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Abstract

The Neoproterozoic global reorganisation that saw the demise of Rodinia and the amalgamation of Gondwana took place

during an incredibly dynamic period of Earth evolution. To better understand the palaeogeography of these times, and hence

help quantify the interrelations between tectonics and other Earth systems, we here integrate Neoproterozoic palaeomagnetic

solutions from the various blocks that made up eastern Gondwana, with the large amount of recent geological data available

from the orogenic belts that formed as eastern Gondwana amalgamated. From this study, we have: (1) identified large regions of

pre-Neoproterozoic crust within late Neoproterozoic/Cambrian orogenic belts that significantly modify the geometry and

number of continental blocks present in the Neoproterozoic world; (2) suggested that one of these blocks, Azania, which

consists of Archaean and Palaeoproterozoic crust within the East African Orogen of Madagascar, Somalia, Ethiopia and Arabia,

collided with the Congo/Tanzania/Bangweulu Block at ~650–630 Ma to form the East African Orogeny; (3) postulated that

India did not amalgamate with any of the Gondwana blocks until the latest Neoproterozoic/Cambrian forming the Kuunga

Orogeny between it and Australia/Mawson and coeval orogenesis between India and the previously amalgamated Congo/

Tanzania/Bangweulu–Azania Block (we suggest the name dMalagasy OrogenyT for this event); and, (4) produced a

palaeomagnetically and geologically permissive model for Neoproterozoic palaeogeography between 750 and 530 Ma, from the

detritus of Rodinia to an amalgamated Gondwana.

D 2005 Elsevier B.V. All rights reserved.
1. Introduction

The amalgamation of Gondwana took place during

one of the most dynamic periods known in the
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evolution of the climate (Hoffman et al., 1998; Evans,

2000), of life (Valentine, 2002), and possibly also the

deep Earth (Kirschvink et al., 1997; Evans, 1998).

The probability that these events are linked (e.g.

Brasier and Lindsay, 2001) and a growing realisation

that many of these systems are, in part, controlled by

the distribution of continents, mountain ranges and
1 (2005) 229–270
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oceanic basins has created a need for a better

understanding of the geography of the Neoproterozoic

world. Associated with this is the importance of

Neoproterozoic tectonics on the location and timing of

successor Phanerozoic orogenic belts (Boger and

Miller, 2004; Cawood, 2005); the present distribution

of tectonic belts being largely controlled by past plate

configurations.

Eastern Gondwana makes up much of the con-

tinents of Australia, India and East Antarctica (Fig. 1).

During the Neoproterozoic, these continents came
Fig. 1. Geological outcrop map of south, central and northeast Africa, India

Wolmarans, 1999) rotated into the Gondwana fit of Reeves and De Wit (20

those younger than 1000 Ma shown as light grey. Outlines of the Neoprote

6 are marked in purple. Block abbreviations: A-A=Afif–Abas Terrane; Az

Vijayan Peninsula; R Plata=Rio de la Plata Block; Ruker=Ruker Terrane

WA=West African Block. Orogenic belt and location abbreviations: A

Feliciano=Dom Feliciano Belt; Cam=Cameroon; L=Leeuwin Complex; M

Complex; Of=Officer Basin, Sey=Seychelles.
together with the constituent continental blocks that

now make up Africa and South America, to form the

supercontinent Gondwana (or Gondwanaland, Du

Toit, 1937). In this study, we integrate palaeogeo-

graphic data, in the form of palaeomagnetic solutions,

with geological information from the collision zones

that separate the various continental blocks to better

delineate the various component continents, constrain

the time of amalgamation throughout the system, and

generate a permissive tectonic model for the evolution

and progressive growth of eastern Gondwana.
, East Antarctica and Australia (based on the data sets of IGCP 288,

00). Precambrian outcrops older than 1000 Ma shown as dark grey,

rozoic continental blocks discussed in this paper and used in Figs. 2–

=Azania; Congo=Congo/Tanzania/Bangweulu Block; L-V=Lurio–

, Southern Prince Charles Mountains; S Fran=Sâo Francisco Block;

lb-Fr=Albany–Fraser Orogen; ANS=Arabian–Nubian Shield; D

=Mulingarra Complex; MB=Mozambique Belt; N=Northampton
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2. Previous models of eastern Gondwanan

amalgamation

Early plate-tectonic Proterozoic palaeogeographic

models interpreted the limited palaeomagnetic data as

supporting the presence of a single super-continent

throughout the Proterozoic (Piper, 1976) that was later

called Palaeopangea (Piper, 1982, 2000). McWilliams

(1981) challenged this view and suggested that the

data were more consistent with two Neoproterozoic

continental masses, East Gondwana (India–Australia–

Antarctica) and West Gondwana (Africa–South Amer-

ica) that collided along the Mozambique Belt to form

Gondwana (Fig. 1). In this model, Neoproterozoic

India was intimately associated with Australia and

Antarctica and any Neoproterozoic orogenesis

between them was seen as intra-cratonic (e.g. Harris,

1994; Wilde, 1999).

The suggestion that both East and West Gondwana

did not exist as Neoproterozoic supercontinents in

their own right, but that the constituents of eastern and

western Gondwana came together during the Neo-

proterozoic is a recent development driven initially by

palaeomagnetic considerations (Meert et al., 1995),

and more recently supported by reinterpretations of

the geological data. In the case of East Gondwana,

Fitzsimons (2000a,b) showed that the Rayner Com-

plex of East Antarctica and the Eastern Ghats of India

preserved a considerably different history to the

Albany-Fraser Orogen of Western Australia. The

two orogens had formerly been correlated as part of

the Late Mesoproterozoic/Early Neoproterozoic Cir-

cum-East Antarctic Orogen (Katz, 1989; Hoffman,

1991; Moores, 1991; Yoshida, 1995), but are sepa-

rated by the Pinjarra Orogen (Prydz–Denman–Darling

orogen of Fitzsimons, 2000b; Prydz–Leeuwin Belt of

Veevers, 2000, 2004) (Fig. 1) that would bisect a

coherent East Gondwana. The idea that this orogen

was an intra-continental Neoproterozoic orogen (Har-

ris and Beeson, 1993; Harris, 1994) was challenged

by Hensen and Zhou (1997), who pointed out that

metamorphism in the Antarctic extension of the

Pinjarra Orogen was similar to that from collisional

orogens (Fitzsimons, 1996; Carson et al., 1997; Boger

et al., 2000). Fitzsimons (2000b) linked this with the

change in age provinces across the orogen to suggest

that the Pinjarra Orogen, and its Antarctic continu-

ation, represents the Neoproterozoic collision zone
between India and Australia. Palaeomagnetic data

from India and the Seychelles support this geological

interpretation (Torsvik et al., 2001a,b) as they suggest

that India and Australia travelled separately during the

Neoproterozoic (Powell and Pisarevsky, 2002; Pisar-

evsky et al., 2003).

A similar situation occurs along the Zambezi Belt,

separating the Kalahari and Congo/Tanzania/Bang-

weulu Blocks (Fig. 1). Here the Choma–Kalomo Block

south of the Zambezi Belt has long been thought of as a

southern extension of the Mesoproterozoic Irumide

Belt (Hanson et al., 1994; Wilson et al., 1997). If this

correlation holds, it follows that the Kalahari and

Congo/Tanzania/Bangweulu Blocks must have been

together since Mesoproterozoic times and that Neo-

proterozoic deformation in the Zambezi Belt must only

represent intra-continental orogenesis. However,

recent U–Pb ion probe dating has shown that the

correlation of the Irumide Belt and Choma–Kalomo

Block is not valid (De Waele et al., 2003c). Eclogites,

arc-volcanics and ophiolites from the Zambezi Belt

demonstrate that Mesoproterozoic to Neoproterozoic

oceanic-crust existed between the Congo/Tanzania/

Bangweulu and Kalahari Blocks (Oliver et al., 1998;

Johnson and Oliver, 2000, 2004; John et al., 2003).

Closure of this ocean (the Chewore Ocean of Oliver et

al., 1998) and collision of Kalahari and Congo/

Tanzania/Bangweulu has been interpreted to correlate

with 560–510 Ma (Vinyu et al., 1999; Hargrove et al.,

2003; John et al., 2003; Johnson and Oliver, 2004)

tectonism and high-pressure metamorphism (Johnson

and Oliver, 1998, 2002; John et al., 2003), which is

similar to the time of metamorphism in the adjacent

Mozambique Belt of Malawi (Kröner et al., 2001; Ring

et al., 2002). Further west, peak-metamorphism in the

Damara Belt is dated to 535–505Ma (Jung et al., 2000;

Goscombe et al., 2004) and is also correlated with

incorporation of Kalahari into Gondwana. Foreland

basins on the western Kalahari and the Congo/

Tanzania/Bangweulu margins preserve distinct records

of the timing of basin formation (Prave, 1996). The

foreland basin on thewest Congo/Tanzania/Bangweulu

Block margin developed at 750–600 Ma, whereas that

on the western Kalahari margin was delayed until ~550

Ma (Prave, 1996). These observations suggest dia-

chronous orogenesis along southwestern African and

support the idea of the Neoproterozoic Kalahari Block

being separate from the Congo/Tanzania/Bangweulu
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Block and amalgamating with a nascent western

Gondwana significantly later than the Congo/Tanza-

nia/Bangweulu–Amazonia collision (Prave, 1996).
3. Palaeomagnetic evidence

Reliable palaeomagnetic information exists for

India, Australia, and the Congo in the 750–530 Ma

interval (Figs. 2–6, Table 1). According to these data,
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the Seychelles palaeopole, determined from granites

precisely dated at 755–748 Ma, overlaps the Malani

palaeopole (Torsvik et al., 2001a). The Mbozi Com-
0

27090

o

oo

723

723

783

779 748-755

751-771
755 755

180
o

les

 poles

an poles

Bra
zil

ian
o

Pacific

A
da

m
as

to
r

WA Am
az

on

RP

La
ur

tal plates delineated from map, pale yellow=hypothesized extend of

Block; Az=Azania; Congo=Congo/Tanzania/Bangweulu Block;

o Francisco; WA=West Africa. Adola, Adamastor, Braziliano,

is presented with relevant palaeomagnetic solutions rotated into

rotation parameters. (For interpretation of the references to colour in

.)



630 Ma

614 630-730

600-620600-620

600-620
600-620

620-630

0
o

270
o

180
o

90
o

Bra
zil

ian
o

Mozambique

A
da

m
as

to
r

Az

Congo

SF

Sah

WA

Am
az

on

RP

La
ur

India
Kal

A
us-M

aw

= Schematic continental collision

Fig. 3. Palaeogeographic reconstruction at 630 Ma—key and abbreviations the same as for Fig. 2, except: Sah=Sahara Metacraton.

A.S. Collins, S.A. Pisarevsky / Earth-Science Reviews 71 (2005) 229–270 233
plex palaeopole in the Congo (Meert et al., 1995) has

a less well determined age of 755F25 Ma (Evans,

2000, recalculated age).

India and the Congo also have palaeopoles at ~800

Ma. In India, the Harohalli dykes give a palaeopole

with an imprecise age of 814F34 Ma (Radhakrishna

and Mathew, 1996). In the Congo, Meert et al. (1995)

determined a palaeopole from the Gagwe lavas,

whose age has recently been reassessed as 795F7

Ma (Deblond et al., 2001). This time frame is beyond

the scope of this study, but, importantly, these data

suggest a relatively quick, but consistent movement of

India from the polar to mid- or low-latitude position

between ~800 and 750 Ma. The Congo craton

probably remained near equator during the same time

interval, but rotated at about 908.
There are no reliable late Neoproterozoic palae-

omagnetic poles from the Congo or Kalahari

Blocks. The post-orogenic Sinyai dolerite intrudes

the East African orogen and provides a pole for this

part of proto-Gondwana (Meert and Van der Voo,

1996). In India, the age of the palaeomagnetic poles

from the Bhander and Rewa Series is only broadly

determined to be latest Precambrian or Early

Cambrian (McElhinny et al., 1978; Evans, 2000).

