

The Financial Support through an Australian Research Council (ARC) Discovery Grant is Acknowledged

Introduction

This project aims to investigate the feasibility of using carbon-free fuel in the high-temperature industrial processes in order to achieve a significant reduction in greenhouse gas (GHG) emissions and COP-21 commitment. Hydrogen is one of the most alternative fuels that is the focus of this project. Using hy the base fuel has a significant reduction in carbon in comparison to fossil fuels.

Soot RSR growth mechanism Air 0 OH Oxygen-species attack Fractal clusters Ŷ \mathbb{C} Further RSR growth Soot growth Growing particle fuels O Soot Ring closure, **RSR** regeneration Missing pathways to nucleation? $\hat{\mathbf{C}}$ Chain elongation Cyclopentadienyl radical (initial RSR) (Thomson and Mitra 2018)

Bio-oil

- Oxygenated fuel with a high sooting propensity
- Derived from biomass refining, which mainly converts lignin, cellulose, and hemicellulose from renewable resources into fuel. Complex properties are highly depending on the type of feedstock
- 4. Cooling Coil 5. Ultrasonic Nebuliser and manufacturing method. 6. Co-flow Inlet 7. Carrier Gas Inlet

CRICOS PROVIDER NUMBER 00123M

Adaptation of Renewable Fuel to High Temperature Industrial Processes Yilong Yin, Kae Ken Foo, Michael Evans, Paul Medwell and Bassam Dally **Centre for Energy Technology, The University of Adelaide**

Potential Bio-oils

- Higher C/H, C/O ratio
- Lower water content

Availability

d meet the promising drogen as	Feedstock	Major components %					
ntensity in		Cellulose	Hemicellulose	Lig			
	Red gum	42	21	2			
	Mallee	14-22	14-40	24			

- Industry
- Contributes to the luminosity and hence the radiant intensity of a flame
- Formed from carbon which is lacking in hydrogen
- All the soot yield from small portion of hydrocarbon are oxidized in the hydrogen flame before it is emitted.

Feedstock	Major components %			Chemical compounds		C/H	C/O	Water
				Area			wt.%	
	Cellulose	Hemicellulose	Lignin	Acetic Acid	Phenolics			
Red gum	42	21	22	8.6-9.6	16-21	9.2	2.6	7.7
Mallee	14-22	14-40	24.7	5.73	Eucalyptol	5.9	0.9	20.8
eucalypt					27			
Algae	8.5	17.2	13.8	Indole 16	3.1	8.3	2.1	26.6
0					CH3			

Surrogates

(Evans et al. 2020)

• Abundant lignin and aromatics

- Detection of species (OH & PAH): planar laser-induced fluorescence (PLIF)

• S: Spray; V: Prevapourised;

provided below case-name).

Photographs of hydrogen and toluenedoped hydrogen flames with short (1 ms) exposures.

Conclusion

(Evans et al. 2020)

- toluene dopant as a proportion of total H₂ fuel.
- nozzle exit plane, than the prevapourised flames.
- smaller effect on soot produced in the flame.

References

- formation', Science, Vol. 361, No. 6406, pp. 978-979.

Soot volume fraction PDFs (fv in logscale) at different heights in the doped flames taken. No soot was measured in the HT1-V case.

• Soot volume fraction increases non-linearly with the addition of

• Spray flames are found to produce substantially more polycyclic aromatic hydrocarbons, with significantly more soot near the

Increasing the dopant concentration from 1 to 3% of the hydrogen has a marked effect on soot loading in the flame. Further increasing the dopant concentration to 5% has far

• Thomson, M and Mitra, T 2018, 'A radical approach to soot • Evans, M, Proud, D, Medwell, P, Pitsch, H and Dally, B 2020, 'Highly radiating hydrogen flames: Effect of toluene concentration and phase. ', Proceedings of the Combustion Institute.