
Converting CO2 to high-value 
hydrocarbon by CO2 Reduction 
Reaction attracted attentions      
due to higher energy density, 
readiness for transportation        
& utilization infrastructure.[1]
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 Exclusive to nanopyramid catalysts, pyramidal effect has
three aspects, which are improved *CO adsorptions,
geometrically preferable sites for C-C coupling and enhanced
electron transfer from surface.

 Anomalous C-C coupling activity induced by pyramidal
effect leads to new C2 active sites, and significantly promotes
C2 selectivity on under-coordinated Cu (111) surface.

 This new active site can be predicted by an effective C2

active site screening principle-the extended ‘square’ principle,
which further serve as morphology design rule for efficient
catalyst (Figure 1,2).

Nanopyramids significantly favor C2 production.

Figure 1. Application of extended ‘square’ principle. Figure 2. 𝐸஺ௗ௦௢௥௣௧௜௢௡
∗஼ை and 𝐸ி௢௥௠௔௧௜௢௡

∗ை஼஼ைு  of structures

Figure 3. Cu nanopyramids drive selectivity over C2 formation.

Results (continued)
Densely arrayed nanopyramids incur confined space and
the resultant O-Cu bond with adjacent nanopyramids.

 Such atomic arrangement further facilitates C-C coupling
(Figure 3).

 The space confinement effect disadvantages competing
pathways (Figure 4), and keep C-O bonds intact against
dihydroxylation thus enable a low-energetics pathway to
direct electrosynthesis of ethylene glycol (Figure 5).

Figure 3. C-C coupling energetics on
densely and sparsely arrayed nanopyramids

Figure 4. Formation energetics of intermediates
on Cu (100) and densely arrayed nanopyramids

Figure 5. Reduction of *CO to ethylene glycol on densely arrayed nanopyramid.
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 Poor selectivity & efficiency             
make Cu incapable of effective      
reduction CO2 to C2+, which can be 
improved by nanostructure engineering.[2]

 Tailoring the copper catalyst morphology by forming
nanopyramids offers method to promote C-C coupling and
enables the direct production of valuable C2+ chemicals.[3-4]

(Na Han et al 2020)

Cu nanopyramid exhibits significant C2

selectivity and it is also a promising catalyst
for direct production of some C2+ chemicals.

Molecular modelling powered by Density Functional 
Theory (DFT) simulation. 
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