Recently, Chirananda De (2003) reported the dis-

covery of medusoid fossils of Ediacaran affinity at

the base of Bhander Group, apparently below the

sampling strata of McElhinny et al. (1978). If so,

the time range for the Bhander pole might be

narrowed. In this study we made a conservative

assumption of 530–560 Ma.
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In Australia, palaeomagnetic information from a

stratigraphic drill hole in the Neoproterozoic Officer

basin shows that Australia probably inhabited low

latitudes since ~820 Ma (Pisarevsky et al., 2001b).

From ~650 Ma to 550 Ma there is a swathe of

palaeopoles, but age constraints on individual palaeo-

poles are generally poor. Nevertheless, the swathe

forms a consistent pattern that places Australia in low

latitudes throughout this time (Figs. 2–6), with the

southern margin being near the equator by 600 Ma

(Schmidt et al., 1991; Schmidt and Williams, 1995;

Sohl et al., 1999).

The Laurentian palaeomagnetic data for ~750–600

Ma are sparse (Table 1). This ~150 my time interval is

palaeomagnetically unconstrained. In our reconstruc-

tions we conservatively presumed a minimal drift of

Laurentia between ~720 and 615 Ma (Fig. 3). In

contrast, the latest Neoproterozoic–Early Cambrian
palaeomagnetic results from Laurentia display a

complicated picture. On one hand, two reliable poles

from the Callander Complex (Symons and Chiasson,

1991) and the Catoctin Volcanics, component A

(Meert et al., 1994), indicate a high-latitude position

of Laurentia at 580–560 Ma. On the other hand, at

least two other equally reliable palaeomagnetic results

for the same time span from the Sept Iles intrusion

(Tanczyk et al., 1987; Higgins and van Breemen,

1998) and the Catoctin Volcanics, component B

(Meert et al., 1994) are in favour of the near-equatorial

position. The result of Tanczyk et al. (1987) is

confirmed by an independent study of Kirschvink et

al. (2003). Other results for the time interval around

570–560 Ma (Table 1) are less reliable. Correspond-

ingly, two alternative palaeogeographic models have

been proposed (Pisarevsky et al., 2000, 2001a; Meert

and Van der Voo, 2001; McCausland et al., 2003). We



570 Ma - low latitude Laurentia
560-530

560-530

610-590

600-520

565

600-540

0
o

270
o

90
o

A
da

m
as

to
r

Mozambique

Az

Congo

SFSah

WA

RP

India

Chewore

Kal

Aus-M
aw

Fig. 5. Palaeogeographic reconstruction at 570 Ma with Laurentia in a low-latitudinal position—key and abbreviations the same as for Figs. 2–4.

A.S. Collins, S.A. Pisarevsky / Earth-Science Reviews 71 (2005) 229–270 235
follow these and here produce two alternative

reconstructions for 570 Ma (Figs. 4 and 5).
4. Components of the Circum-Indian Orogens (the

East African Orogen and the Pinjarra Orogen)

4.1. Indian Block

In this contribution cratonic India (including the

Dharwar, Bastar or Bhandara, Singhbhum and Bun-

delkhand cratons of India, the Antongil Block of east

Madagascar, and the Napier and Rayner Provinces of

East Antarctica) (Figs. 1, 7–9) is considered to have

amalgamated before the middle Neoproterozoic. This

amalgamation largely took place along the Central

India Tectonic Zone and the Eastern Ghats Orogen
(Fig. 7). The Central Indian Tectonic Zone formed

during the collision of a combined Dharwar/Bastar/

Singhbhum Craton (much of present east India) and

the Bundelkhand Craton (now in northwest India).

The major collision here is thought to have occurred at

~1500 Ma (Yedekar et al., 1990; Roy and Prasad,

2003), although significant crustal shortening is also

reported at ~1100 Ma (Roy and Prasad, 2003).

Similarly, the southern Eastern Ghats Orogen (the

Krishna Province of Dobmeier and Raith, 2003)

records crustal thickening and associated deformation

and metamorphism in the late Palaeoproterozoic/early

Mesoproterozoic (1650–1550 Ma) (Mezger and

Cosca, 1999; Rickers et al., 2001; Dobmeier and

Raith, 2003) that was likely to be the result of a

collision with the Napier Complex of East Antarctica,

which also records an ~1.6 Ga tectonothermal event
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(Grew et al., 2001; Dobmeier and Raith, 2003; Owada

et al., 2003). The Eastern Ghats Province of Dobmeier

and Raith (2003) covers the more northerly outcrop of

the Eastern Ghats Orogen (Fig. 7) and records

pervasive high-grade metamorphism and deformation

at 985–950 Ma (Shaw et al., 1997; Mezger and Cosca,

1999; Crowe et al., 2003; Dobmeier and Raith, 2003).

The Rayner Complex of Eastern Antarctica (stretching

south to the northern Prince Charles Mountains) (Fig.

8) records a very similar metamorphic history to that

of the Eastern Ghats Province with coeval granulite-

facies metamorphism, deformation and charnockite

emplacement at 1020–900 Ma (Black et al., 1987;
Young and Black, 1991; Beliatsky et al., 1994; Kinny

et al., 1997; Shiraishi et al., 1997; Boger et al., 2000).

The cause of this latest Mesoproterozoic/early Neo-

proterozoic orogenesis is unknown, but has been

suggested to be due to collision between proto-India

(including the Napier and Rayner Provinces) and the

Archaean Ruker Terrane of the southern Prince

Charles Mountains (Harley, 2003) (Fig. 8), which

may in turn be part of a larger continental mass hidden

beneath the Antarctic ice cap. This is disputed by

Boger et al. (2001) who interpreted the boundary

between the Ruker Terrane and the northern Prince

Charles Mountains as a Neoproterozoic suture,



Table 1

Neoproterozoic palaeomagnetic poles from Laurentian and Gondwanan blocks

Object Age

(Ma)

Pole A95

(8)
Q Reference

(8N) (8E)

India

Bhander and Rewa Series 530–560 47 213 6 5 McElhinny et al., 1978

Mahe dykes, Seychellesa 748–755 80 79 11 4 Torsvik et al., 2001b

Malani Igneous Suite 751–771 68 88 8 6 Torsvik et al., 2001a

Australia

Antrim Plateau Volcanics 520–570 9 160 17 4 McElhinny and Luck, 1970

Hawker Group 530–545 21 195 9 5 Klootwijk, 1980

Todd River Dolomite 530–545 43 160 6 7 Kirschvink, 1978

Upper Arumbera Sandstone 530–560 47 153 3 7 Kirschvink, 1978

Albany Belt Dykes 520–600 38 167 12 4 Harris and Li, 1995

Brachina Fm., SA 590–610 33 148 16 6 McWilliams and McElhinny, 1980

Elatina Fm., SA 600–620 51 157 2 5 Embleton and Williams, 1986

Elatina Fm., SA 600–620 54 147 1 6 Schmidt et al., 1991

Elatina Fm., SA 600–620 52 167 11 7 Schmidt and Williams, 1995

Elatina Fm., SA 600–620 39 186 9 7 Sohl et al., 1999

Yaltipena Fm., SA 620–630 44 173 8 7 Sohl et al., 1999

Angepena Fm., SA 630–730 33 164 12 3 McWilliams and McElhinny, 1980

Merinjina Tillite, SA 650–750 45 166 8 5 McWilliams and McElhinny, 1980

Lower Arumbera and

Upper Pertatataka Fms., NT

650–750 44 162 10 6 Kirschvink, 1978

Mundine Well dykes 755F3 45 135 4 6 Wingate and Giddings, 2000

Congo

Mbozi Complex, Tanzania 755F25 46 325 9 6 Meert et al., 1995; Evans, 2000.

Laurentia

Mean Early Cambrian pole 520–545 4 155 10 McElhinny and McFadden, 2000

Skinner Cove Formation 550F3 15 157 9 5 McCausland and Hodych, 1998

Sept Iles Intrusion 565F4 20 141 7 5 Tanczyk et al., 1987; Higgins and van

Breemen, 1998

Catoctin Volcanics A 564F9 �43 128 9 5 Meert et al., 1994; Aleinikoff et al., 1995

Catoctin Volcanics B 564F9 �4 193 10 4 Meert et al., 1994; Aleinikoff et al., 1995

Johnnie Formation 570F10 �10 162 7 4 Van Alstine and Gillett, 1979; Hodych

et al., 2004

Buckingham lavas 573F32 �10 161 8 4 Dankers and Lapointe, 1981

Callander Complex 575F5 �46 121 6 6 Symons and Chiasson, 1990

Long Range Dykes 614+6/�4 �11 164 22 5 Murthy et al., 1992; Kamo and Gower,

1994

Franklin dykes 723+4/�2 5 163 5 6 Heaman et al., 1992; Park, 1994

Natkusiak Formation 723+4/�2 6 159 6 6 Palmer et al., 1983; Heaman et al., 1992.

Tsezotene sills and dykes 779F2 2 138 5 5 Park et al., 1989; LeCheminant and

Heaman, 1994

Wyoming dykes 782F8 13 131 4 5 Harlan et al., 1997

785F8

Gondwana

Mean 540–560 Ma 540–560 10 150 7 McElhinny et al., 2003

Mean Early Cambrian pole 525–540 �23 154 15 McElhinny et al., 2003

750–530 Ma palaeomagnetic poles.

Quality factor (after Van der Voo, 1990).
a Rotated to India 288 counterclockwise around the pole of 25.88N, 3308E (Torsvik et al., 2001b).

A.S. Collins, S.A. Pisarevsky / Earth-Science Reviews 71 (2005) 229–270 237



Table 2

Euler rotation parameters used in Figs 2–6

Craton/block/terrane Age

(Ma)

Pole Angle

(8)(8N) (8E)

Laurentia to absolute framework 750 19.63 �138.02 �95.39

630 16.50 �128.69 �105.72

(high-latitude model) 570 �3.22 �139.32 �135.13

(low-latitude model) 570 7.08 �132.72 �74.53

530 12.91 �127.76 �97.60

Greenland to Laurentia 750–530 70.40 �94.10 �18.00

Amazonia to Laurentia 750–630 11.97 �47.01 �110.65

(high-latitude model) 570 11.97 �47.01 �110.65

(low-latitude model) 570 10.78 �46.52 �109.64

530 0.73 �42.46 �102.55

West Africa to Amazonia 750–530 53.00 �35.00 �51.00

Florida to Amazonia 750–530 53.34 44.15 30.54

Yucatan to Amazonia 750–530 2.18 �78.62 �90.37

Baltica to Laurentia 750–630 75.83 �94.18 �59.46

Rio de La Plata to Laurentia 750 10.39 �46.48 �94.42

630 10.72 �46.82 �99.43

(high-latitude model) 570 10.15 �49.66 �107.87

(low-latitude model) 570 8.89 �49.18 �106.95

530 0.73 �42.46 �102.55

Pampean to Laurentia 750 11.32 �44.86 �95.76

630 11.05 �46.18 �99.97

(high-latitude model) 570 10.22 �49.50 �107.99

(low-latitude model) 570 8.97 �49.01 �107.08

530 0.73 �42.46 �102.55

Rockall to Laurentia 750–530 75.33 159.57 �23.47

Oaxaquia to Amazonia 750–630 12.10 81.72 53.39

570 11.57 71.46 54.88

530 9.88 74.53 55.86

Chortis to Amazonia 750–570 5.73 �78.50 139.74

530 3.64 �79.73 143.56

Australia to absolute framework 750 52.42 77.28 75.83

630 50.30 98.64 83.02

570 44.86 108.52 85.15

530 35.23 124.11 85.47

Mawson to Australia 750–530 1.29 37.71 30.31

Kalahari to absolute framework 750 61.96 66.31 142.58

630 53.29 82.06 139.00

(high-latitude model) 570 36.16 106.64 145.81

(low-latitude model) 570 37.53 109.38 145.26

530 32.29 125.87 140.06

Dronning Maud Land to Kalahari 750–530 9.67 148.78 �56.28

India to absolute framework 750 73.35 42.17 63.76

630 69.34 128.79 78.39

(high-latitude model) 570 62.73 142.12 91.01

(low-latitude model) 570 62.23 149.22 89.51

530 50.99 165.23 126.19

Rayner to India 750–530 4.85 �163.36 �93.16

Congo to absolute framework 750 10.53 82.03 140.09

630 18.61 113.89 146.41

(high-latitude model) 570 51.22 124.60 134.63

(low-latitude model) 570 19.37 133.95 144.06

530 32.29 125.87 140.06
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Table 2 (continued)

Craton/block/terrane Age (Ma) Pole Angle (8)

(8N) (8E)

São Francisco to Congo 750–530 53.00 �35.00 51.00

Azania to Congo 750 28.76 1.16 7.35

630–570 3.02 125.5 0.07

530 2.79 �140.58 �8.35

Afif–Abas to Congo 750 9.02 �175.29 �3.68

630–530 55.21 �3.58 �5.21
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thereby suggesting that Neoproterozoic India did not

include the Ruker Terrane. If the latter interpretation is

correct, Neoproterozoic orogenesis migrates south

from the latest Mesoproterozoic/early Neoproterozoic

Rayner Complex to Neoproterozoic/Early Palaeozoic

metamorphism and deformation in the Prince Charles

Mountains (Fitzsimons, 2000a,b; Boger et al., 2001).

