumani Refugee Camp in northern Uganda.

Ben's father, brother, sister-in-law, niece and eight cousins have all died amid the camp's dreadful conditions.

Fearing for the safety of the rest of his family, including his brother Stephen, Ben is working to secure their passage to Australia - but it will cost almost $16,000.

The Thebarton Campus has rallied around Ben, holding a fundraising event at the Einstein's bar.

He is now appealing to the generosity of all University of Adelaide staff and students, and the public, to help rescue his family from the refugee camp.

All donations will go towards air fare and associated travel costs — any donation above $2 will be tax deductible.

Donations can be made to the Australian Refugee Association, 2 Brown Street, West Croydon, SA 5008.

Phone (08) 8340 4700 for more details.

—David Ellis

CLIMATE SURVEY RESULTS

As promised in a letter from the Vice-Chancellor on 7 June 1996, every staff member who was given the opportunity to participate in the Climate Survey is now being provided with a summary of results through personal mail-out, and information is also being made available through the Adelaidean. In addition to results summaries, I have included some information about the process to be adopted in disseminating the results, interpreting the data and making decisions about actions which will be taken in response to the key issues.

There are two clusters of issues which stand out. The first is a marked absence of “customer focus” in the factors staff see as important; and the second is associated with internal communications and management processes.

The consultants, Rodski and Falls, have provided detailed reports, from which this summary data has been taken. As you may recall the survey consisted of 50 factors. For each factor we asked the following questions; and asked respondents to rate their views on a scale of 1-7.

A. How important is this factor from your point of view?
B. How well are we performing in relation to this factor?

WHAT DID YOU SAY?

The first table shows the 10 highest ranked IMPORTANCE factors for the University as a whole.

<table>
<thead>
<tr>
<th>Rank</th>
<th>Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>My job satisfaction</td>
</tr>
<tr>
<td>2</td>
<td>Opportunity for advancement</td>
</tr>
<tr>
<td>3</td>
<td>My job security</td>
</tr>
<tr>
<td>4</td>
<td>Staff being listened to by the Senior Management Group</td>
</tr>
<tr>
<td>5</td>
<td>Empowerment</td>
</tr>
<tr>
<td>6</td>
<td>Communication within the organisation</td>
</tr>
<tr>
<td>7</td>
<td>Trust in the workplace</td>
</tr>
<tr>
<td>8</td>
<td>Recognition by local management of staff efforts</td>
</tr>
<tr>
<td>9</td>
<td>My pay</td>
</tr>
<tr>
<td>10</td>
<td>Teamwork in my area</td>
</tr>
</tbody>
</table>

Factors marked with * are also included in the top 10 IMPORTANCE rankings. Given the factors which show the highest improvement gap, staff believe that issues concerning leadership, staff development, performance management, wellbeing and morale, and communication are areas requiring consideration.

BENCHMARKING DATA

You will recall that through our association with the Australian Quality Council we have used a survey instrument which measures staff perceptions in relation to core factors common to a wide range of organisations. We are able to provide comparisons with both the national network of 102 organisations and the South Australian network of 6 organisations.

To generate this comparative data, the University’s performance, as assessed by the staff who responded, is ranked within the range of responses from other organisations. The quality criteria measured by the survey covered the following categories—

- Customer Satisfaction
- Staff Productivity
- Communication
- Teamwork in my area
- Internal customer satisfaction

These responses reflect an organisation in which its staff place a high priority on working in an environment which fosters open and honest channels of communication and cooperative work practices which enable the individual to attain an adequate level of job satisfaction. This is in contrast to high performing organisations in which staff perceive high quality services for its clients as the most critical issues for the organisation’s success.

The second table shows the 10 highest ranked PERFORMANCE factors for the University as a whole. These are the areas in which you said your area or the University is performing well.

