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ABSTRACT.  Ecological data management, analysis and synthesis as well as information processing and transfer in ecology are 
considered feature areas of ecological informatics. The paper presents case studies for analysis and synthesis of ecological data by 
means of unsupervised artificial neural networks and hybrid evolutionary algorithms to assist in computational bioindication of 
wetland water quality and early warning of cyanobacteria blooms in lakes and reservoirs. Integrated analysis and synthesis of 
ecological and genomics data, hybrid model libraries generic for ecosystem categories as well as internet-based data and model sharing 
are identified as key research areas of ecological informatics. 
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1. Introduction 

Ecological informatics (ecoinformatics) is an interdisci- 
plinary framework for the understanding of information proce- 
ssing and transfer in ecology (Hogeweg, 2007) as well as ma- 
nagement, analysis and synthesis of ecological data by advan- 
ced computational technology (Recknagel, 2006).  

Ecological informatics currently undergoes the process of 
consolidation as a discipline. It corresponds and partially over- 
laps with the well-established disciplines bioinformatics and 
ecological modeling but is taking its distinct shape and scope. 
A comparison between ecological informatics and bioinforma- 
tics in Recknagel (2008) concluded that even though both are 
based on the same computational technology their focus is di- 
fferent. Bioinformatics focuses very much on determining gene 
function and interaction, protein structure and function as well 
as phenotypes of organisms utilizing DNA microarray, geno- 
mic, physiological and metabolic data. By contrast ecological 
informatics focuses to determine genotypes of populations by 
utilizing genomic, phenotypic and environmental data as well 
as to determine structure and functioning of ecosystems by uti- 
lizing community, environmental and climate data.  

Comparing between ecological modeling and ecological 
informatics Recknagel (2008) stated that even though both rely 
on similar ecological data they adopt different approaches in 
utilizing the data. Whilst ecological modeling typically proce- 
sses ecological data top down by ad hoc designed statistical or 
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mathematical concepts, ecological informatics infers ecologi- 
cal relationships from ecological data patterns bottom up by 
computational techniques. The cross-sectional area between 
ecological modeling and ecological informatics reflects a new 
generation of hybrid models that may gain the potential to pre- 
dict emergent ecosystem structures and behaviors, as well as 
ecosystem evolution (e.g. Recknagel, 2003; Grimm et al., 
2005). Typically hybrid models embody biologically-inspired 
computation in deterministic ecological models. 

 

1.1. Ecological Data Management, Analysis and Synthesis 

The Figure 1 describes the general flow of ecological in- 
formation originating from different sources, undergoing diffe- 
rent stages of integration and informing decisions in on- or 
off-line mode. The three sources of information are typically 
ecological data, heuristic and causal ecological knowledge that 
are integrated during the data analysis and synthesis. Before 
ecological data enter data analysis and synthesis they undergo 
data acquisition (e.g. Foody, 2007; Chang, 2010) and processing 
(e.g. Jones and Gries, 2010). Data visualisation by graphics, 
maps and animations becomes increasingly important in order 
to communicate ecological information with a broader audience 
of decision makers, stakeholders, citizens in an easy manner 
that is also understandable to non-experts. The information in- 
tegrated by data analysis and synthesis supports either on-line 
or off-line decisions. On-line decisions require on-line monito- 
ring by in situ sensors and/or remote sensing and allow early 
warning. Off-line decisions are typically supported by data 
warehouse queries, scenario and sensitivity analysis by compu- 
ter simulation and forecasting. 

It becomes obvious from Figure 1 that ecological data ma- 
nagement, analysis and synthesis relies heavily on well-coordi- 
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nated inter-disciplinary research (Chon and Park, 2006) basi- 
cally between natural scientists and computer scientists. Only 
the combination of highly reliable ecological data, competent 
ecological knowledge and novel computation and sensor tech- 
nology will result in informed decisions to be trusted. 

 

1.2. Information Processing and Transfer in Ecology 

The Figure 2 has been designed to highlight the importan- 
ce of information processing and transfer for determining eco- 
system behaviour in response to environmental, habitat and cli- 
mate changes. It indicates that inter- and intra-specific commu- 
nication of organisms e.g. by info-chemicals (e.g. Voss et al., 
2006; van Donk, 2007) and genomes is decisively controlling 
extent and direction of food web dynamics and nutrient cycles 
by taking into account the structure of the food web, nutrient 
stoichiometry, habitat and climate conditions. Insights into the 
structure and functioning of information carriers in ecosystems 
such as info-chemicals, genomes and paleo-ecological data 
will improve our understanding how ecosystems evolve throu- 
gh consecutive stable states. 