Late Neoproterozoic/Palaeozoic deformation in the

Eastern Ghats and Rayner Complex themselves are

concentrated along discrete shear zones (Clarke, 1988;

Crowe et al., 2001) and did not pervasively affect the

orogen (Dobmeier and Raith, 2003).

The northeastern extent of Neoproterozoic India is

again poorly constrained. Late Neoproterozoic defor-

mation reworks pre-existing structures in the north-

eastern Eastern Ghats Orogen (Crowe et al., 2001),

but no new crust or pervasive deformation is reported.

Rb–Sr whole rock and mineral isochrons from calc-

alkaline granitoids and pegmatites in Assam and

Meghalaya (Fig. 7) yield imprecise Neoproterozoic

ages (van Breeman et al., 1989; Ghosh et al., 1991;

Panneer Selvan et al., 1995). These rocks intrude

Palaeo-Mesoproterozoic gneisses (Ghosh et al., 1994)

and may have intruded in an active continental margin

setting, near the boundary of Neoproterozoic India.

Thrust slices of Neoproterozoic India lie within the

Himalaya, where both Palaeoproterozoic and Neo-

proterozoic granitoids and metabasalts have been

reported (Le Fort et al., 1986; Miller et al., 2000;

Singh et al., 2002).

Early Neoproterozoic granitoids and rhyolites in

the northwest of India (Aravalli–Delhi Belt) may

represent the early stages of an early–mid Neo-

proterozoic arc (Deb et al., 2001; Pandit et al.,

2003) that later migrated oceanward to include the

mid-Neoproterozoic (~750 Ma) granitoids of the

Seychelles (Tucker et al., 2001; Ashwal et al., 2002)

and the Bemarivo Belt of northernmost Madagascar
(Fig. 9) (Tucker et al., 1999a; Collins and Windley,

2002).

4.1.1. Vestfold Hills

The Vestfold Hills region of Princess Elizabeth

Land in East Antarctica (Fig. 8) consists largely of

2520–2480 Ma orthogneisses (Black et al., 1991;

Snape et al., 1997) that experienced granulite-facies

metamorphism prior to 2470 Ma (Snape et al.,

1997) and were subsequently intruded by a series of

dykes and larger igneous bodies throughout the

Palaeoproterozoic and Mesoproterozoic (Lanyon et

al., 1993). Palaeoproterozoic monazite cooling ages

(Kinny et al., unpublished data, referred to in

Harley, 2003) demonstrate that this region was not

pervasively affected by the high-temperature Neo-

proterozoic tectono-thermal events that characterise

much of this part of East Antarctica. In this

contribution we include the Vestfold Hills with

India. However, we realise that it is just as likely

that this region formed a separate Neoproterozoic

continent of unknown extent or palaeogeographic

location.

4.2. Congo/Tanzania/Bangweulu Block

The Congo/Tanzania/Bangweulu Block (Fig. 10)

(Johnson et al., in press) includes the Congo–Angola–

Kasai Craton, the Tanzania Craton and the Bangweulu

Block. The Tanzania and Congo–Angola–Kasai Cra-

tons are juxtaposed along the Mesoproterozoic

Kibaran Belt (Rumvegeri, 1991; Kokonyangi et al.,

2001), whereas the Bangweulu Block accreted to the

Tanzania Craton along the ~2.1–1.9 Ga Ubendian/

Usagaran Orogen (Lenoir et al., 1994b; Möller et al.,

1995; Collins et al., 2004).

The Bangweulu Block is enigmatic with little

occurrence of pre-2.1 Ga rocks, suggesting that much
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of the dblockT may consist of a Palaeoproterozoic

accretionary complex. Recent reports of a 2738F4

Ma granite (De Waele et al., 2003a) and early

Palaeoproterozoic TDM ages from ~2.0–1.8 Ga

granites (De Waele et al., 2003b) do, however, suggest

older continental rocks are involved. Neoproterozoic

deformation reactivated the boundary between the

Tanzania Craton and Bangweulu Block, but is

restricted to localised shear zone movement (Lenoir
et al., 1994b; Theunissen et al., 1996). Therefore, in

this contribution we consider the Congo/Tanzania/

Bangweulu Block to be one continental block

throughout the Neoproterozoic (Figs. 2–6).

4.3. Australia/Mawson Block

The Australia/Mawson Block includes cratonic

Australia and corollaries in Antarctica (Figs. 1 and
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8). It was assembled in the Palaeoproterozoic and

Mesoproterozoic along a series of orogens that crop

out in central and west Australia and along the Wilkes

Land coast of East Antarctica (Fanning et al., 1995;

Myers et al., 1996; Fitzsimons, 2003b; Giles et al.,

2004). The extent of the Mawson Craton under the

Antarctic ice cap is unknown. In this contribution we

follow Fitzsimons (2003b) by considering that coastal

exposures of Archaean and Palaeoproterozoic rocks in

Terre Adélie and King George V Land (Oliver et al.,

1983; Monnier et al., 1996; Oliver and Fanning, 1999;

Peucat et al., 1999; Fitzsimons, 2003b), Archaean

rocks metamorphosed in the ~1.7 Ga Nimrod

Orogeny in the Miller Range, within the Trans-

antarctic mountains (Fig. 8) (Borg et al., 1990;

Goodge and Fanning, 1999; Goodge et al., 2001)

and Archaean–Palaeoproterozoic rocks reworked in

the Albany–Fraser Orogen in the Bunger Hills and
Windmill Islands (Sheraton et al., 1992, 1993; Post et

al., 1997) to be the only exposures of the Antarctic

part of the Neoproterozoic Mawson Craton. In this

scenario, the western margin of the Mawson Craton

stretches directly south from the Denman–Glacier/

Bunger Hills region through the sub-glacial Lake

Vostok, intersecting the Transantarctic mountains in

the Horlick–Pensacola Mountains region (Fitzsimons,

2003a). Aeromagnetic and gravity data from the Lake

Vostok region supports this interpretation by suggest-

ing that a crustal boundary exists in the region that is

the result of thrust sheet emplacement on a pre-

existing passive margin (Studinger et al., 2003).

An alternative outline of the Neoproterozoic

Mawson Craton include a continent encompassing

most of East Antarctica, limited in the west by a

Neoproterozoic orogen cutting west through the

Prince Charles Mountains and joining the East
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African Orogen in Dronning Maud Land (Boger et al.,

2001; Boger and Miller, 2004), thereby including the

Archaean rocks of the Ruker Terrane of the Southern

Prince Charles Mountains (Fig. 1) (Kovach and
Belyatsky, 1991; Boger et al., 2001) and probably

the Palaeoproterozoic–Mesoproterozoic rocks in the

Read Complex of the Shackleton Range (Talarico and

Kroner, 1999) in the Mawson Craton (Goodge et al.,

2001; Boger and Miller, 2004). In this contribution we

consider these regions separate continental blocks (see

below).

A considerably smaller Mawson Craton was

postulated by Giles et al. (2004) in their Mesoproter-

ozoic reconstruction of Australia and Laurentia. Their

model can be related to the dimensions of the

Neoproterozoic Mawson Craton used in this study if

extensive continental material was accreted to the

west side of an Archaean/Palaeoproterozoic nucleus

in late Mesoproterozoic times. Support for this

Mesoproterozoic increase in the size of the Mawson

Craton lies in the Mesoproterozoic orogenesis in the

Bunger Hills (Sheraton et al., 1992) and Windmill

Islands (Post et al., 1997) and the change in basement

Nd age provinces along the Shackleton Range (Borg

and DePaolo, 1994).

4.4. Kalahari Block—the Lurio–Vijayan peninsula

In north Mozambique, the east-directed Lurio Belt

(Fig. 9) thrusts ~615 Ma granulites over a 1000–1200

Ma foreland region (Sacchi et al., 1984; Costa et al.,

1992; Kröner et al., 1997) that preserves no evidence

of high-grade metamorphism in Neoproterozoic times

(Kröner et al., 1997). The thrust base of the Lurio Belt

contains siliceous metasedimentary rocks and basic

and ultrabasic rocks that have been interpreted as

fragments of an ophiolite (Sacchi et al., 1984).

A similar relationship with Neoproterozoic gran-

ulites thrust over a 1000–1200 Ma unit is found in

southeastern Sri Lanka where the Highland and Wanni

Complexes are thrust east over the Vijayan Complex

(Fig. 7) (Kriegsman, 1995). Because of their prox-

imity in the tight-fit reconstruction of Lawver et al.

(1998), Collins and Windley (2002) linked the

Vijayan Complex of Sri Lanka and the Lurio foreland

to form a poorly known Mesoproterozoic tectonic

block caught up in the East African Orogen, which

they called they Lurio–Vijayan Block. Manhica et al.

(2001) found no evidence for suture zone rocks

separating rocks of central Mozambique and Natal

from the Kalahari Block, which would suggest that,

rather than being a separate Neoproterozoic continen-
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tal terrane, the Lurio–Vijayan Block formed a

peninsula of the Kalahari Block (Fig. 1) thermally

reworked to amphibolite-facies conditions in Neo-

proterozoic/Cambrian times.

The Lurio–Vijayan peninsula is progressively

metamorphosed to higher grades to the south and

stretches into central Dronning Maud Land (Fig. 8)

where similar ~1170–1060 Ma rocks are pervasively

reworked by 620–510 Ma magmatism, high-grade

metamorphism and deformation (Moyes et al., 1993;

Grantham et al., 1995; Jacobs et al., 1996, 1998,

2003a,b; Bauer et al., 2003; Paulsson and Austrheim,

2003; Ravikant et al., 2004). Jacobs et al. (1998)

suggested that the similarity in ages between the

Mozambiqe Belt and Dronning Maud Land was
enough to extend the East African Orogen to form

an extended East African–Antarctic Orogen.

4.5. Azania—the central East African Orogen Block

Collins and Windley (2002) summarised geochro-

nological data from central Madagascar, southern and

northern Somalia and east Ethiopia and identified an

extensive ribbon of Archaean and Palaeoproterozoic

crust that was thermally and structurally reworked in

the Neoproterozoic/Cambrian East African Orogeny

(Fig. 1). The Neoarchaean Al-Mafid Block of Yemen

is likely to form the Arabian continuation of this

extensive continental unit (Fig. 9) (Windley et al.,

1996; Whitehouse et al., 1998; Collins and Windley,
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2002), but a continuation into Saudi Arabia is masked

by the scarcity of modern geochronological data and

limited outcrop (Johnson and Woldehaimanot, 2003).

