CHEM ENG 2010 - Principles of Process Engineering

North Terrace Campus - Semester 1 - 2014

This course prepares you to formulate and solve material & energy balances for both reactive and non-reactive systems. More fundamentally, it introduces the eningeering approach by breaking a process down into its components, establishing the relations between known and unknown process variables, assembling the information needed to solve for the unknowns, and finally obtaining the solution using appropriate computational methods. The goal is for you to become familiar with numerous problem-solving strategies and to practice using them. This course is delievered through a combination of lectures, tutorials, and small group discovery via the design project.

  • General Course Information
    Course Details
    Course Code CHEM ENG 2010
    Course Principles of Process Engineering
    Coordinating Unit School of Chemical Eng and Advanced Materials(Ina)
    Term Semester 1
    Level Undergraduate
    Location/s North Terrace Campus
    Units 3
    Contact Up to 4 hours per week
    Assumed Knowledge CHEM ENG 1007
    Assessment assignments, mid-semester test, design project, final examination
    Course Staff

    Course Coordinator: Associate Professor Yung Ngothai

    Office: N212a
    Phone: 8313 5445
    Consultation times: Friday 2-4 pm
    Course Timetable

    The full timetable of all activities for this course can be accessed from Course Planner.

  • Learning Outcomes
    Course Learning Outcomes
    At the completion of this course, students will be able to:

    1 Perform calculations with different systems of units and apply concepts of dimensional consistency;
    2 Understand the various basic concepts used in chemical engineering and process calculations;
    3 Formulate and solve problems involving mass and energy balances;
    4 Understand how to use computers for solving process design problems;
    5 Know the various stages involved in undertaking engineering projects in the chemical process industry;
    6 Use key concepts of process simulation to solve an open-ended mass & energy balance for a relatively complex process flowsheet;
    7 Work efficiently and productively in small teams; and
    8 Present a properly formatted design report.
    University Graduate Attributes

    No information currently available.

  • Learning Resources
    Recommended Resources

    R.M. Felder and R. W. Rousseau, “Elementary Principles of Chemical Processes”, Wiley, 3rd Edition, 2005 Edition with Integrated Media and Study Tools.

    Reference Books

    B. E. Poling, J. M. Prausnitz, and J. P. O’Connell, “The Properties of Gases and Liquids”, McGraw-Hill, 5th Edition, 2001.

    S. Skogestad, “Chemical and Energy Process Engineering”, CRC Press, 2009.

    S. I. Sandler, “Chemical, Biochemical, and Engineering Thermodynamics”, Wiley, 4th Edition, 2006.

    D. M. Himmelblau and J. B. Riggs, “Basic Principles and Calculations in Chemical Engineering”, Prentice-Hall, 7th Edition, 2004.

    R. M. Murphy, “Introduction to Chemical Processes: Principles, Analysis, Synthesis”, McGraw-Hill, 2007.

    G.V. Reklaitis, “Introduction to Material and Energy Balances”, Wiley, 1983.

    D. Shallcross, “Physical Property Data Book for Engineers and Scientists”, IChemE, 2004.

    G.F.C. Rogers and Y.R. Mayhew, “Thermodynamic and Transport Properties of Fluids - SI Units”, Blackwell, 5th Edition, 1995.

    R.H. Perry & D. Green, “Perry's Chemical Engineers' Handbook”, McGraw-Hill, 7th Edition, 1997.

    Online Learning
    A range of online resources will be provided via MyUni.
  • Learning & Teaching Activities
    Learning & Teaching Modes

    No information currently available.


    The information below is provided as a guide to assist students in engaging appropriately with the course requirements.

    Activity Contact hours Workload hours
    Lectures 16 32
    Tutorials 15 30
    Design Project 12 24
    In-class test 2 10
    TOTAL 45 96
    Learning Activities Summary
    Topic 1: Material balances

    ·  Fundamentals of material balances; material balance calculations; balances on multiple-unit processes; recycle and bypass; purge; material balances with chemical reactions; combustion process. 

