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A new type of economic intermittency is found in non-linear business

cycles. Following a merging crisis, a complex economic system has the

ability to retain memory of its weakly chaotic dynamics prior to crisis.

The resulting time series exhibits episodic regime switching between

periods of weakly and strongly chaotic fluctuations of economic variables.

The characteristic intermittency time, useful for forecasting the average

duration of contractionary phases and the turning point to the expan-

sionary phase of business cycles, is computed from the simulated time

series.

I. Introduction

Intermittency is a fundamental dynamical feature of
complex economic systems. An intermittent economic
time series is characterized by recurrence of regime
switching between periods of bursts of high-level
fluctuations of economic activities and periods of
low-level fluctuations. For example, an instability
of the financial system leads to speculative booms
followed by subsequent financial crises manifested by
violent price movements in financial markets; the
recurrence of these events results in business cycles
with alternating periods of boom and depression
(Mullineux, 1990). The spectral density of intermit-
tent economic time series indicates power-law behav-
iour typical of mutiscale systems. Statistical analysis
of the high-frequency dynamics of stock markets and
foreign exchange markets has proven the intermittent
nature of these financial systems, which display non-
Gaussian form with fat-tail in the probability
distribution function of price changes (Mantegna
and Stanley, 2000).

A good understanding of regime switching and
memory of economic time series is essential for
pattern recognition and forecasting of business cycles.
Kirikos (2000) compared a random walk with
Markov switching-regime processes in forecasting
foreign exchange rates; the results suggested that the
availability of more past information may be useful in
forecasting future exchange rates. Kholodilin (2003)
introduced structural shifts in the US composite
economic indicator via deterministic dummies and
evaluated the US monthly macroeconomic series
specified by the regime-switching model. Bautista
(2003) used regime-switching-ARCH regression on
the Philippine stock market data to estimate its
conditional variance and relate to episodes of high
volatility including the 1997 Asian financial crisis;
this study identified a period of high stock return
volatility preceding a bust cycle marked by a sequence
of low-growth periods. Granger and Ding (1996)
defined long memory as a time series having a slowly
declining correlogram, which is a property of frac-
tional integrated processes as well as a number of
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other processes including non-linear models; the
relevance of long memory is illustrated using absolute
returns from a daily stock market index. Resende and
Teixeira (2002) assessed long-memory patterns in the
Brazilian stock market index (Ibovespa) for periods
before and after the Real Stabilization Plan, and
obtained evidence of short memory for both periods.
Gil-Alana (2004) presented evidence of memory in
the dynamics of the real exchange rates in Europe
using the fractional integration techniques. Muckley
(2004) employed rescaled-range analysis, correlation
dimension test and BDS test to obtain evidence of
long-memory effect and chaos in daily time series
of financial data.

Intermittency is ubiquitous in chaotic economic
systems. In a non-linear macroeconomic model
(Mosekilde et al., 1992) describing an economic
long wave (or Kondratiev cycle) forced by an
exogenous short-term construction (or Kuznets)
business cycle represented by a sinusoidal fluctuation
in the demand for capital to the goods sector, a
chaotic transition known as crisis involving a sudden
expansion of chaotic attractor and a complex form of
chaos arising from intermittency are observed. In a
disaggregated economic long-wave model describing
two coupled industries (Haxholdt et al., 1995), one
representing production of plant and long-lived
infrastructure and the other representing short-lived
equipment and machinery, mode-locking, quasi-
periodic behaviour, chaos and intermittency are
detected. In a model of an economic duopoly game
(Bischi et al., 1998), the phenomenon of synchroniza-
tion of a two-dimensional discrete dynamical system
is studied and on-off intermittency due to a transverse
instability is detected.