This terrane may also pass south into the Madurai

Block of southern India (Fig. 7) where ~2500 Ma

igneous protoliths occur reworked in the Neoproter-

ozoic/Cambrian (Collins and Santosh, 2004; Ghosh et

al., 2004).

This continental block, here called Azania after

the classical name for the East African coast,

predominantly consists of 2.90–2.45 Ga rocks

(Küster et al., 1990; Lenoir et al., 1994a; Paquette

and Nédélec, 1998; Teklay et al., 1998; Kröner et

al., 1999, 2000; Collins et al., 2001; Whitehouse et

al., 2001). Palaeoproterozoic–Mesoproterozoic zir-

cons, interpreted as xenocrysts, in gneisses from the

Qabri Bahar Complex of northern Somalia (Kröner

and Sassi, 1996) and eastern Ethiopia (Teklay et al.,

1998; Yibas et al., 2002) suggest age heterogeneity

in this pre-Neoproterozoic continental block. In

Madagascar, a metasedimentary sequence (the

Itremo Group) unconformably overlies orthogneisses

(Cox et al., 1998) that elsewhere have been dated as

late Archaean (Tucker et al., 1999b). The Itremo

Group is inferred to have been deposited between

~1700 and 1500 Ma based on zircon and monazite

age profiles, stromatolite characteristics and carbon

isotope data (Cox et al., 1998, 2004; Fernandez et

al., 2003). Elsewhere in Azania, the Mora Complex

of northeast Somalia consists of marbles, quartzites

and amphibolites and is interleaved with orthog-

neisses of the Qabri Bahar Complex (Kröner and

Sassi, 1996). Xenocrysts from leucosomes devel-

oped in the Mora metasedimentary rocks yielded
207Pb/206Pb evaporation ages of 1405F5 Ma and

1422F22 Ma (Kröner and Sassi, 1996) suggesting

that these rocks were deposited after this date and

before 842F4 Ma, the interpreted lower constraint

on high-grade metamorphism (Kröner and Sassi,

1996). Mid-Neoproterozoic (740–820 Ma) intrusions

occur throughout Azania that are commonly

reworked by subsequent deformation and metamor-

phism (Kröner and Sassi, 1996; Handke et al., 1999;

Tucker et al., 1999b; Kröner et al., 2000; White-

house et al., 2001; Yibas et al., 2002). In central

Madagascar and southeast Ethiopia, these mid-Neo-

proterozoic rocks preserve geochemical evidence of

having been intruded above a subduction zone
(Handke et al., 1997; Brewer et al., 2001; Yibas

et al., 2003).

Both the east and west margins of Azania are

marked by Neoproterozoic sedimentary sequences

and rocks consistent with having formed in an oceanic

environment. To the east of central Malagasy Azania,

~800–550 Ma metasedimentary rocks occur with

podiform peridotites and gabbros in the Betsimisaraka

Suture (Fig. 9) (Collins et al., 2003c). Further north, in

northern Somalia, the Maydh (or Mait) Complex (Fig.

9) marks the eastern margin of Azania and consists of

Neoproterozoic pillow lavas, microgabbros and

greenschist-facies metasedimentary rocks (Utke et

al., 1990). The western margin of Azania is marked

in Madagascar by highly strained metasedimentary

rocks of the Molo Group that are considered to be

deposited between ~620 and 560 Ma (Cox et al.,

2004). In southern Ethiopia, quartzofeldspathic

gneisses, marbles and sillimanite–kyanite schists

may correlate with lower-grade clastic metasedimen-

tary rocks in Kenya that were deposited between 1200

and 800 Ma (Mosley, 1993; Yibas et al., 2002).

Neoproterozoic ophiolites and juvenile volcanic rocks

are found in a broad, southern tapering band

throughout eastern Tanzania, Kenya, Ethiopia, Eritrea,

Sudan, east Egypt and the Arabian peninsula (Vearn-

combe, 1983; Shackleton, 1986; Beraki et al., 1989;

Mosley, 1993; Sassi et al., 1993; Stern, 1994, 2002;

Maboko, 1995; Teklay et al., 1998; Yibas et al., 2002,

2003; Johnson and Woldehaimanot, 2003; Kröner et

al., 2003b).

The Itremo and the Molo Groups have zircon age

spectra consistent with being derived from Azania and

East Africa (Cox et al., 2004) and contrast with

Neoproterozoic metasedimentary rocks in eastern

Madagascar that are consistent with being derived

from the Dharwar Craton of southern India, suggest-

ing that the Betsimisaraka Suture marks the site of a

significant strand of the Mozambique ocean (Collins

et al., 2003c).

The detrital zircon record of the Itremo Group

metasedimentary rocks suggest that Azania (or at least

the central Malagasy part of it) was adjacent to the

Congo/Tanzania/Bangweulu Block in the late Palae-

oproterozoic/early Mesoproterozoic (Cox et al.,

2004).

A poorly dated phase of deformation occurred in

central Madagascar, between ~1700–1550 Ma and
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~800 Ma, and created ~20 km amplitude recumbent

folds in the Itremo Group (Collins et al., 2003b). This

may be the result of a lateral continuation of the

~1020 Ma (De Waele et al., 2003c) Irumide Orogen,

or active margin deformation in the ~800–750 Ma

Andean-style continental arc that developed in the

region.

Azania separated from the Congo/Tanzania/Bang-

weulu Block sometime after deposition of the Itremo

Group, possibly due to roll-back of the Mozambique

Ocean slab under central Madagascar from a sub-

duction zone marked by the eastern Malagasy

Betsimisaraka Suture (Collins et al., 2000, 2003c;

Collins and Windley, 2002). In this model, the basin

between Azania and the Congo/Tanzania/Bangweulu

Block would have initiated as a back-arc basin that

developed within and behind the ~800–750 Ma

continental arc developed on Azania.

4.6. Afif–Abas Block

The Afif–Abas Block (Fig. 1) here consists of the

Khida subterrane, part of the Afif Terrane of Saudi

Arabia (Johnson and Kattan, 2001; Johnson and

Woldehaimanot, 2003), and the Abas Terrane of

Yemen (Fig. 9) (Windley et al., 1996; Whitehouse et

al., 1998, 2001). Correlation between the basement

terranes of Yemen and Saudi Arabia is controversial

due to regions of non-exposure, the presence of

terrane-cutting strike-slip faults and the paucity of

geochronological data (Windley et al., 1996; White-

house et al., 1998, 2001; Johnson and Kattan, 2001;

Johnson and Woldehaimanot, 2003). In this contribu-

tion we link the Afif and Abas Terranes because they

both contain rocks with Palaeoproterozoic Nd model

ages (Windley et al., 1996; Whitehouse et al., 2001),

they have similar Pb-isotope values (Whitehouse et

al., 2001), their along-strike offset is consistent with

offset along the sinistral Ruwah fault zone (Johnson

and Kattan, 2001), and both terranes preserve

evidence for ~800–750 Ma metamorphism and

magmatism (Whitehouse et al., 1998; Johnson and

Woldehaimanot, 2003). The Afif–Abas Block is

separated from the Al-Mafid Block (northern compo-

nent of Azania) in the Yemen by the Al-Bayda terrane

that is interpreted as a Neoproterozoic arc (Windley et

al., 1996). Nd isotope data, however, do suggest that

Neoproterozoic intrusions in the Al-Bayda Terrane
have sampled older material at depth (Whitehouse et

al., 2001), presenting the possibility that Azania and

the Afif–Abas Block may have been linked in the

Neoproterozoic.

Neoproterozoic crust also exists beneath Phaner-

ozoic rocks in central and eastern Arabia (Johnson and

Woldehaimanot, 2003). Granitoids cropping out in

Oman have 1000–750 Ma crystallisation ages (Gass et

al., 1990), but it is unsure whether these are juvenile

Neoproterozoic rocks, or whether they intrude older

Proterozoic basement.

4.7. Saharan Block(s)

Pre-Neoproterozoic rocks have been reported

throughout the central Saharan region from the river

Nile in the east to the Tuareg Shield in the west

(summarised in Abdelsalam et al., 2002). Collectively

this region has been called the Saharan Metacraton

(Fig. 1) (Abdelsalam et al., 2002), although the lack of

exposure and geological data make it hard to

determine whether the region was a single Neo-

proterozoic continental block, or several terranes. At

its western margin, in the Tuareg Shield, a number of

pre-Neoproterozoic terranes have been identified,

separated by juvenile Neoproterozoic crust (Black et

al., 1994; Caby, 2003; Liégeois et al., 2003).

4.8. Other pre-Neoproterozoic continental crust in the

Circum-Indian Orogens

4.8.1. Northampton, Leeuwin and Mullingara Blocks,

Western Australia

The three inliers of the Pinjarra Orogen along the

Western Australian coast (Fig. 1) all preserve rocks

with Mesoproterozoic or older ages.

Both the Northampton and Mullingarra Blocks

preserve Mesoproterozoic metasedimentary rocks that

were metamorphosed to amphibolite and granulite

facies during latest Mesoproterozoic times (Bruguier

et al., 1999; Cobb et al., 2001). The Mullingarra

Block preserves an unmetamorphosed Palaeoproter-

ozoic (2181F10 Ma) monzogranite (Cobb et al.,

2001) whilst 1068F13 Ma post-tectonic granites and

~990 Ma pegmatites cut the Northampton Block

(Bruguier et al., 1999). Recent interpretations have

suggested that both the Mullingara and Northampton

Blocks were formed elsewhere and transported to
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their present locations during the Neoproterozoic

(discussed more fully in Fitzsimons, 2003b).

Unlike the more northern blocks, the Leeuwin

Block was thoroughly metamorphosed and deformed

during latest Neoproterozoic/Cambrian times (Myers,

1990; Wilde and Murphy, 1990; Wilde, 1999; Collins,

2003). Protolith ages range between 1200 and 500 Ma

with U–Pb age maxima at ~1100 and 691 Ma

(Collins, 2003). The Mesoproterozoic ages are

restricted to the central Leeuwin Block (Nelson,

1998; Janssen et al., 2003), which may represent a

separate terrane within the gneiss complex (Janssen et

al., 2003).

4.8.2. East Prydz Bay, East Antarctica

Pre-Neoproterozoic protoliths have been found in

the Rauer Island Group directly south of the Vestfold

Hills, and from Sbstrene Island in southern Prydz Bay

(Fig. 8) (Hensen and Zhou, 1995). No evidence for

pre-Neoproterozoic protoliths have yet been found in

the ~150 km of scattered outcrops along the coast of

eastern Prydz Bay between these two localities (see

recent reviews of Hensen and Zhou, 1997; Fitzsi-

mons, 2000b; Harley, 2003; Zhao et al., 2003).

Two distinct pre-Neoproterozoic rock packages

have been identified in the Rauer Islands of eastern

Prydz Bay (Kinny et al., 1993) (Fig. 8). The oldest

rock package consists of 3300–2800 Ma tonalitic

orthogneisses, layered igneous complexes and para-

gneisses that include marbles, pelites and quartzites

(Harley, 2003). These are interleaved with 1060–1000

Ma felsic and mafic orthogneisses and Mesoproter-

ozoic supracrustal rocks. These rocks have very

different ages to the Vestfold Hills Block (see above),

which has led to the identification of a discrete Rauer

Terrane (Kinny et al., 1993; Harley and Fitzsimons,

1995; Hensen and Zhou, 1997). Controversy exists

over whether the components of the Rauer Terrane

amalgamated with each other and the Vestfold Hills

Block at ~1000 Ma, or whether their juxtaposition

occurred during the latest Neoproterozoic/Cambrian

(Kinny et al., 1993; Harley and Fitzsimons, 1995;

Hensen and Zhou, 1997; Harley et al., 1998). In the

former case an amalgamated Vestfold Hills/Rauer

Terrane would have existed before the Neoproterozoic

events discussed in this paper. However, the observa-

tion that only some units of the Rauer Terrane

preserve evidence for ~1000 Ma metamorphism,
whilst the whole terrane is affected by 550–500 Ma

isotopic disturbance suggests that a latest Neoproter-

ozoic/Cambrian amalgamation is more likely (Harley

and Fitzsimons, 1995) and that two discrete terranes

existed in the Neoproterozoic.

