Models of Equilibrium Real Exchange Rates Revisited: A Selective Review of the Literature

Reza Y. Siregar and Ramkishen S. Rajan

August 2006

International Macro and Finance Program

University of Adelaide
Adelaide 5005 Australia
The Centre was established in 1989 by the Economics Department of the Adelaide University to strengthen teaching and research in the field of international economics and closely related disciplines. Its specific objectives are:

- to promote individual and group research by scholars within and outside the Adelaide University
- to strengthen undergraduate and post-graduate education in this field
- to provide shorter training programs in Australia and elsewhere
- to conduct seminars, workshops and conferences for academics and for the wider community
- to publish and promote research results
- to provide specialised consulting services
- to improve public understanding of international economic issues, especially among policy makers and shapers

Both theoretical and empirical, policy-oriented studies are emphasised, with a particular focus on developments within, or of relevance to, the Asia-Pacific region. The Centre’s Director is Reza Y. Siregar (reza.siregar@adelaide.edu.au).

Further details and a list of publications are available from:

Executive Assistant
CIES
School of Economics
Adelaide University
SA 5005 AUSTRALIA
Telephone: (+61 8) 8303 5672
Facsimile: (+61 8) 8223 1460
Email: cies@adelaide.edu.au

Most publications can be downloaded from our Home page: http://www.adelaide.edu.au/cies/

ISSN 1445-3746 series, electronic publication
MODELS OF EQUILIBRIUM REAL EXCHANGE RATES REVISITED:
A SELECTIVE REVIEW OF THE LITERATURE

by

Reza Siregar* and Ramkishen S. Rajan**

August 2006

* School of Economics, University of Adelaide, and the International Monetary Fund-Singapore Regional Training Institute. E-mail: reza.siregar@adelaide.edu.au (corresponding author).

** School of Public Policy, George Mason University. E-mail: rrajan1@gmu.edu
MODELS OF EQUILIBRIUM REAL EXCHANGE RATES REVISITED: A SELECTIVE REVIEW OF THE LITERATURE

Abstract

One of the more important concepts in open macroeconomics is the “equilibrium real exchange rate” (ERER). Real exchange rate misalignments are argued to have been the cause of loss of competitiveness and growth slowdowns and eventual currency crises (in the event of sustained overvaluations), overheating (in the event of sustained undervaluation), sectoral misallocation of resources, and global macroeconomic imbalances. This paper examines the underlying concepts, assumptions and analytical bases of commonly employed models of the equilibrium real exchange rate and the manner in which they are usually computed (i.e. operationalized) as well as their shortcomings.

Keywords: BEER, equilibrium real exchange rate (ERER), FEER, PEER, NATREX, purchasing power parity (PPP).

JEL Classification: F31, F32.
1. Introduction

One of the more important concepts in open macroeconomics is the “equilibrium real exchange rate” (ERER). While real exchange rates are mean reverting in the long run, there is ample evidence to suggest that there can be quite significant and persistent deviations from the ERER in the short and medium terms (i.e. real exchange rate misalignments). Such real exchange rate misalignments are argued to have been the cause of loss of competitiveness, growth slowdowns and eventual currency crises (in the event of sustained overvaluations), overheating (in the event of sustained undervaluation), sectoral misallocation of resources (between tradables and nontradables), and even global macroeconomic imbalances (i.e. undervaluation of many Asian currencies and the Chinese currency in particular). In view of the key role played by the ERER in economic growth, development and stabilization, monetary authorities, particularly those in small and open economies, pay close attention to movements in the real exchange rate either directly or via the monetary conditions index (MCI).

Despite the repercussions that misalignments from the ERER can have on the rest of the economy it remains a rather illusive and ill-defined concept. This paper offers an analytical overview of selected models and definitions of ERER and explores two interrelated questions: (a) what are the economic fundamentals that go into estimating the ERER? and (b) what are the main differences between the models? The remainder of this paper is organized as follows. Section 2 presents some basic definitions of the real exchange rate, its decomposition into tradables and non-tradables, and its links to

1 For instance, see Edwards (1989). Harberger (2004) notes “the real exchange rate occupies a very important role – it is the principal equilibrating variable of a country’s international trade and payments.”