An example of type-I intermittency in non-linear
business cycles was studied recently (Chian et al.,
2006). In the economic type-I intermittency, the
recurrence of regime switching between bursty and
laminar phases indicates that a non-linear economic
system is capable of keeping the memory of its
ordered dynamics after the system evolves from order
to chaos due to a local saddle-node bifurcation.
Most econometric studies of long memory treat
economic data as stochastic processes (Granger and
Ding, 1996; Resende and Teixeira, 2002; Gil-Alana,
2004), however, real economic systems are a mixture
of stochastic and deterministic processes. In this
article, we adopt the deterministic approach to study
a new type of economic intermittency induced by an
attractor merging crisis due to a global bifurcation
(Chian et al., 2005). We will show that following the
onset of an attractor merging crisis, the economic
system retains its memory of the weakly chaotic
dynamics before the crisis; as the result, the time

series of business cycles becomes intermittent dis-
playing episodic regime switching between periods of
weakly and strongly chaotic fluctuations.

A forced model of non-linear business cycles is
formulated in Section II. Economic crisis-induced
intermittency is analyzed in Section III. The conclu-
sion is given in Section IV.

II. Non-linear Model of Business Cycles

We model the non-linear dynamics of business cycles
driven by a periodic exogenous force using the van der
Pol differential equation (Chian et al., 2005, 2006)

€xþ �ðx2 � 1Þ _xþ x ¼ a sinð!tÞ, ð1Þ

where x denotes an economic variable such as
production, the dot denotes derivative with respect
to time t, � is an endogenous damping parameter,
a denotes the driver amplitude and ! denotes the
driver frequency. The driven van der Pol Equation 1
admits periodic (ordered) or aperiodic (chaotic) solu-
tions as we vary any of the three control parameters:
a, !, �. Equation 1 (when a¼ 0) is invariant under the
flip operation (x!�x). This symmetry is a typical
property of dynamical systems that exhibit attractor
merging crises (Chian et al., 2005, 2006).

III. Economic Crisis-induced Intermittency

The qualitative structure of the trajectory described
by Equation 1 can change (i.e. bifurcate) as the
control parameters are varied. For example, fixed
points can be created or destroyed, or their stability
can change. These changes in the system dynamics
can be represented by the bifurcation diagram.
A periodic window of the bifurcation diagram
determined from the numerical solutions of
Equation 1 is shown in Fig. 1, where we plot _x as a
function of the driver amplitude for a while keeping
other control parameters fixed (�¼ 1 and !¼ 0.45).
Within the periodic window, two (or more) attractors
A1 and A2 coexist, each with its own basin of
attraction (Chian et al., 2005, 2006). At a¼ 0.98312,
a period-1 limit cycle for each attractor A1/A2 is
generated via a local saddle-node bifurcation (SNB),
which evolves into a small chaotic attractor via a
cascade of period-doubling bifurcations.

An attractor merging crisis (MC) occurs at the
crisis point, near a¼ aMC¼ 0.98765. The phase-
space trajectories of two small chaotic attractors
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(CA1 and CA2) in the phase space (x, _x), near the

crisis point, are shown in Figs 2(a) and (b),

respectively. Note that CA1 and CA2 are symmetric

with respect to each other. In fact, the dynamic

properties of these two co-existing attractors are

identical. At the crisis point, each of the two small

chaotic attractors simultaneously collide head-on

with a period-3 mediating unstable periodic orbit

on the boundary which separates their basins of

attraction, leading to an attractor merging

crisis due to a global bifurcation (Chian et al.,

2005). As the consequence, the two pre-crisis small

chaotic attractors merge to form a post-crisis

large merged chaotic attractor (MCA), as seen in

Fig. 2(c).
A Poincaré map of the phase-space trajectories of

Fig. 2 is plotted in Fig. 3, which is a superposition

of two pre-crisis weak chaotic attractors (CA1 and

CA2) and the post-crisis strong MCA. We define a

stroboscopic Poincaré map

P : ½xðtÞ, _xðtÞ� ! ½xðtþ T Þ, _xðtþ T Þ�, ð2Þ

where T¼ 2�/! is the driver period. Note that the two

pre-crisis CA1 and CA2 are located in two small

regions within the post-crisis MCA.
The time series of _x for the two small chaotic

attractors CA1 and CA2 at crisis, a¼ 0.98765, are

shown in Figs 4(a) and (b), respectively. The same

time series of Figs 4(a) and (b) plotted as a function

of driver cycles are shown in Fig. 4(c). From Fig. 4(c),

Fig. 2. Phase-space trajectories of: (a) pre-crisis chaotic attractor (CA1) for a^ 0.98765, (b) pre-crisis chaotic attractor (CA2)

for a^ 0.98765, (c) post-crisis merged chaotic attractor (MCA) for a^ 0.98766

Fig. 1. Bifurcation diagram of _x as a function of the driver

amplitude a for attractors A1 and A2. MC denotes attractor
merging crisis and SNB denotes saddle-node bifurcation.