Further south in Prydz Bay, evidence of pre-600

Ma deformation and metamorphism are restricted to

Sbstrene Island where Sm–Nd garnet-whole rock

isochrons from mafic granulites that suggest high-

grade metamorphism at ~990 Ma (Hensen and Zhou,

1995) and 960–920 Ma zircons from orthogneisses

have been interpreted as protolith ages (Zhao et al.,

1995). These rocks have been metamorphosed in the

late Neoproterozoic/Cambrian (Hensen and Zhou,

1995) and are likely to represent a relatively small

exotic block within the Neoproterozoic Prydz Belt.

4.8.3. Queen Mary’s Land, East Antarctica

Enigmatic Archaean tonalitic orthogneisses from

~50 km west of the Denman Glacier (Fig. 8) have

zircon populations at 3003F8 Ma and 2889F9 Ma

that have been interpreted as emplacement and

metamorphic ages respectively (Black et al., 1992).

The tectonic position of these rocks is unknown, but

lower intercept ages of 630–510 Ma and the lack of

evidence for Mesoproterozoic tectonism led Fitzsi-

mons (2000b) to suggest that they were juxtaposed

with rocks east of the Denman and Scott Glaciers

during Neoproterozoic deformation and lie close to

the east margin of the Pinjarra Orogen.

4.8.4. Southern India

India south of the Palghat–Cauvery Shear Zone

system (here including the numerous shear zone

strands identified between Bhavani and Palani, Fig.

7, Chetty et al., 2003) is commonly divided into two

crustal domains, the Madurai and Trivandrum Blocks,

with the latter also known as the Kerala Khondalite

Belt (Harris et al., 1994; Braun and Kriegsman, 2003).

These two domains are separated by the Achankovil

Shear Zone, an enigmatic structure with a controver-

sial kinematic evolution and tectonic significance

(Radhakrishna et al., 1990; Sacks et al., 1997, 1998;

Rajesh et al., 1998).

Recently, Ghosh et al. (2004) proposed an isotopic

boundary, separating Archaean rocks from Protero-

zoic rocks, that runs northeast–southwest through the

towns of Karur, Kabam, Painavu and Trichur (and
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therefore called the KKPT shear zone) in the central

Madurai Block. These authors suggest that this

boundary is the southern margin of the Dharwar

Craton (see also Bhaskar Rao et al., 2003). However,

considerable isotopic, lithological, seismic and struc-

tural evidence suggests that the Palghat–Cauvery

Shear Zone system juxtaposes terranes of different

ages and tectonothermal histories (Chetty, 1996;

Harris et al., 1996; Bartlett et al., 1998; Raith et al.,

1999; Meißner et al., 2002; Chetty et al., 2003; Reddy

et al., 2003). U–Pb and 207Pb/206Pb zircon ages of

2100–2500 Ma (Jayananda et al., 1995; Bartlett et al.,

1998; Ghosh, 1999) from the region between the

Palghat–Cauvery Shear Zone system and the KKPT

are very similar to the Nd model ages from this area

(Harris et al., 1994; Jayananda et al., 1995; Bartlett et

al., 1998; Bhaskar Rao et al., 2003) suggesting that

this region represents a juvenile ~2.5 Ga crustal unit

(Bartlett et al., 1998), isolated from both the Dharwar

Craton and the Proterozoic terranes south of the

KKPT. This history is similar to that of Malagasy

Azania and we propose that this Archaean part of the

Madurai Block is a southern extension of Azania,

translated east by the Malagasy Ranotsara shear zone

(Fig. 1).

Metasedimentary rocks dominate south of the

KKPT. However, Palaeoproterozoic 207Pb–206Pb zir-

con evaporation, electron-probe U–Pb monazite and

zircon ages and Nd model ages have been used to

suggest a Palaeoproterozoic phase of crustal growth

and high-grade metamorphism (Harris et al., 1994;

Bartlett et al., 1998; Braun et al., 1998; Braun and

Kriegsman, 2003; Santosh et al., 2003). Most of the

electron-probe analyses have been from monazite

cores of metasedimentary rocks that are probably

detrital grains. The Nd model ages provide an average

crustal residence age of the source regions of the

sedimentary protolith and the uncertainty in concord-

ance inherent in the zircon evaporation technique

means that the resultant age only reflects a minimum

age. To date the evidence of Palaeoproterozoic high-

grade metamorphism south of the KKPT is equivocal.

Recent U–Pb Secondary Ion Mass Spectroscopy

(SIMS) analyses on metasedimentary rocks in the

Trivandrum and Madurai Blocks show that many of

the detrital zircons originate from Late Archaean,

Palaeoproterozoic and Mesoproterozoic sources with

peaks at ~2700, 2260, 2105, 2000, 1855 and 1435 Ma
(Collins and Santosh, 2004). Concordant Neoproter-

ozoic grains show that at least some of these rocks

were deposited in Neoproterozoic times (Collins and

Santosh, 2004). Further U–Pb ion-probe work is

needed to clarify the thermo-tectonic record of this

region.

4.8.5. Ruker Terrane, Southern Prince Charles

Mountains, East Antarctica

The Southern Prince Charles Mountains (Fig. 8)

contain orthogneisses, whose protoliths crystallised at

~3150 Ma and contain xenocrysts that reach back to

3386F6 Ma (Boger et al., 2001; Mikhalsky et al.,

2001). These rocks were deformed before being

intruded by an undeformed ~2645 Ma pegmatite

(Boger et al., 2001) and are overlain by metasedi-

mentary rocks of unknown age (Mikhalsky et al.,

2001; Fitzsimons, 2003b). The southern extent of the

terrane is also unknown and covered by ice. The

northern boundary is marked by the Neoproterozoic

Lambert Terrane and interpreted as a Neoproterozoic–

Cambrian suture (Boger et al., 2001).
5. The timing of Neoproterozoic metamorphism

and deformation in the Circum-Indian Orogens

In the following sections we discuss the timing of

terrane amalgamation and Neoproterozoic metamor-

phism in the orogens that surround India (directions

refer to relative positions in Gondwana) associated

with the amalgamation of eastern Gondwana.

Throughout, we have separated orogen (geographic

extent) from orogeny (a specific mountain building

event) as has been adopted in other deformed and

metamorphosed regions (e.g. the Capricorn Orogen of

Australia, Cawood and Tyler, 2004).

5.1. Neoproterozoic orogens west of India (the East

African Orogen)

5.1.1. Arabian/Nubian Shield

The Arabian/Nubian Shield (Fig. 9) largely con-

sists of intra-oceanic arc terranes that began to collide

with each other at ~780–760 Ma (Johnson and

Woldehaimanot, 2003). By ~650 Ma a number of

these arc terranes had collided with the pre-Neo-

proterozoic Afif Terrane of Saudi Arabia along the
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Hulayfah-Ad Dafinah-Ruwah Suture (Johnson and

Woldehaimanot, 2003). The Afif Terrane probably

also sutured with the Al-Rayn Terrane further east by

650 Ma (Stacey et al., 1984; Johnson and Woldehai-

manot, 2003). 40Ar–39Ar hornblende ages of 614F11

Ma from the Al-Bayda Terrane in Yemen also suggest

terrane amalgamation between the pre-Neoproterozoic

Afif and Al-Mahfid Terranes was complete before this

time (Whitehouse et al., 1998). Final amalgamation

between the various components of the Arabian/

Nubian Shield appears to have occurred along the

Keraf Suture of the Sudan (Fig. 9) (Abdelsalam et al.,

1998), which was active until ~600 Ma (Abdelsalam

et al., 1998, 2003; Johnson and Woldehaimanot,

2003) (Fig. 11).

5.1.2. East Africa

The timing of peak metamorphism in Ethiopia and

Somalia is incompletely known, largely due to the

inaccessibility of much of the region. However, recent

studies in southern Ethiopia are beginning to fill this

gap. Yibas et al. (2002) reported a number of

tectonothermal events in southern Ethiopia throughout

the Neoproterozoic and related them to subduction/

accretion processes. The youngest is associated with

granulite-facies metamorphism and post-dates a 540–

520 Ma granite (Genzebu et al., 1994) and has been

interpreted as being related to the amalgamation of

Gondwana (Yibas et al., 2002). Yihunie (2002)

suggested that peak metamorphism was associated

with crustal shortening in the Kenticha sequence of

southern Ethiopia and pre-dated a 554F23 Ma

granite. East of this region, In the poorly exposed

and inaccessible Buur region of southern Somalia

(Fig. 9), upper amphibolite–granulite facies meta-

morphism is dated between ~600 and 530 Ma (Küster

et al., 1990; Lenoir et al., 1994a). Further north, in

northern Somalia, post-kinematic granitoids are dated

at ~630 Ma (Küster et al., 1990; Lenoir et al., 1994a).

Metamorphic isotopic-resetting is reported throughout

northern Somalia between 600 and 520 Ma (Sassi et

al., 1993).

High-grade metamorphism in Tanzania is well

dated between ~655 and 610 Ma (Coolen et al.,

1982; Muhongo and Lenoir, 1994; Maboko and

Nakamura, 1995; Möller et al., 1997, 2000; Muhongo

et al., 2001; Kröner et al., 2003b; Sommer et al.,

2003) and may correlate with similar age meta-
morphism in northern Mozambique (Kröner et al.,

1997) and southern Kenya (Meert and Van der Voo,

1996). Both anti-clockwise (Appel et al., 1998) and

clockwise (Sommer et al., 2003) P/T paths have been

described from these rocks. Möller et al. (2000)

showed that the Tanzanian granulites cooled slowly

(2–5 8C/Ma) over b100 my, which supported the

interpretation of Appel et al. (1998) that the meta-

morphism occurred at an active continental margin.

Whatever the origin, the timing of high-grade meta-

morphism in eastern Tanzania is considerably older

than that from more eastern components of the East

African Orogen (see below).

5.1.3. Madagascar

Large 560F7 Ma zircon rims developed in

quartzites from west-central Madagascar are inter-

preted to reflect the timing of high-grade metamor-

phism and related high-strain deformation in this

region (Cox et al., 2001, 2004). These ages are ~80

Ma younger than the age of syn-metamorphic zircon

in eastern Tanzania and indicate an eastward younging

in high-grade metamorphism through the East African

Orogen. A zircon rim with a U/Pb age of 518F9 Ma

(Collins et al., 2003c) and identical SIMS U/Pb

monazite ages (517F1 Ma, Fitzsimons et al.,

2004b) in ~800–550 Ma kyanite schists from the

Betsimisaraka Suture suggest high-grade metamor-

phism in eastern Madagascar was ~40 my younger

than that in western Madagascar.

Peak metamorphism in southern Madagascar is

associated with large sheath folds and ductile thrusts

(De Wit et al., 2001) and reached high-pressure/high-

temperature conditions of 7–12 kbar and 750–940 8C
(Ackermand et al., 1989; Nicollet, 1990; Markl et al.,

2000) followed by a phase of medium pressure/

medium temperature metamorphism at 3–5 kbar and

650–730 8C (Markl et al., 2000). Zircons and

monazites from southern Madagascar indicate that

metamorphism occurred between 647 and 520 Ma

(Paquette et al., 1994; Kröner et al., 1996, 1999;

Ashwal et al., 1999; De Wit et al., 2001). De Wit et al.

(2001) proposed that the high-pressure metamorphism

occurred at 647–627 Ma and was followed by an

extended period of medium-pressure granulite-facies

conditions that lasted until ~520 Ma (see also Ashwal

et al., 1999). Without U–Pb microprobe analyses of

key grains, this suggested elevated thermal environ-
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ment remains a hypothesis that is indistinguishable

from a more punctuated thermal history.