Inter-disciplinary research is required between ecologists, 
molecular biologists, genomists, chemists and information sc- 
ientists to improve our knowledge on ecological information 
processing and transfer.  

2. Case Studies for Analysis and Synthesis of 
Ecological Data Exemplary for Ecoinformatics  

Novel sensor, information and computing technology is 
generating an avalanche of physical, chemical, biological and 

molecular data in ecology which are highly complex, diverse, 
fragmented and only constraint accessible. Ecoinformatics pro- 
vides tailored tools such as artificial neural networks and evo- 
lutionary algorithms to integrate, analyse and synthesise ecolo- 
gical data allowing ecologists to unravel complexity, reveal pa- 
tterns and generate broad generalities. 

Unsupervised artificial neural networks (ANN) are desi- 
gned to identify unknown data patterns based on similarities 
between the data variables. So-called self-organising maps 
(SOM) (Kohonen, 1989) are the most popular unsupervised 
ANN, which can be applied for ordination and clustering of 
complex non-linear data. 

The principal approach of non-supervised ANN according 
to Kohonen (1989) is represented in a simplified diagram in 
Figure 3. It shows that the neurons of the ANN learn to distin- 
guish between similar and dissimilar features of the normalised 
input data, which are mapped as clusters. Those features can 
be expressed by Euclidean distances, which are calculated be- 
tween the inputs and weights.  

Evolutionary algorithms (EA) are adaptive methods for 
finding problem solutions (models, knowledge) based on prin- 
ciples of biological evolution by natural selection, genetic va- 
riation and “survival of the fittest” (see Figure 4). Holland 
(1975) provided the theoretical framework for the development 
of genetic and evolutionary algorithms that are being widely 
used for pattern recognition, forecasting, knowledge discovery, 
optimum control and parallel processing. EA have been suc- 
cessfully implemented as tools for solving ecological problems, 
which exhibit highest complexity. They allow to induce predic- 
tive models from ecological data sets by assembling multiva-  

 
Figure 1. Flow of ecological information from the sources to the end-users. 
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riate functions or rule sets which enable comprehensive sen- 
sitivity analyses as tools for knowledge discovery (e.g. Reck- 
nagel et al. 2013). 

 
INPUT LAYER ORDINATION AND 

CLUSTERING OF INPUTS 
MAPPING OF 

CLUSTERED INPUTS

SiO2 

Amphora coffeaeformis 

Cyclotella meneghiniana 

Navicula schroeterii 
weights

neurons

 

 

  

 

 

 

 

  
 

  

 

 

 
Figure 3. Conceptual diagram of the structure and functioning 
of non-supervised ANN. 
 

2.1. Ordination, Clustering and Computational Bioindica- 
tion of wetland habitats 

A cross-sectional study of 47 floodplain wetlands along 
the River Murray in South Australia has been conducted by 
monitoring water quality conditions and surveying benthic dia- 
toms and macroinvertebrates in April and May 2006. The flood- 
plain conditions ranged from fully and partially inundated wet- 
lands to paddles remaining after summer draught. As a result 
15 species of diatoms as well as 15 taxa of macroinvertebrates 
were identified and quantified both occurring at distinctly dif- 
ferent abundance across the 47 wetlands. The water quality 

conditions varied significantly as well (see Figure 5). 

Unsupervised ANN and EA were applied to identify rela- 
tionships between the observed cross-sectional physical, che- 
mical and biological data that would allow computational bio- 
indication of wetland habitat conditions. 

Figure 6a shows a rule set that has been synthesised by the 
hybrid evolutionary algorithm HEA (Cao et al., 2013) for the 
relationships between 4 species of diatoms, the mollusc Planor- 
bidae and SiO2 concentrations within the 47 floodplain wetlan- 
ds. The IF-THEN rule (Figure 6a) appeared to be the fittest 
with a r2 = 0.94 (see Figure 7) amongst 100 rules discovered 
by boot-strap training with randomly picked 25% testing data 
and 75% training data. The rule distinguishes between SiO2 
concentrations lower than 4 mg/l reflected by the sensitivity 
analysis for the THEN branch (Figure 6b) and concentrations 
higher than 4mg/l reflected by the sensitivity analysis for the 
ELSE branch (Figure 6c).The sensitivity analysis in Figures. 
6b and 6c nicely reveals that in particular Cyclotella meneghi- 
niana and Planorbidae show a preference for low SiO2 concen- 
trations whilst Staurosirella pinnata occurs abundantly at con- 
centrations greater than 8 mg/l.  