k^ 1 and x^ 0.45
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we see that before crisis the fluctuations of economic

variables are weakly chaotic (laminar), localized in a

small range of _x (near _x � 2 and _x � 0), consistent

with the Poincaré map in Fig. 3.
After the attractor merging crisis, there is only one

large chaotic attractor (MCA) in the system. The time

series of _x of MCA after the crisis, for a¼ 0.98766
and a¼ 0.988, are shown in Figs 5(a) and (b),
respectively. The same time series plotted as a
function of driver cycles are shown in Figs 5(c)
and (d), respectively. The time series in Fig. 5 show
that the system dynamics becomes intermittent after
the onset of attractor merging crisis, with periods of
weakly chaotic (laminar) fluctuations interrupted
abruptly by periods of strongly chaotic (bursty)
fluctuations. A comparison of the time series of
Figs 4 and 5 indicates that the laminar phases in
Fig. 5 are related to the pre-crisis attractors CA1 and
CA2. Hence, the post-crisis system keeps memory of
its weakly chaotic dynamics prior to crisis, and
switches back and forth between the low-level
fluctuations related to CA1 and CA2, linked by
high-level fluctuations related to MCA. An examina-
tion of Fig. 5 shows that, as the system moves away
from the crisis point, the average duration of laminar
phases decreases and the regime switching becomes
more frequent.

The power spectra associated with the time series
of Figs 4 and 5 are shown in Fig. 6. It is evident
that in all three cases the high-frequency portions of
the spectra present power-law behaviours, which are

Fig. 4. Pre-crisis time series of _x for a^ 0.98765: (a) _xðtÞ for chaotic attractor CA1; (b) _xðtÞ for chaotic attractor CA2; (c) _x as a
function of driver cycles for (a) and (b), respectively

Fig. 3. Poincaré map of the post-crisis merged chaotic

attractor (MCA, light line) for a^ 0.98766, superposed by
the pre-crisis chaotic attractors (CA1 and CA2, dark lines) for

a^ 0.98765
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typical features of intermittent financial systems
such as stock markets and foreign exchange markets
(Mantegna and Stanley, 2000). A closer look of
Figs 6(a)–(c) shows that as the system becomes more
chaotic, the discrete spikes of the power spectrum
become less evident due to increasing multiscale
information transfer in the system.

The characteristic intermittency time, namely, the
average duration of the laminar phases in the
intermittent time series, depends on the value of
the control parameter a. In the vicinity of the crisis
point aMC the average time spent by a path in the
neighbourhood of pre-crisis CA1 and CA2 is very
long (implying long memory), which decreases as a
moves away from aMC (implying shorter memory).
The characteristic intermittency time (denoted by �)
can be calculated by averaging the duration of
laminar phases related to CA1/CA2 over a long time
series. Figure 7 is a plot of log10 � vs. log10(a� aMC),
where the solid line with a slope �¼�0.66 is a linear
fit. The squares (circles) denote the computed average
time of the laminar phases related to CA1 (CA2).
Note that circles and squares coincide most of the
time, as expected from the symmetry of CA1 and
CA2. Figure 7 reveals that the characteristic

intermittency time � decreases with the distance
from the critical parameter, obeying a power-law
scaling:

� � ða� aMCÞ
�0:66: ð3Þ

The scaling relation for the van der Pol model of the
economic type-I intermittency yields a scaling expo-
nent of �0.074 (Chian et al., 2006). Comparing with
Equation 3, we see that the decrease of � with the
distance from the critical parameter for the economic
crisis-induced intermittency is much faster than the
economic type-I intermittency.