5.2. Neoproterozoic orogens east of India (Fig. 11)

5.2.1. Western Australia (Pinjarra Orogen)

Late Neoproterozoic granulite-facies metamor-

phism in Leeuwin Complex of south Western Aus-

tralia (Fig. 1) was originally dated at ~615 Ma

(Nelson, 1995, 1996). Collins (2003) pointed out a

number of problems with this age interpretation and

instead presented chemical and isotopic evidence to

suggest that the zircon rim age of 522F5 Ma was a

better estimate of this high-grade metamorphism.

5.2.2. East Antarctica (Denman Glacier, Prydz Bay

regions)

East Antarctic rocks deformed and metamor-

phosed in the Neoproterozoic Pinjarra Orogen [as

defined by Fitzsimons (2003b) and synonymous with

the Prydz–Denman–Darling Orogen of Fitzsimons

(2000a) and the Prydz–Leeuwin belt of Veevers

(2000)] occur west of the Denman Glacier in Queen

Mary Land, south and east of the Vestfold Hills in

Prydz Bay, in the Lambert Glacier region of the

Prince Charles Mountains and in the Grove Moun-

tains of Princess Elizabeth Land (Fig. 8).

Rocks that crop out in the southern Prydz Bay

region preserve evidence for compressional deforma-

tion, peak metamorphism and partial melting at

conditions of 800–860 8C and 5.5–7 kbars (Stuwe

and Powell, 1989; Fitzsimons and Harley, 1992;

Fitzsimons, 1996; Carson et al., 1997) at ~535–525

Ma (Zhao et al., 1992, 2003; Hensen and Zhou, 1995;

Carson et al., 1996; Fitzsimons et al., 1997). The

Grove Mountains, over 200 km east, preserve rocks

that experienced a similar history with near peak

metamorphic conditions of 850 8C and ~6 kbar (Liu

et al., 2003) associated with zircon rims that yielded

U–Pb ages of 529F14 Ma (Zhao et al., 2003). Further

north, in the Rauer Terrane, an Archaean layered

metaigneous complex preserves evidence for U–Pb

zircon resetting and new zircon growth at 519F8 Ma

(Harley et al., 1998). This widespread orogenic event

that involved significant crustal thickening has been

interpreted as a result of collision at a convergent plate

boundary (Fitzsimons, 1996; Carson et al., 1997;

Zhao et al., 2003). Zhao (2003) has suggested, based
on immobile trace element compositions (Yu et al.,

2002), that mafic and ultra-mafic lenses in the Grove

Mountains (and by implication, southern Prydz Bay)

represent the metamorphosed accreted remains of

mid-ocean-ridge basalt and ocean–island basalt

caught up in an oceanic accretionary system.

5.2.3. Eastern India (Assam, Meghalaya and the

northern Eastern Ghats Orogen)

Neoproterozoic deformation, metamorphism and

magmatism has been identified in two main regions of

east India: 1) northeast India (Assam and the

Meghalaya Plateau); and, 2) the northern Eastern

Ghats, where it is related to shear zone development

(Fig. 7).

Neoproterozoic granitoids intrude poorly dated

schists in the basement exposed in far north-east

India. These rocks are only dated by Rb–Sr methods,

which yielded ages between 900 and 450 Ma (van

Breeman et al., 1989; Ghosh et al., 1991, 1994). The

age of the deformation and metamorphism in the

country rocks is not known.

Mid- to Late-Neoproterozoic metamorphism, mag-

matism and deformation in the Eastern Ghats Orogen

occurs in the Rengali and northern Eastern Ghats

Provinces of Dobmeier and Raith (2003). Anortho-

sites and granitoids were emplaced in the Chilka Lake

Domain between 795 and 740 Ma (Krause et al.,

2001; Dobmeier and Simmat, 2002). This eastern

domain was then metamorphosed to granulite-facies

conditions between 690 and 660 Ma (Dobmeier and

Simmat, 2002). Neoproterozoic deformation and

metamorphism along the northern margin of the

Eastern Ghats (the Rengali and northern Eastern

Ghats Provinces) is associated with shear zone re-

activation and occurred at ~550–500 Ma (Mezger and

Cosca, 1999; Crowe et al., 2001; Dobmeier and Raith,

2003).

5.3. Neoproterozoic orogens south of India (Fig. 11)

5.3.1. Southern India

Both the Madurai and Trivandrum Blocks (Fig. 7)

have been metamorphosed to granulite facies with

ultra-high temperature assemblages of 900–1000 8C
preserved in the Madurai Block (Brown and Raith,

1996; Raith et al., 1997; Satish-Kumar, 2000;

Tsunogae and Santosh, 2003). Sm–Nd mineral iso-
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chrons (Santosh et al., 1992), garnet-whole rock ages

(Choudhary et al., 1992), U–Pb electron-probe mon-

azite ages (Braun et al., 1998; Santosh et al., 2003),

and 207Pb/206Pb single zircon evaporation ages

(Bartlett et al., 1998) from charnockites, garnet–

biotite gneisses and garnet–sillimanite gneisses in

the Trivandrum Block indicate high-grade metamor-

phism at 580–510 Ma. High-grade metamorphism in

the Madurai Block also spans the Neoproterozoic/

Cambrian boundary with garnet-whole rock ages

indicating near-peak metamorphism at 553F15 Ma

from the central Madurai Block (Jayananda et al.,

1995) and between ~610 and 560 Ma from the

Palghat–Cauvery shear zone system (Meißner et al.,

2002). Madurai Block 207Pb/206Pb single zircon

evaporation ages of 547F17 Ma, were interpreted

as dating zircon rims (Bartlett et al., 1998), U–Pb

electron probe monazite ages span 480–580 Ma

(Santosh et al., 2003) and U–Pb SIMS and Thermal

Ionisation Mass Spectroscopy (TIMS) zircon and

monazite ages from syn-tectonic granites and meta-

morphic rims range from ~600–540 Ma (Ghosh et al.,

2004). SIMS U–Pb data from 15 zircon rims from a

quartzite at Ganguvarpatti in the central Madurai

Block yielded an age of 506.5F6.5 Ma that was

interpreted as dating high-grade metamorphism in this

rock (Collins and Santosh, 2004). These Middle

Cambrian ion-microprobe ages are some of the

youngest estimates of high-grade metamorphism in

the Circum-Indian Orogens and suggest that meta-

morphism here outlasted that of other parts of the

orogenic system.

5.3.2. Sri Lanka

Granulite-facies metamorphism in both the High-

land and Wanni Complexes (Fig. 7) is dated at ~610

to 550 Ma (Baur et al., 1991; Hölzl et al., 1994). The

Vijayan Complex was metamorphosed to amphibo-

lite-facies between ~591 and 456 Ma (Hölzl et al.,

1994; Kröner et al., 2003a).

Kröner et al. (2003a) proposed that Highland

Complex was a microcontinent that collided with

both the Wanni Complex and the Vijayan Complex

during the accretion of Gondwana. Following Collins

and Windley (2002), we suggest that the Vijayan

Complex correlates with the Lurio foreland in

Mozambique, and that together these formed the

easternmost part of a Neoproterozoic peninsula of
the Kalahari Block (the Lurio–Vijayan Peninsula—

see above). Therefore, in this model the Sri Lankan

basement consists of a series of exotic microconti-

nental blocks amalgamated in the late Neoproterozoic

on the northeast margin of Neoproterozoic Kalahari.

5.3.3. East Antarctica (Dronning Maud Land)

A southern continuation of the East African

Orogen into East Antarctica was proposed by Jacobs

et al. (1998) as the East African–Antarctic Orogen.

This was based on the recognition of high-grade Late

Neoproterozoic–Cambrian metamorphism and defor-

mation pervasively overprinting Late Mesoprotero-

zoic/Early Neoproterozoic rocks in Dronning Maud

Land (Moyes and Groenewald, 1996; Jacobs et al.,

1998; Bauer et al., 2003). Granulite-facies conditions

of ~6.8 kbar and 830 8C (Piazolo and Markl, 1999)

occurred at ~570–550 Ma (Jacobs et al., 1998, 2003a;

Bauer et al., 2003). This early collisional phase was

followed by granitoid magmatism and high-temper-

ature metamorphism at ~530–490 Ma (Jacobs et al.,

1998, 2003a; Paulsson and Austrheim, 2003) corre-

lated with extensional collapse and lateral extrusion of

the orogen (Jacobs et al., 2003c; Jacobs and Thomas,

2004).
6. Discussion

6.1. Integrating palaeomagnetic and geologic

databases

Palaeomagnetic determination combined with pre-

cise thermochronology is the only tool we have to

determine the absolute location of continental blocks

on the Neoproterozoic globe. However, the Neo-

proterozoic palaeomagnetic record is very poor from

many of the blocks that amalgamated to form

Gondwana. Consequently, geological techniques are

extremely valuable in helping resolve the many

palaeomagnetically permissive permutations. This

complementary approach has been used here to

construct a geologically and palaeomagnetically fea-

sible model for the amalgamation of India into

Gondwana.

Further tests can, and should, be applied; including

the location of climate specific lithologies (e.g.

carbonate build-ups and glacial deposits)—although,
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the postulated extreme fluctuations in Neoproterozoic

global climate need to be considered when doing this.

6.2. A note of caution on using isotopic ages of high-

grade metamorphism to infer tectonic processes

Isotopic ages date the time diffusion of parent–

daughter isotopes effectively ceased in a mineral

phase. This can be because of cooling of a mineral

through a characteristic closure temperature (different

for each mineral species and isotopic system), or

because of the growth of a mineral below its closure

temperature. The ages obtained do not directly date

any specific tectonic process. Because of this,

correlating isotopic ages of high-grade metamorphism

with collisional events is an inherently difficult

process. For example, in a case where an isotopic

age is a close approximation to the time of peak

metamorphism of a rock (as it is often assumed with

dmetamorphicT U–Pb zircon ages), metamorphism

will have occurred an unknown period of time after

the actual tectonic collision that caused it. To try and

avoid this problem, in this study we have concentrated

on linking available geochronological data with

lithological, sedimentological, geochemical and palae-

omagnetic data to develop a more holisitic tectonic

model.

6.3. 800 –700 Ma palaeogeography

Palaeomagnetic solutions for India, Congo/Tanza-

nia/Bangweulu and Australia between ~800 Ma and

~750 Ma (Table 1, Fig. 2) suggest that during this

time a high-latitude India (Torsvik et al., 2001b)

moved south towards the near-constant sub-equatorial

latitudes of Congo/Tanzania/Bangweulu and Australia

(Powell and Pisarevsky, 2002; Pisarevsky et al.,

2003). This model suggests that India was not a part

of Rodinia, which is consistent with it being

surrounded by late Neoproterozoic/Cambrian oro-

genic belts that formed during Gondwana amalgama-

tion. Li et al. (2004) challenged this model and

suggested that the apparent southward path of India

and rotation of Congo and South China were better

explained by inertial interchange true polar wander

(Kirschvink et al., 1997). We note that the geological

evidence is strongly in favour of India colliding with

the Australia/Mawson Block in latest Neoproterozoic/
Cambrian times, supporting the Neoproterozoic iso-

lation of India and, in our opinion, negating the need

for a non-uniformitarian explanation.

An 800–750 Ma high-latitude India with sub-

equatorial Australia/Mawson and Congo/Tanzania/

Bangweulu continents has considerable implications

for the palaeogeography of the Mozambique and

Mawson Oceans. The earlier Neoproterozoic recon-

structions (e.g. Dalziel, 1997) envisaged a broadly

orthogonal approach between East and West Gond-

wana, separated by a diminishing Mozambique

Ocean. The recognition that India was likely to have

been separated from Australia/Mawson in the Neo-

proterozoic led to the suggestion of a dMawson SeaT
separating the two components of eastern Gondwana

(Meert, 2003). In our reconstruction at ~750 Ma (Fig.

2), only one ocean separates the Congo/Tanzania/

Bangweulu and Australia/Mawson Blocks. An oce-

anographic separation between a dMozambique

oceanT and a dMawson SeaT only becomes meaningful

later in the Neoproterozoic as India moves south

relative to these continents.

