Deep Learning for Computer Vision
Introduction to Computer Vision & Deep Learning

Presented by Hayden Faulkner
What Is Computer Vision?
What is Computer Vision?

Using computers to understand (process) imagery
What Is Deep Learning?
What is Deep Learning?

Part of a broader set of **Machine Learning** methods

- Reinforcement Learning
- Clustering
- Decision Tree Learning
- Artificial Neural Networks
- Support Vector Machines
- Genetic Algorithms
- Rule-based Machine Learning
- Association Rule Learning
- Similarity and Metric Learning
- Bayesian networks
- Sparse Dictionary Learning
- Deep Learning
- Inductive Logic Programming
- Representation Learning
Deep Learning methods focus on learning data representations via a set of many sequential operations*

*Many experts have their own definition
Image Classification: A Fundamental Computer Vision Problem

Process / Model

“Dog”
Image Classification: A Fundamental Computer Vision Problem

- Process the image into a lower dimensional space more useful for classification
- Features hand-crafted (designed) by researchers
- Used for picking up image properties such as edges or patterns
- Some features: SIFT, HOG, LBP, MSER, Color-SIFT …

- Classifier uses image features to decide a label
- Utilises machine learning to learn classifier parameters, but it’s not deep learning
- Different classifiers learn and classify in different ways, a popular choice has been Support Vector Machines (SVM)
- SVMs attempt find hyperplanes in the high dimensional feature space to separate features from different classes

Left from: https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_feature2d/py_sift_intro/py_sift_intro.html
Right from: https://docs.opencv.org/2.4/doc/tutorials/ml/introduction_to_svm/introduction_to_svm.html
Image Classification: A Fundamental Computer Vision Problem

- Process the image into a lower dimensional space more useful for classification
- Features hand-crafted (designed) by researchers
- Used for picking up image properties such as edges or patterns
- Some features: SIFT, HOG, LBP, MSER, Color-SIFT, …

- Classifier uses image features to decide a label
- Utilises machine learning to learn classifier parameters, but it’s not deep learning
- Different classifiers learn and classify in different ways, a popular choice has been Support Vector Machines (SVM)
- SVMs attempt find hyperplanes in the high dimensional feature space to separate features from different classes

This worked okay, but it wasn’t very scalable, the hand-crafted features weren’t rich enough to handle many different object types and object appearance variations (pose, lighting, orientation, scene)

commercial-in-confidence
Image Classification: A Fundamental Computer Vision Problem

- Filters (that make features) are learnt by the computer so they are most useful for classification
- The classifier is in-built as part of the Convolutional Network architecture, no need for two separate stages
- Learnt end-to-end, the entire process from the input image to the label is learnt together, providing better relations between the features and the classifier
A Deeper Look at Convolutional Neural Networks: Structure

- Built of many layers that process image from pixels to label in a hierarchical and sequential manner
- What makes it deep learning is the sequential layer operations to learn different data representations based on previous layers
- So many parameters to learn, need lots of data, and lots of compute power, this is a key reason for its rise now

Diagram adapted from: https://www.clarifai.com/technology

Cat (0.15)
Bird (0.02)
Car (0.01)
Dog (0.82)
A Deeper Look at Convolutional Neural Networks: Operations

2D Convolution Operation

| 1 1 1 0 0 |
| 0 1 1 1 0 |
| 0 0 1 1 1 |
| 0 0 1 1 0 |
| 0 1 1 0 0 |

Filter / Weights

| 1 0 1 |
| 0 1 0 |
| 0 0 1 1 1 |
| 0 0 1 1 0 |
| 1 0 1 |

Image / Representation

Convolved Feature

2D Max Pooling Operation

Single depth slice

| 1 1 2 4 |
| 5 6 7 8 |
| 3 2 1 0 |
| 1 2 3 4 |

max pool with 2x2 filters and stride 2

| 6 8 |
| 3 4 |
A Deeper Look at Convolutional Neural Networks: Features

- Learns hierarchical features

Images: Matthew D Zeiler, Rob Fergus, "Visualizing and Understanding Convolutional Networks"
These models have huge numbers of parameters that need to be tuned, all of the convolutional filters, and all of the connections between the fully connected layers.

Training all of these parameters is done by using a method called backpropagation with gradient descent.

Pre-labelled images are fed to the network and predicted on, at the end of the network it’s calculated how ‘wrong’ the network was using a loss function.

This amount of error is then back-propagated backwards through the network, slightly changing all the filter weights to be more correct for that example.

So over time we minimise the loss function across a large dataset of labelled examples.

Training needs many examples (thousands or even better millions) and takes a long time (days or even weeks) with heavy usage of GPU resources.
So how Good are they at Classification?

ILSVRC Top 5 Error on ImageNet

- CV
- Deep Learning
- Human

Top-5 Error Rate (%)

- 2010
- 2011
- 2012
- 2013
- 2014
- Human
- 2015
- 2016

Image adapted from: https://www.dsiac.org/resources/journals/dsiac/winter-2017-volume-4-number-1/real-time-situ-intelligent-video-analytics
Deep Learning Applications

Presented by Adrian Johnston
Object Detection

- Rather than just classifying the images as “Car” or “Road” we can train the Neural Network to predict bounding boxes for the objects of interest
- State of the Art: Faster-RCNN, SSD, YOLO9000

Image: https://shaoanlu.wordpress.com/2017/05/07/vehicle-detection-using-ssd-on-floydbucket-udacity-self-driving-car-nano-degree/
We can also perform semantic segmentation:

- Train the network to classify each pixel in the image to separate sections into semantic classes e.g. Road, Car, Sky, Person.

- Instance Segmentation: Classify pixels to specific instances of a Category rather than just the semantic category
- One way is to combine Object Detection with Semantic Segmentation: Mask R-CNN
Figure 1. The **Mask R-CNN** framework for instance segmentation.
We don't always want to classify things.

Depth Regression: Predict the depth (continuous) per pixel in the image.

Supervised:
- Capture ground truth depth from sensors:
 - Microsoft Kinect
 - Lidar
 - Stereo/Multi camera rig
- Train the network to minimize the distance between the predicted depth and the ground truth depth from the sensor data.

Unsupervised using geometry:
- Train the network to predict the depth given a video or stereo image with known or predicted camera pose.
- Difficult, but can be trained without ground truth depth.
Simple Self Driving Car in GTA V

Imitation Learning on Real Data

Image: https://github.com/commaai/research/blob/master/images/selfsteer.gif
Generative Adversarial Network (GAN)

Generator Network

1: Real Image
0: Fake Image

Discriminator Network
Conditional GAN

1: Real Image
0: Fake Image

Generator Network

Discriminator Network

Synthesized image

Input labels

commercial-in-confidence
Conditional GAN

commercial-in-confidence
So is Computer Vision a solved problem?
Is Computer Vision a solved problem?

- No! Lots of challenges still remain:
 - High Level Reasoning
 - E.g. Understanding how other drivers behave on the road
 - Interpretability
 - How do we interpret the decisions made by a AI system?
 - Useful after an accident
 - Uncertainty estimation
 - Teaching our models to “understand what they don’t know”
Other Challenges

● Data
 ○ These models are data hungry
 ■ Need thousands of examples
 ○ We have lots of data, but it still is not enough in lots of domains
 ○ Improved algorithms that can learn from smaller amounts of data

● Compute Resources
 ○ These models use immense amounts of computer resources
 ■ Graphics Processing Units (GPU’s)

● Others
Thanks for Listening!