IV. Conclusion

Forecasting the evolution of the complex system
dynamics is the ultimate goal in economics. Chaos
and non-linear methods provide powerful tools to
achieve this goal. For example, Bajo-Rubio et al.
(1992) detected a chaotic behaviour on daily
time series of the Spanish Peseta–US dollar exchange
rate which allows short-run predictions. Soofi and

Fig. 5. Post-crisis intermittent time series of _x for a^ 0.98766 and a^ 0.988. (a) and (b): _xðtÞ; (c) and (d): _x as a function of

driver cycles for (a) and (b), respectively
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Cao (1999) performed out-of-sample predictions on
daily Peseta–US dollar spot exchange rates using a
non-linear deterministic technique of local linear
predictor. Bordignon and Lisi (2001) proposed a
method to evaluate the prediction accuracy of chaotic
time series by means of prediction intervals and

showed its effectiveness with data generated by a

chaotic economic model.
A non-linear prediction method being developed

in population dynamics, weather dynamics and

earthquake dynamics is based on attractor recon-

struction in phase space using the time series of

observed data (Drepper et al., 1994; Perez-Munuzuri

and Gelpi, 2000; Konstantinou and Lin, 2004).

This technique may be applied to economic

forecasting. Information obtained from modelling

intermittency of a complex economic system can

guide the analysis of the reconstructed attractor by

providing identifiable and predictable recurrent

system patterns (Belaire-Franch, 2004), and allowing

the calculation of the characteristic intermittency

time for each recurrent pattern. In particular,

the determination of intermittent features in the

modelled economic chaotic attractors, aided by the

recognition of regions of high predictability in

the chaotic attractors (Ziehmann et al., 2000), and

the calculation of the power-law scaling in the

intermittent error dynamics (Chu et al., 2002) may

reduce prediction error and improve economic

forecasting precision.
Economic forecasting relies on the agent’s skill to

recognize the patterns of recurrence in the past

Fig. 6. Power spectrum S as a function of frequency f for: (a) a^ 0.98765, (b) a^ 0.98766, (c) a^ 0.988

Fig. 7. Characteristic intermittency time as a function of

the departure from the crisis point, log10 s vs. log10(a2 aMC).

The squares (circles) denote the computed average switching
time from the laminar phases related to CA1 (CA2) to the

bursty phases. The solid line is a linear fit of the computed

values with a slope c^20.66

216 A. C.-L. Chian et al.



economic time series and to estimate the waiting time
between bursts. Recurrence of unstable periodic
structures is a manifestation of the memory dynamics
of complex economic systems. Dynamical systems
approach provides effective tools to identify the
origin and nature of the recurrent patterns. In this
article, we demonstrated how economic intermittency
is induced by an attractor merging crisis and how
to recognize different recurrent patterns in the
intermittent time series of economic cycles by
separating them into laminar (weakly chaotic) and
bursty (strongly chaotic) phases. The characteristic
intermittency time given by the scaling relation,
Equation 3, can be used to predict the turning
points of regime switching from contrationary phases
to expansionary phases in economic cycles.

Modelling of non-linear economic dynamics
enables us to obtain an in-depth knowledge of the
nature of regime switching and memory, in particu-
lar, their relation with each other. Econometric
literatures on regime switching (Kirikos, 2000;
Bautista, 2003; Kholodilin, 2003) and long memory
(Granger and Ding, 1996; Resende and Teixeira,
2002; Gil-Alana, 2004; Muckley, 2004) have evolved
largely independently, as the two phenomena appear
distinct. Diebold and Inoue (2001) argued that regime
switching and long memory are intimately related,
which is in fact confirmed by our analysis. As an
economic system evolves, microeconomic and
macroeconomic instabilities lead to a variety of
global and local bifurcations which in turn give rise
to chaotic behaviours such as crisis-induced and
type-I intermittencies. The techniques developed in
this article can be applied to investigate intermittency
in more complex economic models and to analyze
other types of economic intermittency such as
intermittency driven by a boundary crisis or an
interior crisis, on-off intermittency and noise-induced
intermittency.

Acknowledgements

This work is supported by CNPq and forms part of
Ph.D. Thesis in Economics by A C.-L. Chian at the
University of Adelaide.

References

Bajo-Rubio, O., Fernandez-Rodriguez, F. and Soscilla-
Rivero, S. (1992) Chaotic behavior in exchange-rate
series: first results for the Peseta-US Dollar case,
Economics Letters, 39, 207–11.