Neoproterozoic dyke swarms in Western Australia

have been used to suggest that a continental block

rifted off Western Australia as Rodinia broke-up at

~750 Ma (Wingate and Giddings, 2000; Wingate and

Evans, 2003). Palaeomagnetically permissive possi-

bilities include Congo/Tanzania/Bangweulu, Kalahari

(Pisarevsky et al., 2003), South China (Li et al., 2004)

and the Tarim (from northern Western Australia, Chen

et al., 2004). Similar ages of metamorphism in

Dronning Maud Land (Jacobs et al., 1998) and the

Northampton Complex of west Western Australia

(Bruguier et al., 1999) have been used to support the

case for Kalahari against Western Australia in Rodinia

(Fitzsimons, 2002; Pisarevsky et al., 2003). We have

followed this, and note that the increased dimensions

of Kalahari with the Lurio–Vijayan peninsula are still

compatible with this fit (Fig. 2).

6.3.1. Eastern Africa–Western India

The central Malagasy Itremo Group (Fig. 9) is

interpreted as being sourced from the Congo/Tanza-

nia/Bangweulu Block (Cox et al., 2004; Fitzsimons et

al., 2004a) and was probably deposited at ~1700 Ma

(Cox et al., 2004). If correct, this places Azania

against East Africa at this time. Rifting between

Azania and the Congo/Tanzania/Bangweulu Block
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occurred sometime after deposition of the Itremo

Group, and may correlate with the ~870 Ma intrusion

of anorthosites (Tenczer et al., 2004) in east Tanzania

and deposition of rift-related sediments in Kenya at

~840–770 Ma (Key et al., 1989). This basin may have

been floored with oceanic crust (Frisch and Pohl,

1985; Berhe, 1990; Wallbrecher et al., 2004) and is

co-incident with juvenile 800–630 Ma granitoids

found along the eastern granulite belt of Tanzania

(Muhongo et al., 2001; Kröner et al., 2003b). These

magmatic and basin formation processes in East

Africa occurred at broadly the same time as 820–

740 Ma arc-related gabbros and granitoids intruded

Azania (Whitehouse et al., 1998; Handke et al., 1999;

Kröner et al., 2000; Brewer et al., 2001) that have

been related to subduction of the Mozambique Ocean

along the site of the Betsimisaraka Suture in east

Madagascar (Collins and Windley, 2002; Collins et

al., 2003c). We suggest that these processes are

linked, and that Azania rifted off East Africa because

of roll-back of the Mozambique Ocean slab from a

subduction zone located along the Betsimisaraka

Suture.

Subduction of the Mozambique Ocean also

occurred in this time frame along the west Indian

margin (Ashwal et al., 2002). Extrusion and emplace-

ment of the Malani Igneous Suite in NW India (Fig. 7)

occurred between ~770 and 730 Ma (Crawford and

Compston, 1970; Rathore et al., 1996; Torsvik et al.,

2001b) and was coeval with magmatism in the

Seychelles (Stephens et al., 1997; Tucker et al.,

2001) and both magmatism and volcanism in the

Bemarivo Belt of far north Madagascar (Tucker et al.,

1999a).

6.3.2. Eastern India–Western Australia/Mawson

Magmatism along the eastern margin of India was

restricted to the intrusion of anorthosites and gran-

itoids in the Chilka Lake Domain (Krause et al., 2001;

Dobmeier and Simmat, 2002) and granitoids in the

Meghalaya Plateau in far northeast India (Fig. 7) (van

Breeman et al., 1989; Ghosh et al., 1991, 1994). The

Meghalaya granitoids have calc-alkaline chemistries

(Ghosh et al., 1991) and may indicate that this region

was an active margin in mid-Neoproterozoic times.

Kalahari is interpreted to have rifted off Western

Australia at ~750 Ma, in the event that caused rift-

related (Wilde and Murphy, 1990; Wilde, 1999)
granitoid magmatism in the Leeuwin Complex (Nel-

son, 2002; Collins, 2003) and dyke swarms within

cratonic Western Australia (Wingate and Giddings,

2000).

6.4. 700 – 600 Ma palaeogeography

Australia and Laurentia both lay in tropical

latitudes during this time period (Table 1, Fig. 3),

but reliable palaeomagnetic constraints do not exist

for India, Kalahari or Congo/Tanzania/Bangweulu.

Therefore, geological constraints for this time range

are important in helping locate these continents.

Tectonothermal events are especially common around

the eastern, northern and western Congo/Tanzania/

Bangweulu at this time. The tectonic evolution of the

eastern margin of the Congo/Tanzania/Bangweulu

Block is described in the following section. The

western and northern margins are outside the main

remit of this paper, but because of their relevance to

the location of the Congo/Tanzania/Bangweulu Block

in this time period, a brief outline of the timing of

Neoproterozoic metamorphism and deformation is

discussed below.

Along the north of the Congo/Tanzania/Bangweulu

Block, peak Neoproterozoic metamorphic conditions

are reported to have occurred at ~630 Ma in Uganda

(Leggo, 1974; Appel et al., 2004), ~630 Ma in the

Oubanguides Belt of the Central African Republic

(Pin and Poidevin, 1987), and ~640–600 Ma in

Nigeria, the Cameroon and the Dahomeyide Belt

(Fig. 10) (Bernard-Griffiths et al., 1991; Dada, 1998;

Affaton et al., 2000; Ferré et al., 2002; Toteu et al.,

2004). In the Dahomeyide Belt, between the collage

of pre-Neoproterozoic terranes that make up Nigeria

(Dada, 1998) and the West African Craton, 40Ar–39Ar

hornblende ages of 590–580 Ma provide a young age

constraint on amalgamation of this part of Gondwana

(Attoh et al., 1997). The deformation and meta-

morphism along the northern Congo/Tanzania/Bang-

weulu Block is interpreted as dating the collision

between this block and the enigmatic Saharan

Metacraton (Abdelsalam et al., 2002), and, possibly,

a southern extension to the LATEA microcontinent

best exposed in the Hoggar and Aı̈r mountains (Fig.

10) (Liégeois et al., 2003).

The western Congo/Tanzania/Bangweulu Block is

thought to include the Sâo Francisco Craton of Brazil
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(Fig. 12) (Brito Neves and Cordani, 1991; Trompette,

1994). The Neoproterozoic Araçuaı́ Belt of Brazil and

the West-Congo Belt of central west Africa form a

large embayment into this combined continent, which

has been interpreted to represent thrusting of a

completely intra-continental basin (Trompette,

1994), or the closure of a restricted oceanic basin

(Pedrosa-Soares et al., 1992, 2001). The interpretation

of this belt is key to the location of the Congo/
Amazonia
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because the Sâo Francisco Craton collided with

Amazonia along the Brazı́lia and Araguaia Belts

(Fig. 12) at ~ 650–600 Ma (Pimentel et al., 1991,

2000; Moura and Gaudette, 1993; de Alvarenga et al.,

2000; Valeriano et al., 2004), thereby fixing the

location of the combined Congo/Tanzania/Bang-

weulu–Sâo Francisco continent with respect to the

combined Amazonia/Laurentia continent (Figs. 3–5).
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If the Sâo Francisco and the Congo/Tanzania/Bang-

weulu Block did not form the same continental mass,

then the position of the Congo/Tanzania/Bangweulu

Block is much more poorly constrained at this time.

6.4.1. Eastern Africa–Western India

High-grade ~655–610 Ma metamorphism in Tan-

zania, southern Madagascar and northern Mozambi-

que (Fig. 11) was coeval with final suturing in the

Arabian–Nubian Shield (Johnson and Woldehaima-

not, 2003). The relatively high pressures (10–14 kbar)

and high temperatures (800–850 8C) of peak meta-

morphic conditions (Appel et al., 1998; Sommer et al.,

2003) in the Tanzania granulites are consistent with

closure of a young, hot, marginal basin between the

Congo/Tanzania/Bangweulu Block and Azania (Fig.

3). The slow cooling rate (2–5 8C/Ma) (Möller et al.,

2000) suggests that post-orogenic collapse was not a

major factor in exhuming the Tanzanian part of the

orogen. In contrast, the chemistry and structural

setting of ~630 Ma alkaline magmatism in Azania

(central Madagascar) has been interpreted as indicat-

ing magmatism in an extensional post-collisional

setting (Nédélec et al., 1994, 1995; Paquette and

Nédélec, 1998). These tectonic models can be linked

by having post-collisional extension localised in the

east of the orogen due to renewed subduction and roll-

back along the site of the Betsimisaraka Suture.

The western Indian margin was stable during this

time period, with only limited magmatic activity being

reported from southern India (Ghosh et al., 2004;

Rajesh, 2004).

In the model presented here, Azania collides with

both the Congo/Tanzania/Bangewulu Block and the

Saharan Metacraton at approximately the same time as

the latter two cratons collided (see preceding section)

(Fig. 3). This model links the tectonic evolution of the

Tanzanian Mozambique Belt with the Arabian Nubian

Shield in a similar manner to the original model of the

East African Orogeny (Stern, 1994), and the more

recent model of Meert (2003). Our model differs from

these in that India has not collided with any African

cratons by 600 Ma, and open ocean existed east of

Azania until the latest Neoproterozoic (Figs. 3–5).

6.4.2. Eastern India–Western Australia/Mawson

Both the eastern Indian and Western Australian

margins are interpreted as open, oceanic margins at
this time (Fig. 3). Granitoid intrusion continued in the

Meghalaya plateau at this time (van Breeman et al.,

1989; Ghosh et al., 1991, 1994), suggesting a

continuation of subduction in this region. Further

south, granulite-facies metamorphism has been

reported in the Chila Lake Domain of the Eastern

Ghats, between 690 and 662 Ma, in a localised, intra-

plate setting (Dobmeier and Simmat, 2002).

On the Western Australian margin, ~615 Ma

metamorphism had been reported from the Leeuwin

Complex (Nelson, 1996). This was used by Powell

and Pisarevsky (2002) as evidence for the amalga-

mation of Australia and India at this time. However,

this timing for metamorphism and deformation was

challenged by Collins (2003) who showed that

metamorphism was ~80 Ma younger and occurred

in latest Neoproterozoic/Cambrian times.

6.5. 600 – 530 Ma palaeogeography

India collided obliquely with both Australia/

Mawson and the previously amalgamated Azania–

Congo/Tanzania/Bangweulu–Amazonia–Rio de la

Plata–West Africa continent at this time. In our

reconstruction (Figs. 4–6), we follow recent geo-

chronological work and interpret Kalahari to have

docked with both the Congo/Tanzania/Bangweulu

Block along the Zambezi (John et al., 2003;

Johnson and Oliver, 2004) and Damara Belts (Jung

et al., 2000; Jung and Mezger, 2003a,b), and the Rio

de la Plata Craton along the Gariep Belt (Fig. 1)

(Frimmel and Frank, 1998; Frimmel and Fölling,

2004) in latest Neoproterozoic/Cambrian times. This

late amalgamation of Kalahari into Gondwana is also

interpreted to have caused the latest Neoproterozoic to

Cambrian Rio Doce Orogeny (or Búzios Orogeny) in

the Ribeira Belt of southern Brazil (Fig. 12) (Campos

Neto and Figueiredo, 1995; Schmitt et al., 2004).

6.5.1. Indian margins

India collided with Azania–Congo/Tanzania/

Bangweulu along the Betsimisaraka Suture in the

Early Cambrian (Collins et al., 2003c), causing

widespread orogenesis in Azania. The suture was

interpreted by Collins and Windley (2002) to pass

north into the Horn of Africa where it outcrops in

northern Somalia as the Maydh (or Mait) Complex

(Sassi et al., 1993).
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Central Madagascar was thrust east over the

margin of India (represented there by the Antongil

Block) (Collins et al., 2003a) causing high-grade

metamorphism of the Neoproterozoic metasediments

caught in the Betsimisaraka Suture at ~520 Ma

(Collins et al., 2003c; Fitzsimons et al., 2004a).