<table>
<thead>
<tr>
<th>Rank</th>
<th>Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Safe workplace</td>
</tr>
<tr>
<td>2</td>
<td>Adequate opportunity to communicate with supervisors/managers/head</td>
</tr>
<tr>
<td>3</td>
<td>Productivity</td>
</tr>
<tr>
<td>4</td>
<td>Teamwork in my area</td>
</tr>
<tr>
<td>5</td>
<td>Having supervisors who listen to staff</td>
</tr>
<tr>
<td>6</td>
<td>Quality of the University’s products & services</td>
</tr>
<tr>
<td>7</td>
<td>Internal customer satisfaction</td>
</tr>
<tr>
<td>8</td>
<td>Responding to “customers” needs</td>
</tr>
<tr>
<td>9</td>
<td>Pride in the University of Adelaide</td>
</tr>
<tr>
<td>10</td>
<td>Involving me in the development of plans in my work area</td>
</tr>
</tbody>
</table>

Factors marked with * indicate factors which are also listed within the top 10 IMPORTANCE factors. Although the perception by the staff is that the University performs well in some “people” issues, we may need to explore the perception of low performance in terms of “external customer satisfaction”.

The third table shows the top 15 factors which staff believe need to be IMPROVED across the University as a whole. These factors have been derived by calculating the gap between the respective IMPORTANCE and PERFORMANCE scores for each factor.

<table>
<thead>
<tr>
<th>Rank</th>
<th>Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Opportunity for advancement</td>
</tr>
<tr>
<td>2</td>
<td>Staff being listened to by the Senior Management Group</td>
</tr>
<tr>
<td>3</td>
<td>Empowerment</td>
</tr>
<tr>
<td>4</td>
<td>Communication within the organisation</td>
</tr>
<tr>
<td>5</td>
<td>Trust in the workplace</td>
</tr>
<tr>
<td>6</td>
<td>Recognition by local management of staff efforts</td>
</tr>
<tr>
<td>7</td>
<td>My pay</td>
</tr>
<tr>
<td>8</td>
<td>Teamwork in my area</td>
</tr>
<tr>
<td>9</td>
<td>My job security</td>
</tr>
<tr>
<td>10</td>
<td>Co-operation between staff</td>
</tr>
<tr>
<td>11</td>
<td>General work atmosphere</td>
</tr>
<tr>
<td>12</td>
<td>Speed in decision making</td>
</tr>
<tr>
<td>13</td>
<td>Knowing how I am going at my job</td>
</tr>
<tr>
<td>14</td>
<td>Quality of the University’s systems and processes</td>
</tr>
</tbody>
</table>

MARY O’KANE
Vice-Chancellor

20 November 1996
G graduates form virtual company

Full House signs up for third time

An illustrated lecture on "Mars and its Meteorites" was presented by Associate Professor Peter Gostin at the Florey Chapter's Annual General Meeting. The event was held at the University of Adelaide's Gawler Centre on Tuesday, 26th November.

Dr Gostin teaches in the Department of Geology and Geophysics, and is recognised as the "Father of Australian" in the field of geology. The lecture was well attended by over 100 members of the Florey Chapter.

The Florey Chapter's Annual General Meeting was held on Tuesday, 26th November, at the University of Adelaide's Gawler Centre. The meeting was opened by Dr David Woolley, who presented the financial report.

New Chiar for Cornell chapter

The Cornell Chapter selected Mr Tim Mares as its new Chairman at the Annual General Meeting held at St Mark's College on 14 November last. Mares is a longstanding member of the Chapter and has been actively involved in its activities for many years.

Other Committee members elected were Mrs Rae Blesing, Mrs Joan Charlesworth, and Mr John Edge. Mrs Decie Denholm, the Alumni Trustee for Performing Arts, remains member of the Committee.

The Cornell Chapter will announce its program for 1997 in the New Year.

A personal view of SA history

The recently established Barr Smith Press at the University of Adelaide has two special publications available for sale, which would make an ideal Christmas present for those with an interest in South Australia's social history.

They are Faye Goddard's edition of the letters of Joanna and Robert Barr Smith, and Philip Butters' edition of the poems and recollections of Fidelia Hill.

The letters offer a fascinating insight into the social and economic life of South Australia during the period covered. Their comments on local politics are particularly interesting in the growing and developing colony and their account of the Barr Smith family's involvement in the community.

Faye Goddard is a graduate of Adelaide University's English Department who has also written a study of the Goddard family, among others. She has written a book of her own, Joanna and Robert are available for $37.50 hardbound ($7.50 paperback within Australia).

Fidelia Hill was born in South Australia on the Buffalo with Governor Hindmarsh at the end of 1836, and was "the first white lady" at the site of Adelaide. She was also the first woman, and the first South Australian, to publish a volume of poetry. Her poems and recollections of the Past is originally published in 1840, and is now available in a handsome facsimile edition from the Barr Smith Press.