2 The MCI is the weighted average of the deviation of the real exchange rate from its equilibrium (or base) level and the deviation of the real interest rate from its base level. In general the smaller and more open the economy the greater the weight placed on the exchange rate term in view of its impact on domestic inflation via pass-through. See Rajan (2006) for a recent discussion of the MCI in the context of monetary and exchange rate policies in small and open economies in emerging Asia.
Purchasing Power Parity (PPP). While the PPP remains the most used and simplest form of ERER, its limitations are well documented. These drawbacks of the PPP have motivated economists to search for alternative models of ERER to aid policy analysis. Section 3 introduces the “Fundamental Equilibrium exchange rate” (FEER) real exchange rate which is probably the best known of the non-PPP based model of ERER. It would be fair to say that the other ERER models have developed in response to particular weaknesses of the FEER. Section 4 concentrates on the concepts of the “Behavioral Equilibrium exchange rate” (BEER) and its close cousin the “Permanent Equilibrium exchange rate” (PEER). Section 5 turns its attention to the concept of the Natural Rate of Exchange (NATREX) which introduces dynamics in the determination of the ERER. The final section offers some concluding remarks with particular reference to China.

2. Real Exchange Rate: Measurement and Definition

Before one can discuss models of ERER it is important to clarify the basic definition of the real exchange rate \(Q \). At the simplest level the real exchange rate is given as follows:

\[
Q = \frac{E \cdot P^*}{P}
\]

(1)

where: \((P)\) and \((P^*)\) are the domestic and foreign price levels, respectively and \((E)\) is the nominal exchange rate expressed as units of domestic currencies per unit of foreign currency. Hence a rise in \((E)\) and \((Q)\) implies a depreciation of nominal and real exchange rate of the local currency, respectively.
In the logarithm forms, both domestic price \(p \) and foreign price \(p^* \) can be expressed in the following manner:\[5\]

\[
p = \beta . p^{NT} + (1 - \beta) . p^T
\]

\[
p^* = \beta^* . p^{*NT} + (1 - \beta^*) . p^{*T}
\]

where: \(p^{NT} \) and \(p^{*NT} \) are domestic and foreign non-tradable prices, respectively and \(p^T \) and \(p^{*T} \) are domestic and foreign tradable price, respectively. \(\beta \) and \(1 - \beta \) are the shares of non-tradable and tradable sectors for the domestic economy, while \(\beta^* \) and \(1 - \beta^* \) are the corresponding shares for the foreign economy.

Substituting Equations (2a and 2b) into Equation (1) we can redefine the real exchange rate \(q \) as:

\[
q = \left(e + p^{*T} - p^T \right) - \left((1 - \beta)(p^{NT} - p^T) - (1 - \beta^*)(p^{*NT} - p^{*T}) \right)
\]

Equation 3 suggests that the fluctuations of real exchange rate movements are potentially driven by two different sources, viz. the real exchange rate of tradable goods \(e + p^{*T} - p^T \), and the ratio of the domestic to the foreign relative prices of non-tradable and tradable goods \((1 - \beta)(p^{NT} - p^T) - (1 - \beta^*)(p^{*NT} - p^{*T}) \). Of course, if Purchasing Power Parity (PPP) in the tradables sector holds then the first term in equation 3 is zero,

\[3\]

\[4\]

Note that small letters refer to logarithms hereafter.

Also see Harberger (2004).
implying that the real exchange rate is determined solely by the relative gaps in non-tradables and tradables prices domestically vis-à-vis the country’s trading partners. 5

Equation (3) is highly versatile and explains why many a times there are different interpretations and uses of the real exchange rate. For instance, if PPP in the tradables sector does not hold and one is only interested in examining the movements of real exchange rate driven by the tradable sector of the economy, then the use of unit value of export indices (or producer price indices (PPI)) may be more appropriate. In relation to this, movements in the real exchange rate have also often been used to measure the relative competitiveness of an economy. In this case the relative prices are often proxied by unit labor costs (ULCs) to focus on the cost competitiveness of the economy. 6 In some cases (especially in the context of a very small economy), if one assume \((p^{*NT} - p^{*T}) = 0\), then the real exchange rate is a measure of relative domestic prices of nontradables to tradables and is sometimes proxied as CPI divided by WPI. 7 In this case the real exchange rate is purely a measure of sectoral resource allocation as opposed to “competitiveness” per se.

More generally, Equation (3) emphasizes that the movements of real exchange at any point in time can be driven by changes in prices that occur in both the non-tradable and tradable sectors in the domestic country and those in its trading partners, as well as changes in the structures of the two economies (i.e. \(\beta\) and \(\beta^*\)).

Understanding the structure of the economy and the weights assigned to various sectors

5 The share of non-tradable sector has been found to be significant among the transition and developing economies (Egert, et al., 2006).

6 Harberger (2004) is critical of such an interpretation of the real exchange rate.

7 For instance, Edwards (1989) defines the ERER as the “relative price of tradable to nontradables that, for a given sustainable (equilibrium) values of other relevant variables – such as taxes, international prices, and technology – results in the simultaneous attainment of internal and external equilibrium” (p.16).
of the economy should therefore be a prerequisite to generate comprehensive analyses of the sources of exchange rate movements and the forces driving the equilibrium exchange rate.

