

Particle velocity measurement within a free-falling particle curtain using microscopic shadow velocimetry

Introduction

There is still an ongoing need of high-fidelity experimental data of particle-laden flows to understand the complex interactions between fluid and particles, particularly in solar thermal receivers using high-loading, low-cost particles to capture and store concentrated solar radiation.

Aim

This project aims to develop the microscopic shadow velocimetry (µ-PSV) technique to measure the particle velocities within free-falling particle curtain, particularly focusing on the development of an image process method to achieve spatial resolution along the curtain thickness.

Experimental Setup

- Dual-pulsed LED with a time delay of $33 \,\mu s$.
- ± 0.5 mm depth-of-field of the microscopic lens.
- 2048×2048 pixels spatial resolution of the camera.

Image Process Method

adelaide.edu.au

Shipu Han, Zhiwei Sun, Zhao Feng Tian, Timothy Lau, Graham J. Nathan

Zoom link: https://adelaide.zoom.us/j/6750633813?pwd=YWFoNXRGc200UWhmVGovQWhhYUtxQT09 Passcode: 486212

Key Results