MECH ENG 2020 - Materials & Manufacturing

North Terrace Campus - Semester 1 - 2021

Extend the fundamental understanding of the structure - property relationship of materials introduced in previous courses; mechanical behaviour, testing and manufacturing properties of metals and alloys; strengthening of materials (alloying, heat-treatment); manufacturing processes, design considerations and economics for forming and shaping engineering materials (casting, forging, rolling, extrusion, drawing, sheet-metal forming and machining).

  • General Course Information
    Course Details
    Course Code MECH ENG 2020
    Course Materials & Manufacturing
    Coordinating Unit School of Mechanical Engineering
    Term Semester 1
    Level Undergraduate
    Location/s North Terrace Campus
    Units 3
    Contact Up to 4 hours per week
    Available for Study Abroad and Exchange Y
    Assumed Knowledge CHEM ENG 1009
    Restrictions Available to Bachelor of Engineering (Honours) (Mechanical) & associated double degree students only
    Course Description Extend the fundamental understanding of the structure - property relationship of materials introduced in previous courses; mechanical behaviour, testing and manufacturing properties of metals and alloys; strengthening of materials (alloying, heat-treatment); manufacturing processes, design considerations and economics for forming and shaping engineering materials (casting, forging, rolling, extrusion, drawing, sheet-metal forming and machining).
    Course Staff

    Course Coordinator: Professor Zonghan Xie

    Dr Zonghan Xie Lecturer Engineering South Building, S104
    Course Timetable

    The full timetable of all activities for this course can be accessed from Course Planner.

    48 hours lectures and tutorials (24 hours of Materials and 24 hours of Manufacturing Processes)

  • Learning Outcomes
    Course Learning Outcomes
    On successful completion of this course students will be able to:

    1 A demonstrable knowledge of a range of manufacturing processes;
    2 Apply analytical methods for understanding the process variables;
    3 Demonstrated ability to select manufacturing processes appropriate for particular applications;
    4 Explain the importance of economic and environmental factors when considering the application of a process;
    5 Discuss the fundamental concepts of the elastic and plastic properties of materials introduced in earlier courses;
    6 Recognise specific materials and their suitability for specific applications based on fundamental knowledge gained from this and earlier courses;
    7 Explain the failure mechanisms of different types of materials;
    8 Discuss the impact of environmental factors on the properties of materials;
    9 Apply the concepts provided to new situations and to read and understand professional articles on the subject; and
    10 Demonstrate interpersonal understanding, teamwork and communication skills working on group assignments.

    The above course learning outcomes are aligned with the Engineers Australia Stage 1 Competency Standard for the Professional Engineer.
    The course is designed to develop the following Elements of Competency: 1.1   1.2   1.3   1.4   1.5   1.6   2.1   2.2   2.3   2.4   3.1   3.2   3.3   3.4   3.5   3.6   

    University Graduate Attributes

    This course will provide students with an opportunity to develop the Graduate Attribute(s) specified below:

    University Graduate Attribute Course Learning Outcome(s)
    Deep discipline knowledge
    • informed and infused by cutting edge research, scaffolded throughout their program of studies
    • acquired from personal interaction with research active educators, from year 1
    • accredited or validated against national or international standards (for relevant programs)
    Critical thinking and problem solving
    • steeped in research methods and rigor
    • based on empirical evidence and the scientific approach to knowledge development
    • demonstrated through appropriate and relevant assessment
    Teamwork and communication skills
    • developed from, with, and via the SGDE
    • honed through assessment and practice throughout the program of studies
    • encouraged and valued in all aspects of learning
    Career and leadership readiness
    • technology savvy
    • professional and, where relevant, fully accredited
    • forward thinking and well informed
    • tested and validated by work based experiences
    Intercultural and ethical competency
    • adept at operating in other cultures
    • comfortable with different nationalities and social contexts
    • able to determine and contribute to desirable social outcomes
    • demonstrated by study abroad or with an understanding of indigenous knowledges
    Self-awareness and emotional intelligence
    • a capacity for self-reflection and a willingness to engage in self-appraisal
    • open to objective and constructive feedback from supervisors and peers
    • able to negotiate difficult social situations, defuse conflict and engage positively in purposeful debate
  • Learning Resources
    Required Resources

    Course Notes: These are essential and required.

    Text book: The following text books are highly recommended:

    • Kalpakjian s and Schmid S.R., Manufacturing Engineering and Technology, 7 ed (SI) Pearson Ed 2014.
    • Callister W.D., Materials Science and Engineering An Introduction, 8ed, Wiley, 2010
    Recommended Resources
    • Askeland D.R. The Science and Engineering of Materials 3rd SI Edition, Chapman and Hall 1999
    • Ashby M.F., Materials Selection in Mechanical Design, 3ed, Elsevier, 2005
    Online Learning

    All lectures, tutorial problems, solutions and past exam problems are available on MyUni.

  • Learning & Teaching Activities
    Learning & Teaching Modes

    Lectures are supported by problem-solving tutorials and assignments.


    The information below is provided as a guide to assist students in engaging appropriately with the course requirements.