3. The Fundamental Equilibrium Exchange Rate (FEER)

3.1 Underlying Theoretical Concepts

Recognizing the limitations of PPP (for instance, see Driver and Westaway, 2004 and Rogoff, 1996), a great deal of attention has focused on determining alternative measures of ERER based on some fundamental exchange rate determinants. One of the most widely used measures -- largely credited to Williamson (1994) -- is the concept of fundamental equilibrium exchange rate (FEER). Williamson (1994) defines FEER as a real effective exchange rate that simultaneously ensures internal and external balances. Internal balance is said to be reached when the economy is at full employment output and operating in a low inflation environment. With regard to external balance, the FEER approach abstracts from the short-run cyclical and speculative forces in the foreign exchange market and focuses on factors that are expected to persist over the medium-term horizon. More precisely, external balance is characterized as a sustainable balance of payment position over a medium-term horizon, ensuring desired net flows of resources and external debt sustainability. A minimum criterion for external balance is that the current account balance be “sustainable” over time.

Unlike the simple PPP approach, the FEER approach recognizes that the ERER will vary across time as factors impacting sustainable internal and external balances evolve. In the case of internal balance, for instance, apart from potential output growth associated with low inflation both in domestic and foreign economies, potential differences in the productivity growth between tradables and nontradables sectors in an
economy could lead to a depreciation or appreciation of the FEER. Similarly, the notion of “sustainable” current account level could change over times.

The operationalization of the FEER usually involves two sequential steps (Clark and MacDonald, 1998 and MacDonald, 2000). First is to identify the external balance equation by simply equating current account balance \((CA)\) to capital account balance \((KA)\).

\[
CA = -KA \tag{4}
\]

The current account is a sum of net trade balance and returns on net foreign assets \((nfar)\). The net trade balance \((ntb)\) is assumed to be a function of the real effective exchange rate and full employment output of the local and foreign economies, i.e. \((\bar{y}_d)\) and \((\bar{y}_f)\) respectively. The returns on net foreign asset are also influenced by the movements of the exchange rate, i.e. real exchange rate \((q)\) depreciation raises the domestic currency returns on foreign assets. Key relationships for the FEER approach can therefore be encapsulated in the following equations.

\[
CA = ntb + nfar \tag{5a}
\]

\[
ntb = \delta_0 + \delta_1q + \delta_2\bar{y}_d + \delta_3\bar{y}_f \tag{5b}
\]

where: \(\delta_1 > 0\), \(\delta_3 > 0\), and \(\delta_2 < 0\).

\[
nfar = f(q) \tag{5c}
\]

\footnote{While the Balassa-Samuelson effects comes to mind immediately, there is reason to believe that trend real exchange rate appreciation for fast growing economies may not always hold. For instance, see Miyajima (2005).}
In most applications of the FEER approach the level of equilibrium capital account over the medium term ($\bar{K}A$) is exogenously determined. Combining Equations (4 and 5a-5c) and the basic assumptions discussed above derives the following medium-term balance of payment equation:

$$CA = f(q^\text{FEER}, \bar{y}_d, \bar{y}_f) = -\bar{K}A$$

(6)

Given full employment output of the local and foreign economies, (\bar{y}_d) and (\bar{y}_f) respectively, and that of medium-term equilibrium ($\bar{K}A$), the last step is to solve Equation (6) for (q^FEER).

$$q^\text{FEER} = f(\bar{K}A, \bar{y}_d; \bar{y}_f)$$

(7)

3.2 Critical Analysis of the FEER

The FEER is considered a normative measure of equilibrium exchange rate as it is the rate consistent with some notion of “ideal” economic circumstances of internal and external balances. While the definition of internal balance is somewhat less controversial, the assumption of sustainable current account as a measure of external balance has been criticized for being too subjective in nature. For instance, in the applications of the FEER, the medium-term current account is often assumed to be at the level commonly accepted as the desirable rate (1 percent in the case of the US). It

9 The one percentage of GDP current account surplus target was chosen as it was the stated objective of the US Administration during the Smithsonian discussion of appropriate parities for the exchange rates for the major industrial countries (see Bayoumi et.al., 1994).
has therefore been suggested that the equilibrium real effective exchange rate derived from the FEER approach (to be called “desired equilibrium exchange rate” or DEER).

