

THE UNIVERSITY of ADELAIDE

Single-Crystal Nitrogen-Rich 2D Mo₅N₆ Nanosheets for **Efficient and Stable Seawater Splitting**

Huanyu Jin, Yao Zheng*, Shizhang Qiao* School of Chemical Engineering and Advanced Materials The University of Adelaide, SA 5005, Australia Zoom link: Passcode: 312392

Abstract

- Seawater is the most abundant water source and electrolyte for low-cost hydrogen production.^{1, 2}
- > However, the stability of most electrocatalysts for hydrogen evolution reaction (HER) in seawater is poor due to the highly corrosive environment.^{3, 4}

HER Performance and Activity Origin

- > Excellent HER activity and stability in seawater.
- \succ The *d* band center position of Mo₅N₆ is close to Pt.

> Nitrogen—rich metal nitrides (N/metal > 1) such as Mo_5N_6 are preferable for seawater splitting because of their good corrosion resistance and high activity.⁴

Figure 1. Schematic of the synthesis of Mo₅N₆ nanosheets.

Highlights

- \blacktriangleright Nitrogen-rich 2D Mo₅N₆ single-crystal nanosheets are synthesized for the first time.⁵
- Excellent HER performance in pH universal electrolytes including natural seawater.
- \succ The performance of 2D Mo₅N₆ for seawater splitting is better than the commercial Pt/C benchmark.

Materials Characterization

- \succ Morphology of 2D Mo₅N₆.
- \geq Electronic structure of 2D Mo₅N₆.

225

- -10 Pt Mo_5N_6 MoN Energy (eV) Figure 3. (a-d) Comparison of HER performance in seawater with
- other TMNs and Pt/C in seawater conditions. (e) DOS of Mo_5N_6 . (f) d band centre position of Pt (111), Mo_5N_6 and MoN.

Conclusion

- \succ The HER performance of 2D Mo₅N₆ in natural seawater is better than Pt/C benchmark.
- > Excellent stability in seawater splitting with over 80% of its initial current retention for 100 h test.
- \succ The high Mo valence state in Mo₅N₆ enhanced its corrosive-resistance.

References

1. W. Tong, et al., *Nat. Mater.*, **5**, 367 (2020). 2. X. Lu, et al., Energy Environ. Sci., 11, 1898 (2018).

Figure 2. (a-c) Transmission electron microscopy analysis of Mo_5N_6 . (c) Mo 3d XPS spectra of MoN and Mo_5N_6 .

3. H. Jin, et al., *Chem. Rev.*, **118**, 6337 (2018). 4. L. Yu, et al., *Nat. Commun.*, **10**, 5106 (2019). 5. H. Jin, et al., ACS Nano, 12, 12761 (2018).

Acknowledgement

This work is financially supported the Australian Research Council (DP170104464, DP160104866 and DE160101163). We acknowledge Adelaide Microscopy at The University of Adelaide, an AMMRF facility for the microscopy and microanalysis services.