    48 hours lectures and tutorials

    Assignments, presentations

    Learning Activities Summary

    MANUFACTURING (24 lectures and tutorials – 50%)

    An overview of manufacturing and general introduction to manufacturing processes (1 lecture)
    Detailed description and analysis of specific processes
    • Casting processes
    (4 lectures/tutorials)
    • Bulk deformation processes
    (6 lectures/tutorials)
    • Material forming processes
    (2 lectures/tutorials)
    • Material removal processes: cutting
    (2 lectures)
    • Material removal processes: chemical, electrical
    (2 lectures)
    • Processing of polymers
    (4 lectures/tutorials)
    • Processing of powder metals
    (1 lecture)
    • Welding and other joining processes
    (2 lectures)
    Competitive aspects, economics of manufacturing and design considerations are included within each topic

    MATERIALS (24 lectures and tutorials – 50%)

    Review of Materials 1 (1 lecture)
    Phase Diagrammes (3 lectures/tutorial)
    Phase Transformations (2 lectures/tutorial)

    Strengthening processes

    • Mechanical
    • Alloying
    • Solution Strengthening
    • Dispersion Strengthening
    • Precipitation Hardening
    (4 lectures/tutorial)
    Heat-treatment (2 lectures)

    Ferrous Alloys – Classification and properties of:

    • Plain carbon steels
    • Low alloy steels
    • Stainless steels
    • Special steels
    • Tool steels
    • Wear resistant alloys
    • High strength low alloy steels
    (4 lectures/tutorial)

    Non-ferrous alloys – Classification, properties and application of:

    • Aluminium alloys
    • Magnesium alloys
    • Copper alloys
    (2 lectures/tutorial)

    Structure, classification,application and properties of:

    • Polymers
    • Composites
    (4 lectures/tutorials)
    Corrosion (1 lecture)
    Failure (1 lecture)

    CATCHUP AND REVISION (Time permitting)

    Specific Course Requirements

    Not applicable.

  • Assessment

    The University's policy on Assessment for Coursework Programs is based on the following four principles:

    1. Assessment must encourage and reinforce learning.
    2. Assessment must enable robust and fair judgements about student performance.
    3. Assessment practices must be fair and equitable to students and give them the opportunity to demonstrate what they have learned.
    4. Assessment must maintain academic standards.

    Assessment Summary
    Assessment Task Weighting (%) Individual/ Group Formative/ Summative
    Due (week)*
    Hurdle criteria Learning outcomes
    Assignments 40 Individual Summative 1. 2. 4. 7.
    Final Exam 60 Individual Summative Exam period 1. 2.  3. 6. 7.
    Total 100
    * The specific due date for each assessment task will be available on MyUni.
    This assessment breakdown complies with the University's Assessment for Coursework Programs Policy.
    This course has no hurdle requirement.

    Due to the current COVID-19 situation modified arrangements have been made to assessments to facilitate remote learning and teaching. Assessment details provided here reflect recent updates.

    End of term exam: take home exam.
    The questions will be uploaded onto MyUni and be released at a pre-set date/time. The students will download, tackle and submit their answers online (via email) within 3.5 hours. The format and weighting are unchanged.
    Assessment Related Requirements

    Overall mark of 50% is required to pass the subject.

    Assessment Detail

    Assignments  - weighting 40%

    Exam (Open book) – weighting 60%


    For assignments a School Submission Sheet must be attached to the front of the work and completed in full. These submission sheets will be available at the window of the School Office or near the submission box.

    The assignments MUST be submitted in the appropriate submission box unless other arrangements are stated. The boxes will be emptied each day at 4:30pm and the work stamped with the current date. A penalty of 10% will apply for each day or part there of, that an assignment is submitted after the due date.

    Course Grading

    Grades for your performance in this course will be awarded in accordance with the following scheme:

    M10 (Coursework Mark Scheme)
    Grade Mark Description
    FNS   Fail No Submission
    F 1-49 Fail
    P 50-64 Pass
    C 65-74 Credit
    D 75-84 Distinction
    HD 85-100 High Distinction
    CN   Continuing
    NFE   No Formal Examination
    RP   Result Pending

    Further details of the grades/results can be obtained from Examinations.

    Grade Descriptors are available which provide a general guide to the standard of work that is expected at each grade level. More information at Assessment for Coursework Programs.

    Final results for this course will be made available through Access Adelaide.

  • Student Feedback

    The University places a high priority on approaches to learning and teaching that enhance the student experience. Feedback is sought from students in a variety of ways including on-going engagement with staff, the use of online discussion boards and the use of Student Experience of Learning and Teaching (SELT) surveys as well as GOS surveys and Program reviews.

    SELTs are an important source of information to inform individual teaching practice, decisions about teaching duties, and course and program curriculum design. They enable the University to assess how effectively its learning environments and teaching practices facilitate student engagement and learning outcomes. Under the current SELT Policy ( course SELTs are mandated and must be conducted at the conclusion of each term/semester/trimester for every course offering. Feedback on issues raised through course SELT surveys is made available to enrolled students through various resources (e.g. MyUni). In addition aggregated course SELT data is available.

  • Student Support
  • Policies & Guidelines
  • Fraud Awareness

    Students are reminded that in order to maintain the academic integrity of all programs and courses, the university has a zero-tolerance approach to students offering money or significant value goods or services to any staff member who is involved in their teaching or assessment. Students offering lecturers or tutors or professional staff anything more than a small token of appreciation is totally unacceptable, in any circumstances. Staff members are obliged to report all such incidents to their supervisor/manager, who will refer them for action under the university's student’s disciplinary procedures.

The University of Adelaide is committed to regular reviews of the courses and programs it offers to students. The University of Adelaide therefore reserves the right to discontinue or vary programs and courses without notice. Please read the important information contained in the disclaimer.