The normative position on the current account has also been criticized for imposing “an extra layer of judgment ... when calculating trade elasticity” (MacDonald, 2000). Considering a simplest form of current account (Equation 5a), where the \((nfar)\) component is assumed to be zero or relatively small when compared to \((ntb)\), real exchange rate elasticity on imports must therefore be close to the real exchange rate elasticity on exports under the assumption of “external balance”. In another words, the estimated trade elasticity of the FEER is effectively close to zero (Goldstein and Khan, 1985 and Wren-Lewis, 1992). Relying too much on the trade elasticity may generate an inaccurate estimate of the FEER trajectory. A depreciation of real exchange rate of the domestic currency would not only lead to an improvement in \((ntb)\) but should also should increase \((nfar)\). If the FEER only captures the changes in \((ntb)\) and assume the impact on \((nfar)\) to be exogenously determined, then the size of the required real exchange rate appreciation may be overestimated.\(^\text{10}\) Hence the size of currency misalignment estimated by FEER is likely to be inaccurate one.

Bayoumi, et al. (1994) and Driver and Westaway (2004) further highlight the analytical limitation introduced into the FEER due to possible fluctuations on the returns of net foreign asset. MacDonald (2000) highlights this point most clearly and we quote him at length:

\[(A)\]ssume that in the initial period the current exchange is at the FEER level and internal and external balances obtain. The actual exchange rate then depreciates in the next period, thereby improving the current balance and improving the net foreign asset position. The latter, in turn, implies that in future periods the real exchange rate which is consistent with

\(^{10}\) Obstfeld and Rogoff (1995) show a simple correlation between changes in the real exchange rates and changes in the net foreign asset position (though we note the usual caveat that correlation does not imply causation).
medium-run capital accumulation will no longer be the FEER; in particular, the FEER needs to appreciate to squeeze out the effects of net accumulation. This hysteresis effect is a necessary consequence of viewing the exchange rate as a medium run concept” (p.39).

4. The Behavioral and Permanent Equilibrium Exchange Rate (BEER and PEER)

The Behavioral Equilibrium exchange rate (BEER) approach modifies the FEER approach by focusing on the actual and not necessarily the medium-term equilibrium values of the fundamental determinants (i.e. internal and external balance proxies) of the real exchange rate. Hence, the underlying assumption of macroeconomic balance of the FEER approach is noticeably absent under the BEER approach. We illustrate below the general framework of the BEER approach (Clark and MacDonald, 1998, 2000).

4.1 Underlying Theoretical Concepts

The theoretical underpinning of the BEER approach rests on the basic concept of uncovered interest rate parity (UIP):

\[E_t(e_{t+1}) - e_t = i_t - i^*_t \] \hspace{1cm} (8)

where: \(E_t(e_{t+1}) \) represents the expected value of the nominal exchange rate in period \(t \) for period \(t+1 \). \(e_t \) is the nominal exchange rate at period \(t \), defined in terms of domestic currency per unit of foreign currency. Thus, a rise in \(e \) implies a depreciation of the local currency. \(i_t \) and \(i^*_t \) denote local and foreign nominal interest rates, respectively. (We introduce the risk premium terms later on).

\[11 \text{ The term “hysteresis” implies that different equilibrium values may not be independent of the dynamic adjustment paths toward them.} \]
Subtracting the expected inflation differential from both sides of Equation (8), allows us to covert the nominal interest rate parity into the real interest parity.

\[E_t(q_{t+1}) - q_t = r_t - r_t^* \]

(9)

where: \(r_t \) = domestic real interest rate = \(i_t - E_t(\Delta p_{t+1}) \); \(r_t^* \) = foreign real interest rate = \(i_t^* - E_t(\Delta p_{t+1}^*) \); \(E_t(q_{t+1}) \) denotes the expected real exchange rate at time \(t \) for period, and \(q_t \) is the observed real exchange rate. \((p_t) \) and \((p_t^*) \) are domestic and foreign price levels, respectively, at period \(t \). \((\Delta p_{t+1} = p_t - p_{t-1}) \) and \((\Delta p_{t+1}^* = p_t^* - p_{t-1}^*) \) are the changes in domestic and foreign price level, respectively.

By rearranging Equation (9) the observed real exchange rate \(q_t \) can be represented as a function of the expected value of real exchange rate \(E_t(q_{t+1}) \), and the current real interest rate differential.

\[q_t = E_t(q_{t+1}) - (r_t - r_t^*) \]

(10)

Under the BEER approach the unobservable expectation of real exchange rate, \(E_t(q_{t+1}) \) is assumed to be determined solely by a vector of long-run economic fundamentals \((Z_t) \). Thus, the BEER approach produces estimates of equilibrium real exchange rate \((q_t^{\text{REER}}) \) which incorporates both the long-run economic fundamentals \((E_t(q_{t+1}) = f(Z_t)) \) and the short-run interest rate differentials.