In her preface, Fidelia Hill notes that the poems were written in the context of "severe domestic calamity" and "singular reverses of fortune". These hardships are discussed in her book, and the whole story is told in her own words.

Fidelia Hill, Poems and Recollections of the Past is available from the Barr Smith Press, with $3 postage (within Australia).

Fleree C chapter reports successful year

The Annual General Meeting of the Florey Medical Chapter took place during the "Medical Vigneronia Luncheon" at Lirra Lirra Cafe (Waite Campus) on Sunday 27th October 1996.

Chapter Chair Dr David Game reported on the Chapter's activities in the past year. These included:

- The Florey Exhibition in the SA Museum from October 1995 until May 1996 (during which time approximately 350,000 people visited the museum) after which it went to the Museum of Victoria in Melbourne for two months (where some 40,000 people saw it). Dr Richard Brodie was warmly thanked for his tireless efforts in staging the Exhibition.
- The "Music & Madness" luncheon held in conjunction with the Cornell Art Performing Arts Chapter had also proved an outstanding success thanks to the painstaking work by Elizabeth Sibthorpe and the combined committee.

Secretary/Treasurer Dr Richard Brock presented the financial report.

Dr Hunter and Brodie retired from the Committee, but Dr Brodie is continuing in work associated with the Florey Exhibition. Drs Alan Gale, Don Handley, Janus DeDoe and Alex Burridge agreed to join the Chapter Committee.

Professor Jim Watts was guest speaker and described the ways in which he and his family had become involved in winemaking.

He spoke also of several early Australian vigneron who were medical practitioners, referring to two South Australians in particular, Dr Penfold and Dr Angove — both of whom were of the opinion that wine had some medicinal value.

Professor Watts quoted from the recent research article in the BMJ about the health-giving properties of wine in moderation.

Wines tasted pre-lunch and served during the luncheon included a selection from South Australian wines (Professor Jim Watts), Hillstowe Wines (Dr Chris Laurie) and Barratt Wines (Dr Lindsey Barratt). After the lunch and meeting members and their guests were able to visit the Urrbrae exhibition of Botanical Art and the rose garden.

The "Music & Madness" luncheon held in conjunction with the Cornell Art Performing Arts Chapter had also proved an outstanding success thanks to the painstaking work by Elizabeth Sibthorpe and the combined committee.
ADELAIDEAN

Project office marks start of Lower Level redevelopment

The long-awaited redevelopment of the University’s Lower Level has now acquired a tangible reality with the erection of the first of two new buildings, the Fisher Building and the new Science Building. The four-year project involves the demolition of the Fisher Building and the construction of two new buildings for the Divisions of Science and Engineering.

After many weeks of analysis and consultation with a wide range of users, the staff affected by the redevelopment, the Divisions and the University have agreed to shape the complex process in the following sequence:

- relocate personnel within the Fisher Building (including undergraduate teaching to the new Science Building)
- upgrade Union Hall as a temporary lecture theatre
- demolish the northern end of the Union Hall (including the Fisher Lecture Theatre)
- build the new Science Engineering building
- build Phase I of the new Engineering/Maths building (computing suites and lecture theatre)
- move occupants of southern end of Fisher Building to new Science Engineering Building
- demolish rest of Fisher Building
- refurbish the Banham Laboratories

John Larwood said that demolition of the first two days of the Fisher Building was expected to begin in July next year, with the first stage of the Engineering/Maths Building scheduled for mid-1998 and the New Science Building by mid-1999.

The whole project should be finished in 1999.

John Larwood stressed that the upgrading of Union Hall to a temporary lecture theatre for the next few years would not compromise its viability as a performing arts space.

“We will organise the timing of lectures so there will be no problem for those who book for theatre events for performances such as the Music Theatre. It will mean an access to the audience for our students in the arts,” he said.

The redevelopment will also involve the loss of some car parking spaces on the Level 2 car park. John Larwood said this would be made up for by the availability of new from the Former Street car park when that is completed in early 1998.

All enquiries about the Lower Level project should be directed to the new project office on site, with the Fisher Building in the background.

Ph: David Ellis
Office: John Larwood (34244), Project Manager
Ph: Rob Hutson (34246).

-John Edge