CO₂ Reduction by Single Copper Atom Supported on $g-C_3N_4$ with Asymmetrical Active Sites adelaide.edu.au

THE UNIVERSITY of ADELAIDE

Sijia Fu, ^{†a,b} Xin Liu, ^{†a,b} Jingrun Ran, ^{a,b} Yan Jiao ^{*a,b} and Shizhang Qiao ^{a,b} ^a Centre for Materials in Energy and Catalysis, The University of Adelaide, South Australia 5005, Australia. ^b School of Chemical Engineering and Advanced Materials, The University of Adelaide, South Australia 5005, Australia. yan.jiao@adelaide.edu.au

1. Background

approach to reduced anthropogenic CO₂ emission.[1]

low selectivity and high over potential.[2]

active sites.[3]

(Kumar et al., 2016)

2. Methods

Simulation Package (VASP).

reduction to C_2H_4 on $Cu-C_3N_4$.

Acknowledge

This work was finally supported by the Australian Research Council through these programs (FT190100636 and DP190103472)

https://adelaide.zoom.us/j/8134842 4923?pwd=OUptZnNsZFRrTU5Hb VVGc0xxNkpHdz09

CRICOS PROVIDER NUMBER 00123M

[3]Y. Jiao, Y. Zheng, P. Chen, M. Jaroniec, S.Z. Qiao, Molecular Scaffolding Strategy with Synergistic Active Centers To Facilitate Electrocatalytic CO₂ Reduction to Hydrocarbon/Alcohol, Journal of the American Chemical Society, 139 (2017) 18093-18100.

[4] B. Kumar, J.P. Brian, V. Atla, S. Kumari, K.A. Bertram, R.T. White, J.M. Spurgeon, New trends in the development of heterogeneous catalysts for electrochemical CO₂ reduction, Catalysis Today, 270 (2016) 19-30.

(Cu/N) for CO₂ electroreduction to C_2H_4 on the surface of Cu-C₃N₄.

4. Conclusions \blacksquare The asymmetrical active sites of Cu-C₃N₄ enable C₂ production from **CO**₂ reduction reaction. The combination of Cu /C as active sites present a higher activity than Cu/N from the thermodynamic perspectives

[1] E.E. Benson, C.P. Kubiak, A.J. Sathrum, J.M. Smieja, Electrocatalytic and homogeneous approaches to conversion of CO₂ to liquid fuels, Chemical Society Reviews, 38 (2009) 89-99. [2]A.J. Garza, A.T. Bell, M. Head-Gordon, Mechanism of CO₂ reduction at copper surfaces: pathways to C₂ products, ACS Catalysis, 8 (2018) 1490-1499.

Figure 6. Complete reaction network of pathway 3 (Cu/C), and pathway 10