\[q_t^{\text{REER}} = f(Z_t, (r_t - r_t^*)) \]

(11)
Clark and MacDonald (1998) assumed three long-run determinants of vector \(Z_t \), namely terms of trade \(\text{tot} \), the relative price of non-traded to traded goods \(\text{nt} \) and net foreign assets \(\text{na} \).

\[
E_t(q_{t+1}) = f(\text{tot}_t, \text{nt}_t, \text{na}_t) \tag{12}
\]

The signs above the right hand side variables denote the signs of partial derivatives. Clark and MacDonald (1998) also include the role of risk premium component in the uncovered interest parity (Equation 8). The time-varying risk premium is assumed to be a positive function of the ratio between domestic and foreign government debt \(\left(\frac{gdebt_t}{gdebt_t^*} \right) \). Combining information from Equation (11), Equation (12) and the risk premium component, the BEER real exchange rate is determined by the following set of economic variables:

\[
BEER = f(\left(r - r^* \right)_t, \text{tot}_t, \text{nt}_t, \text{na}_t, \left(\frac{gdebt_t}{gdebt_t^*} \right)) \tag{13}
\]

Since the equilibrium rate is not an officially observable variable, a common empirical approach to estimate the BEER involves two steps. The first step involves estimating the long-run (cointegration) relationship between the prevailing real exchange
rate and the set of short-run and long-run economic fundamentals listed in Equation (14).\(^2\)

\[
q_t = \alpha + \beta_0 (r_t - r_t^*) + \beta_1 t ot_t + \beta_2 t nt_t + \beta_3 nfa_t + \beta_4 \left(\frac{gdebt}{gdebt^*} \right)
\]

(14)

The second step uses the coefficient parameters of each fundamental variables (\(\hat{\alpha}, \hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2\) and \(\hat{\beta}_4\)) to compute the BEER:

\[
q_t^{\text{BEER}} = \alpha + \beta_0 (r_t - r_t^*) + \beta_1 t ot_t + \beta_2 t nt_t + \beta_3 nfa_t + \beta_4 \left(\frac{gdebt}{gdebt^*} \right)
\]

(15)

4.2 Comparison of FEER and BEER and Introducing the PEER

Two important observations should be noted when one compares Equation (13) of the BEER approach and Equation (7) of the FEER approach. First, unlike the FEER, the BEER approach is not a normative one. As noted, the FEER depends on somewhat abstract and subjective notions of “sustainable external balance” and “internal balance”. In contrast, in the BEER, the equilibrium rate consistent with the prevailing levels of economic fundamentals.\(^3\) Second, the BEER considers short-run cyclical/temporary factors that may contribute heavily to medium-to-long-run movements of ERER. In particular, the adoption of interest rate parity allows the BEER approach to capture the sources of changes in capital account which may then also affect the current account

\(^2\) Needless to say, one must initially test for stationarity of each of these variables before the cointegration test in conducted.

\(^3\) The BEER may converge to the FEER in the medium-run under the condition where economic fundamentals driving the changes in the equilibrium exchange rate are at the full employment and sustainable levels.
and the “behavior” of the exchange rate. In contrast, the FEER approach only captures
the behavior of the exchange rate driven by changes in the positions of external and
internal balances.

As indicated above, the BEER is derived based on the prevailing levels of
economic fundamentals. Hence, the misalignment rate (i.e. actual rate minus BEER) is
often referred to as current misalignment rate. For policy makers it is relevant to
understand whether the misalignment has largely been driven by temporary shocks or
more permanent ones. Accordingly, following Clark and MacDonald (2000), many
studies decompose the fundamentals into a transitory and permanent component and
use the permanent components to estimate the so-called Permanent Equilibrium Real
Exchange Rate (PEER). Equation 13 of the BEER can easily be modified to capture the
PEER (note the ‘\(p \)’ superscript denotes a permanent component):

\[
PEER = f\left((r - r^*)^p, tot^p, int^p, nfa^p, \left(\frac{gdebt}{gdebt^*} \right)^p \right)
\]

Techniques introduced by Beveridge and Nelson (1981), Clarida and Gali
(1995), Stock and Watson (1998) and Gonzalo and Granger (1995) are some of the
commonly used empirical tools to decompose the non-stationary series into permanent
(the non-stationary part) and the temporary (stationary) component. The misalignment
rate (i.e. actual rate minus PEER) is often referred to as total misalignment rate.