    ·  Gases, Vapours, Liquids and Solids: ideal gas; real gas relationships; gaseous mixtures; equations of state; compressibility charts; phase rule; multiphase systems.  

    Topic 2: Energy balances

    ·  Concepts and units; forms of energy; use of thermodynamic data; the general energy balance; energy balances on physical processes; the mechanical energy balance; energy balances with chemical reaction.

    Topic 3: Introduction to chemical process design

    ·  Stages involved in the evolution of chemical engineering projects; and introduction to the concept design process: establishing a process flowsheet, and preparing mass and energy balances. Written Communication.

    Topic 4: Design project

    ·  The project teamwork will provide groups with mutually agreeable times to conduct team meetings and coordinate their report work.

    Specific Course Requirements

    A hurdle requirement is a minimum standard of achievement that a student must attain in order to successfully complete a course.  The School of Chemical Engineering has determined that each student must achieve a minimum of 50% in the continuous assessment component of any CHEM ENG coded course.  Failure to achieve 50% or greater in the continuous assessment in a course may result in an overall fail grade being awarded for the course even if you achieve 50% or more overall.
    Continuous assessment is where written works, tests, class participation, etc during the first 12 weeks of the semester.
  • Assessment

    The University's policy on Assessment for Coursework Programs is based on the following four principles:

    1. Assessment must encourage and reinforce learning.
    2. Assessment must enable robust and fair judgements about student performance.
    3. Assessment practices must be fair and equitable to students and give them the opportunity to demonstrate what they have learned.
    4. Assessment must maintain academic standards.

    Assessment Summary

    No information currently available.

    Assessment Detail

    No information currently available.


    No information currently available.

    Course Grading

    Grades for your performance in this course will be awarded in accordance with the following scheme:

    M10 (Coursework Mark Scheme)
    Grade Mark Description
    FNS   Fail No Submission
    F 1-49 Fail
    P 50-64 Pass
    C 65-74 Credit
    D 75-84 Distinction
    HD 85-100 High Distinction
    CN   Continuing
    NFE   No Formal Examination
    RP   Result Pending

    Further details of the grades/results can be obtained from Examinations.

    Grade Descriptors are available which provide a general guide to the standard of work that is expected at each grade level. More information at Assessment for Coursework Programs.

    Final results for this course will be made available through Access Adelaide.

  • Student Feedback

    The University places a high priority on approaches to learning and teaching that enhance the student experience. Feedback is sought from students in a variety of ways including on-going engagement with staff, the use of online discussion boards and the use of Student Experience of Learning and Teaching (SELT) surveys as well as GOS surveys and Program reviews.

    SELTs are an important source of information to inform individual teaching practice, decisions about teaching duties, and course and program curriculum design. They enable the University to assess how effectively its learning environments and teaching practices facilitate student engagement and learning outcomes. Under the current SELT Policy ( course SELTs are mandated and must be conducted at the conclusion of each term/semester/trimester for every course offering. Feedback on issues raised through course SELT surveys is made available to enrolled students through various resources (e.g. MyUni). In addition aggregated course SELT data is available.

  • Student Support
  • Policies & Guidelines
  • Fraud Awareness

    Students are reminded that in order to maintain the academic integrity of all programs and courses, the university has a zero-tolerance approach to students offering money or significant value goods or services to any staff member who is involved in their teaching or assessment. Students offering lecturers or tutors or professional staff anything more than a small token of appreciation is totally unacceptable, in any circumstances. Staff members are obliged to report all such incidents to their supervisor/manager, who will refer them for action under the university's student’s disciplinary procedures.

The University of Adelaide is committed to regular reviews of the courses and programs it offers to students. The University of Adelaide therefore reserves the right to discontinue or vary programs and courses without notice. Please read the important information contained in the disclaimer.