Granulite-facies metamorphism also took place in

central and western Madagascar at ~560–550 Ma

(Kröner et al., 2000; Cox et al., 2004). In the latter

region metamorphism is associated with E-directed

thrusting of the 620–560 Ma Molo Group metasedi-

ments (Cox et al., 2004) that were deposited in an

intracontinental setting after the ~630 Ma amalgama-

tion of Azania with Congo/Tanzania/Bangweulu.

Ultra-high temperature metamorphism also peaked at

this time in southern India (Braun et al., 1998; Braun

and Bröcker, 2004).

On the other side of India, high-grade metamor-

phism and contractional deformation occurred at this

time all along the eastern and south eastern margin of

Neoproterozoic India (now preserved in Antarctica

and south Western Australia) (Fitzsimons, 2000b).

6.6. Comparisons with other models

In this contribution, we have reviewed the geo-

chronology and tectonothermal history of orogens

that marked the western, eastern and southern

margins of a Neoproterozoic India and were respon-

sible for the assembly of eastern Gondwana. We

have correlated these geological data with palae-

ogeographic information provided by the available

palaeomagnetic solutions to develop a model for the

Neoproterozoic geography of eastern Gondwana. A

number of previous works have also addressed this

issue. Below we outline the main similarities and

differences between these models and the model

presented here.

Meert and co-workers (Meert and Van der Voo,

1997; Meert, 2001, 2003) were amongst the first to

recognise a bi-modality in geochronological data from

eastern Gondwana and suggest that the region

assembled during two orogenies. They suggested the

presence of an earlier East African Orogeny between

~750 and 620 Ma and a later orogeny at ~570 to 530

Ma, termed the Kuunga Orogeny by Meert et al.

(1995). This later orogeny was interpreted to mark the

collision of Australia and Antarctica with the rest of
Gondwana and was subsequently correlated with a

broad belt of orogenesis from the Damara Orogen in

the west to the Pinjarra Orogen in the east, with a

southern spur to Dronning Maud Land (Fig. 1)

(Meert, 2003). The palaeogeographic model proposed

by these workers involved a Neoproterozoic continent

consisting of Sri Lanka, Madagascar and India

(SLAMIN) colliding with a combined Congo/Kala-

hari continent at ~750–620 Ma, followed by Aus-

tralia/East Antarctica colliding with the bulk of

Gondwana at ~570–530 Ma (Meert, 2003; Meert

and Torsvik, 2003).

Boger and Miller (2004) pointed out that India did

not collide with western Gondwana until latest

Neoproterozoic/Early Cambrian times and proposed

a variation on the SLAMIN model of Meert (2003)

where the East African Orogen evolved as an

accretionary orogen and was partially superimposed

by a 590–560 Ma orogen created by the collision of

a combined India, Madagascar and part of Antarc-

tica with eastern Africa. They termed this orogen

the Mozambique suture. In their model, Australia–

Antarctica (with an enlarged Antarctic component

including the Ruker Terrane) collided with India

along the dKuunga sutureT at 535–520 Ma.

In the model we present here, we follow Meert and

co-workers by sub-dividing Neoproterozoic to Cam-

brian dPan-AfricanT events into pre-600 Ma orogenesis

and later ~570–500 Ma orogenesis. However, we

point out that both of these time frames encompass

many terrane amalgamation events (both accretionary

and collisional). In the next couple of paragraphs we

discuss the rationale for our subdivision of orogenies

in eastern Gondwana.

The areal extent of a collisional orogen is limited

by the geometry of the colliding blocks. Hence, an

orogeny caused by the collision of Azania with the

Congo/Tanzania/Bangweulu Block cannot extend

south of the southern limit of Azania. We, therefore,

propose that the ~650–630 Ma East African Orog-

eny (as opposed to the East African Orogen) be

restricted to the event in the Arabian–Nubian Shield

and the Mozambique Belt caused by the collision of

Azania with the Congo/Tanzania/Bangweulu Block.

There are many pre-650 Ma terrane accretion events

in the East African Orogen, but we argue that these

events are spatially and temporally distinct and

should not be lumped together.
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The Kuunga Orogeny was originally defined on

geochronological data and interpreted to be related to

the collision between Australia/Antarctica and an

already combined India/East Africa (Meert et al.,

1995). In recent years, a number of workers have

demonstrated that India did not collide with the

Congo/Tanzania/Bangweulu Block until latest Neo-

proterozoic/Early Cambrian times (Collins et al.,

2003c; Boger and Miller, 2004), and the Kuunga

Orogeny, or suture has become associated with the

India–Australia/Mawson collision (Meert, 2003;

Boger and Miller, 2004). We follow this usage and

suggest the Kuunga Orogeny be restricted to ~570–

500 Ma (note the slight change in age range from

Meert, 2003) orogenesis related to this India–

Australia/Mawson collision.

The Betsimisaraka Suture in east Madagascar

(Collins et al., 2000) is interpreted as the site of

the India–Azania collision and a provenance boun-

dary between East African-derived terranes and

Indian terranes (Collins and Windley, 2002; Collins

et al., 2003c). Deformation and metamorphism in

east Madagascar is Early Cambrian in age and we

interpret collision here to be coeval with the Kuunga

Orogeny the other side of India (Boger and Miller,

2004). We suggest that this orogenic event be called

the Malagasy Orogeny after the place where it is best

demonstrated.
basin between Azania and the Congo/Tanzania/Bangweulu Block

(light grey block). Also shown are the orogenies that developed

because of these collisions (the East African, Malagasy and

Kuunga).

7. Conclusions

The tectonothermal evolution of the orogenic

belts that delineate Neoproterozoic India has

revealed:

(1) Large tracts of pre-Neoproterozoic crust re-

worked within Neoproterozoic/Cambrian oro-

gens can be used to better delineate the

geometry of the major Neoproterozoic conti-

nental blocks and allow the recognition of

previously unidentified microcontinents.

(2) The recognition that one of these microconti-

nents (Azania) collided with the Congo/Tanza-

nia/Bangweulu Block at ~630 Ma (Figs. 3 and

13), causing granulite-facies metamorphism in

east Tanzania and terminating accretion and

arc–arc collision in the Arabian/Nubian Shield.
(3) 550–520 Ma granulite-facies metamorphism and

contractional deformation occur to both the west

and east of Neoproterozoic India, suggesting

final collision between India and the Congo/

Tanzania/Bangweulu Block occurred coeval with

the collision between India and the Australia/

Mawson Block (Figs. 4–6 and 13), and that both

these collisions occurred in the latest Neoproter-

ozoic/Cambrian (cf. Meert, 2003).

These geological data are combined with the

available palaeomagnetic data to produce a non-

unique, but permissive model for the incorporation

of India into Gondwana and the final amalgamation of

eastern Gondwana from ~750 to 530 Ma.
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Oliver, R.L., Monnier, O., 1995. The dMawson BlockT: once
contiguous Archaean to Proterozoic crust in the East Antarctic

Shield and Gawler Craton, Australia. Proceedings of the VII

International Symposium on Antarctic Earth Sciences, Siena,

Italy, p. 124.

Fernandez, A., Schreurs, G., Villa, I.M., Huber, S., Rakotondrazafy, M.,

2003. Age constraints on the tectonic evolution of the Itremo region

in Central Madagascar. Precambrian Research 123, 87–110.
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Liégeois, J.P., Latouche, L., Boughrara, M., Navez, J., Guiraud, M.,

2003. The LATEA metacraton (Central Hoggar, Tuareg shiled,

Algeria): behaviour of an old passive margin during the Pan-African

orogeny. Journal of African Earth Sciences 37, 161–190.



A.S. Collins, S.A. Pisarevsky / Earth-Science Reviews 71 (2005) 229–270 265
Liu, X., Zhao, Z., Zhao, Y., Chen, J., Liu, X., 2003. Pyroxene

exsolution in mafic granulites from the Grove Mountains, East

Antarctica: constraints on Pan-African metamorphic conditions.

European Journal of Mineralogy 15, 55–65.

Maboko, M.A.H., 1995. Neodymium isotopic constraints on the

protolith ages of rocks involved in Pan-African tectonism in the

Mozambique Belt of Tanzania. Journal of the Geological

Society (London) 152, 911–916.

Maboko, M.A.H., Nakamura, E., 1995. Sm–Nd garnet ages from

the Uluguru granulite complex of Eastern Tanzania: further

evidence for post-metamorphic slow cooling in the Mozambi-

que belt. Precambrian Research 74, 195–202.

Manhica, A.D.S.T., Grantham, G.H., Armstrong, R.A., Guise, P.G.,

Kruger, F.J., 2001. Polyphase defromation and metamorphism at

the Kalahari Craton–Mozambique Belt boundary. In: Miller,

J.A., Holdsworth, R.E., Buick, I.S., Hand, M. (Eds.), Con-

tinental Reactivation and Reworking. Special Publication Geo-

logical Society of London, pp. 303–322.

Markl, G., B7uerle, J., Grujic, D., 2000. Metamorphic evolution of

Pan-African granulite facies metapelites from Southern Mada-

gascar. Precambrian Research 102, 47–68.

McCausland, P.J.A., Hodych, J.P., 1998. Palaeomagnetism of the

550 Ma Skinner Cove Volcanics of western Newfoundland and

opening of the Iapetus Ocean. Earth and Planetary Science

Letters 163, 15–29.

McCausland, P.J.A., Van der Voo, R.D., Brandenburg, J.P., 2003.

Preliminary paleomagnetic results from Late Neoproterozoic

intrusions in Quebec, Canada: rapid apparent latitudinal motion

of Laurentia. Geophysical Research Abstracts 5, 09090.

McElhinny, M.W., Luck, G.R., 1970. The palaeomagnetism of

the Antrim Plateau Volcanics of Northern Australia. Geo-

physical Journal of the Royal Astronomical Society 20,

191–205.

McElhinny, M.W., McFadden, P.L., 2000. Paleomagnetism: Con-

tinents and Oceans. Academic Press, San Diego, 386 pp.

McElhinny, M.W., Cowley, J.A., Edwards, D.J., 1978. Palae-

omagnetism of some rocks from Peninsular India and Kashmir.

Tectonophysics 50, 41–54.

McElhinny, M.W., Powell, C.M., Pisarevsky, S.A., 2003. Paleozoic

terranes of Eastern Australia and the drift history of Gondwana.

Tectonophysics 362, 41–65.

McWilliams, M.O., 1981. Palaeomagnetism and Precambrian

tectonic evolution of Gondwana. In: Kröner, A. (Ed.), Precam-
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Proterozoic crustal evolution in the NW Himalaya (India) as

recorded by circa 1.80 Ga mafic and 1.84 Ga granitic

magmatism. Precambrian Research 103, 191–203.
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Nédélec, A., Stephens, W.E., Fallick, A.E., 1995. The Panafrican

stratoid granites of Madagascar: alkaline magmatism in a

post-collisional extensional setting. Journal of Petrology 36,

1367–1391.

Nelson, D.R., 1995. Field Guide to the Leeuwin Complex, 24 pp.

Nelson, D.R., 1996. Compilation of SHRIMP U–Pb zircon Geo-

chronology data, 1995, Record 1996/5. West Australian Geo-

logical Survey, Perth. 168 pp.

Nelson, D.R., 1998. Compilation of SHRIMP U–Pb Zircon Geo-

chronology Data, 1997, Record 1998/2. Geological Survey of

Western Australia, Perth. 242 pp.

Nelson, D.R., 2002. Compilation of Geochronological Data,

2001. 2002/2. Geological Survey of Western Australia, Perth,

Australia.

Nicollet, C., 1990. Crustal evolution of the granulites of

Madagascar. In: Vielzeuf, D., Vidal, P. (Eds.), Granulites and

Crustal Evolution. Kluwer Academic Publishers, Dordrecht,

pp. 291–310.

Oliver, R.L., Fanning, C.M., 1999. Metamorphic history of King

George V Land, Antarctica, and its relationship to the adjacent
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