5. The Natural Rate of Exchange (NATREX)

While the BEER/PEER approaches are important extensions of the FEER, these
models do not capture the nature of the convergence process from the short-run/actual
rate to the equilibrium rate, i.e. (MacDonald, 2000). Partly in response to this, Stein (1994) developed the “Natural Rate of exchange” or NATREX defined broadly as the rate that would prevail if speculative and cyclical factors could be removed while unemployment is at its natural rate. Stein (2001) has offered the clearest definition of the NATREX-based view of the ERER:

The equilibrium value of the real exchange rate is a sustainable rate that satisfies several criteria. First; it is consistent with internal balance. This is a situation where the rate of capacity utilization is at its longer run stationary mean. Second, it is consistent with external balance. The latter is a situation where, at the given exchange rate, investors are indifferent between holding domestic or foreign assets. At the equilibrium real exchange rate, there is no reason for the exchange rate to appreciate or depreciate. Hence, portfolio balance or external balance implies that real interest rates between the two countries should converge to a stationary mean. As long as there are current account deficits, the foreign debt and associated interest payments rise. If the current account deficit/foreign debt exceeds the growth rate of real GDP, then the ratio of the debt/GDP and the burden of the debt - net interest payments/GDP - will rise. When the debt burden is sufficiently high, devaluation will be required to earn enough foreign exchange through the trade balance to meet the interest payments. The condition for external equilibrium in the longer run is that the ratio of the foreign debt/GDP stabilizes at a tolerable level (pp.1-2).

In this sense the NATREX is akin to FEER in that it focuses on the medium-term, though as will be seen, it also allows for the introduction of short-run dynamics. More to the point, the NATREX approach is based on two broad pillars. First, the framework of the approach lies on the national income accounting equation:

\[I - S + CA = 0 \]

(17)

where: \((I)\) is the desired investment, \((S)\) denote the desired saving and \((CA)\) is the desired current account. Note that the various terms are \textit{desired} as opposed to \textit{actual} levels (the latter would make Equation 17 an identity). Equation (17) captures the medium-run equilibrium when the economy is operating at capacity output and
expectations about inflation is met -- similar to that of the FEER approach. The levels of
desired saving and investment depend on the existing stock of capital, wealth, and net
debt to foreigners. The medium-run position is characterized by the following conditions:
a) the domestic securities market clear; b) cyclical and short-term speculative capital
flows cancel out; c) any difference between investment and saving represents the
excess flow of supply of tradable long-term securities. Hence, under these conditions,
Equation (17) also captures the balance of payment equilibrium (the sum of capital and
current account balance).

Second, the fundamentals, denoted by vector \(Z(t) \), are disturbances to
productivity and social thrift (time preference of consumption/expenditure by household
and government) at home and abroad (Stein, 1994). Changes in \(Z(t) \) will affect capital
formation, the rate of debt accumulation and also the interest rate. As desired saving
and investment change the NATREX will fluctuate accordingly and will converge to a
static long-run rate when there is no further changes in the fundamentals. Thus, unlike
the other models of ERER, the NATREX is a moving equilibrium exchange rate, i.e. it
adds dynamics to the determination of the ERER. The trajectory of the ERER can be
decomposed into three components, viz. the medium-run, the longer-run and the steady
state.

To illustrate the foregoing point more explicitly, the real exchange rate can be
depicted into the three different phases/stages. One, is the actual/spot
rate: \(q_t = q_t(k_t, F_t, ε_t : Z_t) \) which is the realized rate at time \(t \), given the stock of capital
\(k_t \), stock of debt \(F_t \) and the presence of speculative capital flows. As discussed, the
stocks of capital and debt are influenced by the changes in the fundamentals \(Z(t) \).
Two, is the medium-run NATREX: \(q = q(k_t, F_t : Z_t) \) which is affected by the changes in
the stocks of capital and debt (due to changes in the fundamentals). However, unlike the spot rate, speculative flows do not influence the medium-run NATREX. Hence, this rate is what is supposedly obtained also by the FEER approach. Three, the NATREX converges to a static long-run rate: \(q^* = q^*(Z_t) \). This constant or stationary long-run real equilibrium NATREX is consistent with the PPP rate. Hence, the NATREX extends early models such as the PPP and the FEER by focusing its analyses on the periods when the fundamentals are not stationary and consequently generates the trajectories of the exchange rate from the short-term to medium-run and from the medium-run to the static long-run position. These dynamics also differentiate the NATREX from the BEER approach. As noted by Stein (2001):

The principal difference between the BEER and the NATREX, is that the NATREX takes as its point of departure a specific theoretical dynamic stock-flow model to arrive at a reduced form where the equilibrium real exchange rate depends upon relative thrift and relative productivity differences (p.5).