Bautista, C. C. (2003) Stock market volatility in
Philippines, Applied Economic Letters, 10, 315–8.

Belaire-Franch, J. (2004) Testing for nonlinearity in an
artificial financial market: a recurrence quantification
approach, Journal of Economic Behavior &
Organization, 54, 483–94.

Bischi, G. I., Stafanini, L. and Gardini, L. (1998)
Synchronization, intermittency and critical curves in
a duopoly game, Mathematics and Computers in
Simulation, 44, 559–85.

Bordignon, S. and Lisi, F. (2001) Predictive accuracy
for chaotic economic models, Economics Letters, 70,
51–8.

Chian, A. C.-L., Borotto, F. A., Rempel, E. L. and
Rogers, C. (2005) Attractor merging crisis in chaotic
business cycles, Chaos, Solitons and Fractals, 24,
869–75.

Chian, A. C.-L., Rempel, E. L., Borotto, F. A. and
Rogers C. (2006) An example of intermittency in
nonlinear economic cycles, Applied Economic Letters,
13, 257–63.

Chu, P. C., Ivanov, L. M., Kantha, L. H.,
Melnishenko, O. V. and Poberezhny, Y. A. (2002)
Power law decay in model predictability skill,
Geophysical Research Letters, 29, Art. No. 1748.

Diebold, F. X. and Inoue, A. (2001) Long momory and
regime switching, Journal of Econometrics, 105,
131–59.

Drepper, F. R., Engbert, R. and Stollenwerk, N. (1994)
Nonlinear time series analysis of empirical
population dynamics, Ecological Modelling, 75,
171–81.

Gil-Alana, L. A. (2004) The dynamics of the real exchange
rates in Europe: a comparative study across countries
using fractional integration, Applied Economic Letters,
11, 429–32.

Granger, C. W. J. and Ding, Z. (1996) Varieties of
long memory models, Journal of Econometrics, 73,
61–77.

Haxholdt, C., Kampmann, C., Mosekilde, E. and
Sterman, J. D. (1995) Mode-locking and entrainment
of endogenous economic cycles, System Dynamics
Review, 11, 177–98.

Kholodilin, K. A. (2003) US composite economic indicator
with nonlinear dynamics and the data subject to
structure breaks, Applied Economic Letters, 10,
363–72.

Kirikos, D. G. (2000) Forecasting exchange rates out of
sample: random walk vs. Markov switching regimes,
Applied Economic Letters, 7, 133–6.

Konstantinou, K. I. and Lin, C. H. (2004) Nonlinear time
series analysis of tremor events recorded at Sangay
volcano, Ecuador, Pure and Applied Geo-physics, 161,
145–63.

Mantegna, R. N. and Stanley, H. E. (2000) An Introduction
to Econophysics: Correlations and Complexity in
Finance, Cambridge University Press, Cambridge.

Mosekilde, E., Larsen, E. R., Sterman, J. D. and
Thomse, J. S. (1992) Nonlinear mode-interaction in
the macroeconomy, Annals of Operations Research, 37,
185–215.

Muckley, C. (2004) Empirical asset return distributions:
is chaos the culprit?, Applied Economic Letters, 11,
81–6.

Mullineux, A. W. (1990) Business Cycles and Financial
Crisis, Harvester Wheat-sheaf, Hemel Hemstread.

Crisis-induced intermittency in non-linear economic cycles 217



Perez-Munuzuri, V. and Gelpi, I. R. (2000) Application of
nonlinear forecasting techniques for meteorological
modeling, Annales Geophysicae, 18, 1349–59.

Resende, M. and Teixeira, N. (2002) Permanent structural
change in the Brazilian economy and long momory:
a stock market perspective, Applied Economic Letters,
9, 373–75.

Soofi, A. S. and Cao, L. (1999) Nonlinear deterministic
forecasting of daily PesetaDollar exchange rate,
Economics Letters, 62, 175–80.

Ziehmann, C., Smith, L. A. and Kurths, J. (2000)
Localized Lyapunov exponents and the
prediction of predictability, Physics Letters A, 271,
237–51.

218 A. C.-L. Chian et al.