Two issues often arise in estimating the NATREX. First is to do with the selection proxies for the fundamentals (shocks in the productivity and the social thrift). Second is with regard to the testing procedures, i.e. between testing a single reduced form equation and estimating structural equations. Most studies applying the NATREX estimate a single reduced form equation. With regard to the proxies for fundamentals, in order to capture productivity, average labor productivity is most often used (GDP/total employment), though total factor productivity (TFP) is also used by some (Stein 2001). Regarding the social thrift variable, ideally this is proxied by changes in the total consumption (household and government) over GDP during the observation period. However, since household consumption is usually found to be stationary over a long-

14 See Edwards (1989), Montiel (1999) and Baffes, et al. (1999) for a discussion of the use of specifying a single equation to estimate the ERER.
term span for some countries, only the ratio of government expenditure over GDP is considered to proxy the social thrift (for instance, see Stein, 2001 and Rajan and Siregar, 2002). Beyond these two fundamentals, consistent with the previous models, it is also common to include the terms of trade as one of the fundamental variables for the small open economy, as it is exogenously determined (MacDonald, 2002, 2004 and Rajan and Siregar, 2002). Hence the basic single reduced form equation for the NATREX can easily be presented as the by the following equation:

\[\text{NATREX} = f(\text{tot, prod, thrift}) \]

(18)

where: (tot) is the terms of trade; (prod) denotes the productivity measure; and (thrift) captures the social thrift or the time-preference of the consumption/expenditure behaviour of the households and the government.

In addition to the selection of the proxies for the fundamental variables it is important to add that the selection of the fundamental factors in estimating the NATREX is also open to variation, largely influenced by the size of the economy and the development stages of the local economy. As an example, the terms-of-trade term is generally considered to be one of the fundamental variables for small open economies as it is exogenously given for this group of countries. However, for industrial countries the terms-of-trade is endogenously determined and may create estimation problems if included in the regression equation (18).\(^{15}\) Furthermore, when applied to transition economies or emerging markets, the estimation results may indicate that some of the fundamental variables (or the proxies) are significant determinants of the medium-run, but not the long-run equilibrium exchange rate. For instance, a positive relationship

\(^{15}\) Stein (1999) for instance only considers social thrift and productivity of domestic and foreign countries when evaluating the equilibrium rate of the US dollar and the G-7 currencies.
between expansionary government expenditure and real exchange rate captures only the medium-run term. The rise in the aggregate demand, driven by the rise in government expenditure, will appreciate the real exchange rate in the medium-run. The strengthening of the local currency however would worsen the current account position through a possible deterioration on the net interest flows on foreign debt. In the long-run, a depreciation of local currency is needed to stabilize the net foreign assets. Accordingly, any analysis or policy discussions generated from the NATREX approach should take into account all of these empirical issues.

5. Concluding Remarks

Most economists would agree that a key element of successful economic policy strategy for stable growth and development is the need to ensure the real exchange rate is maintained at its “equilibrium level”. Large and persistent misalignments can have significant negative economic impacts, including an eventual currency crisis (Frankel and Rose, 1996 and Kaminsky and Reinhart, 1999). This paper has examined underlying concepts, assumptions and analytical bases of commonly employed models of the equilibrium real exchange rate and the manner in which they are usually computed (i.e. operationalized) as well as their shortcomings. Clearly there is no single definitive model; each has its strengths and weaknesses and results could vary depending on the model used.

As an example, Table 1 below highlights the range of estimates of degree of misalignment of the Chinese currency which is at the centre of the current debate of global macroeconomic imbalances. The basic issue of concern in the context of global macroeconomic imbalances is whether the Chinese currency is undervalued and if so, by how much (i.e. does China have an “unfair” export advantage)? As is apparent, various methodologies lead to quite different results, ranging from gross undervaluation
to more or less no misalignment. It would clearly be fallacious and hazardous to draw policy conclusions by using estimates from any single model. However if one looks at the broad average of estimates across all studies in Table 1, it appears the Chinese currency has been undervalued by between 30 and 40 percent vis-à-vis the US dollar and between 15 and 20 percent on a real trade-weighted basis. This example emphasizes the importance of considering a number of alternative equilibrium real exchange rate models in order to come up with a range of estimates of misalignment before one draws any firm policy conclusion.

Table 1: Alternative Estimates of Misalignment of the Chinese Real Exchange Rate

<table>
<thead>
<tr>
<th>Author/Study</th>
<th>Method</th>
<th>Type of Exchange Rate</th>
<th>Period</th>
<th>Misalignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bénassy-Quéré et al. (2004)</td>
<td>BEER</td>
<td>Dollar</td>
<td>2003</td>
<td>-47%, -44%</td>
</tr>
<tr>
<td>Coudert and Couharde (2005)</td>
<td>BEER</td>
<td>Dollar</td>
<td>2002</td>
<td>-18%</td>
</tr>
<tr>
<td>Coudert and Couharde (2005)</td>
<td>FEER</td>
<td>REER Dollar</td>
<td>2003</td>
<td>-23%, -44%</td>
</tr>
<tr>
<td>Jeong and Mazier (2003)</td>
<td>FEER</td>
<td>REER Dollar</td>
<td>2000</td>
<td>-33%, -60%</td>
</tr>
</tbody>
</table>

Note: 1) The estimates here are not mean to be exhaustive; they should be seen as indicative. 2) Minus sign implies undervaluation.
Source: Adopted and updated from Coudert and Couharde (2005) and Dunaway and Li (2005).
References

CIES DISCUSSION PAPER SERIES

The CIES Discussion Paper series provides a means of circulating promptly papers of interest to the research and policy communities and written by staff and visitors associated with the Centre for International Economic Studies (CIES) at the Adelaide University. Its purpose is to stimulate discussion of issues of contemporary policy relevance among non-economists as well as economists. To that end the papers are non-technical in nature and more widely accessible than papers published in specialist academic journals and books. (Prior to April 1999 this was called the CIES Policy Discussion Paper series. Since then the former CIES Seminar Paper series has been merged with this series.)

Copies of CIES Policy Discussion Papers may be downloaded from our Web site at http://www.adelaide.edu.au/cies/ or are available by contacting the Executive Assistant, CIES, School of Economics, Adelaide University, SA 5005 AUSTRALIA. Tel: (+61 8) 8303 5672, Fax: (+61 8) 8223 1460, Email: cies@adelaide.edu.au. Single copies are free on request; the cost to institutions is US$5.00 overseas or A$5.50 (incl. GST) in Australia each including postage and handling.

For a full list of CIES publications, visit our Web site at http://www.adelaide.edu.au/cies/ or write, email or fax to the above address for our List of Publications by CIES Researchers, 1989 to 1999 plus updates.

0603 Palangkaraya, Alfons, Jensen, Paul H. and Webster, Elizabeth, “Patent Examination Decisions and Strategic Trade Behavior”, August 2006
0520 Siregar, Reza Y. and Pontines, Victor, “External Debt and Exchange Rate Overshooting: The Case of Selected East Asian Countries”, October 2005
0519 Anderson, Kym, Martin, Will and van der Mensbrugghe, Dominique, “Distortions to world trade: impacts on agricultural markets and farm incomes”, August 2005
0518 Anderson, Kym, Martin, Will and van der Mensbrugghe, Dominique, “Would Multilateral Trade Reform Benefit Sub-Saharan Africans?”, August 2005
0517 Anderson, Kym and Martin, Will, “Agricultural Trade Reform and the Doha Development Agenda”, August 2005
0516 Anderson, Kym, Martin, Will and van der Mensbrugghe, Dominique, “Doha Merchandise Trade Reform: What’s at Stake for Developing Countries?”, August 2005
0514 Anderson, Kym, “Interactions Between Trade Policies and GM Food Regulations”, August 2005
0511 Bayer, Ralph C. and Binenbaum, Eran, “The Hay and the Carrot: A Model of Corporate Sponsoring of Academic Research”, July 2005
Binenbaum, Eran, “Grants, Contracts, and the Division of Labor in Academic Research”, July 2005
Li, Jie and Rajan, Ramkishen S., “Can High Reserves Offset Weak Fundamentals? A Simple Model of Precautionary Demand for Reserves”, June 2005
Sugema, Iman, “The Determinants of Trade Balance and Adjustment to the Crisis in Indonesia”, June 2005
Ouyang, Alice Y. and Rajan, Ramkishen S., “Monetary Sterilization in China Since the 1990s: How Much and How Effective?”, June 2005
Sugema, Iman and Chowdhury, Anis, “Aid and Fiscal Behaviour in Indonesia: The Case of a lazy Government”, May 2005
Chowdhury, Anis and Sugema, Iman, “How Significant and Effective has Foreign Aid to Indonesia been?”, May 2005
Cavoli, Tony, “Sterilisation, Capital Mobility and Interest Rate Determination for East Asia” February 2005
Marrewijk, Charles Van, “Basic Exchange Rate Theories” February 2005
Anderson, Kym, Lee Ann Jackson and Chantal Pohl Nielsen “Genetically Modified Rice Adoption” November 2004
Anderson, Kym, “The Challenge of Reducing Subsidies and Trade Barriers” November 2004
Marrewijk, Charles Van, “An Introduction to International Money and Foreign Exchange Markets”, October 2004
Siregar, Reza and Ramkishen S. Rajan “Exchange Rate Policy and Reserve Management in Indonesia in the Context of East Asian Monetary Regionalism “, August 2004