The evolutionary algorithm HEA has obviously selected 
suitable indicator species for the range of SiO2 concentrations 
observed in the 47 floodplain wetlands under autumn condi- 
tions. In order to back up these findings an ordination and clus- 
tering of the data has been conducted by unsupervised ANN 
using the MATLAB Toolbox SOM (Vesanto et al., 2000). Fi- 
gure 8 shows patterns of diatoms and Planorbidae abundances 
for three ranges of SiO2 concentrations. The patterns clearly  

 
Figure 2. The role of inter- and intra-specific communication in determining ecosystem behaviour. 
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Figure 4. Conceptual diagram of the structure and functioning of the hybrid evolutionary algorithms HEA (Recknagel 
et al. 2013). 
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Figure 5. Range of water quality conditions across the 47 River Murray floodplain wetlands observed from April to 
May in 2006. 
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support findings from the sensitivity analysis that Cyclotella 
meneghiniana and Planorbidae are potential indicators for low 
SiO2 concentrations in these wetlands. Figure 8 also shows that 
the occurrence of Staurosirella pinnata coincides with high and 
low SiO2 concentrations and therefore appears not to be a ‘sh- 
arp’ indicator for high concentrations as concluded from the 
sensitivity analysis. By contrast it can be concluded from Fi- 

gure 8 that Amphora caffeaeformis appears to be a strong indi- 
cator for SiO2 at concentrations higher than 3 mg/l.  

The validation result in Figure 7 suggests that the rule in 
Figure 6a can be used as predictive tool for identifying SiO2 
concentrations in theses floodplain wetlands by using informa- 
tion on the abundances of the diatoms and Planorbidae repre- 
sented in the rule. Predictive rules for the remaining 6 water  

IF
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SiO2 = ln (|ln( |Cyclotella meneghiniana * Planorbidae |) * 
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Figure 6. Predictive rule for indicating SiO2 concentrations in 47 floodplain wetlands along the River Murray in South 
Australia by means of benthic diatoms and macroinvertebrates. a) rule structure, b) sensitivity analysis for the THEN branch 
of the rule, c) sensitivity analysis for the ELSE branch of the rule. 
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quality variables shown in Figure 5 have also been developed 
solely driven by diatom and macroinvertebrate data with simi- 
lar good accuracy. 

 

2.2. Ordination, Clustering and Forecasting Cyanobacte- 
ria Bloom Data in Drinking Water Reservoirs 

The tropical cyanobacteria Cylindrospermopsis is a major 
concern for water authorities in Queensland as it tends to recu- 
rrently bloom in drinking water reservoirs contaminating the 
raw water with high concentrations of the toxic cylindromop- 
sin. Ten years of water quality time series of the Wivenhoe re- 
servoir (Dunabin et al., 2009) provided by South-East Queens- 
land Water have been analysed and synthesised by means of 
the hybrid evolutionary algorithms HEA and unsupervised 

ANN in order to develop an early warning system for outbrea- 
ks of Cylindrospermopsis in the Wivenhoe reservoir. Since the 
early warning system will be implemented for on-line deci- 
sion support, only electronically measurable water quality va- 
riables were selected and processed as inputs for forecasting 

models. The Figure 9 shows the daily-interpolated time-series 
plots of water temperature, dissolved oxygen, electrical condu- 
ctivity, pH and turbidity weekly measured from 2000 to 2009 
in the Wivenhoe reservoir. These variables are continuously 
monitored by in situ data loggers YSI 6820 that in future can 
be fed on-line into forecasting models for Cylindrospermopsis.  

Figure 10a shows the IF-THEN rule for forecasting Cylin- 
drospermopsis with a r2 = 0.64 (see Figure 11) that appeared 
to be the fittest amongst 100 rules discovered during boot-strap 
training with randomly picked 25% testing data and 75% trai- 
ning data by the hybrid evolutionary algorithm HEA (Cao et 
al., 2013). The water temperature threshold of 25.5 °C of the 
rule distinguishes between Cylindrospermopsis abundances lo- 
wer than 10,000 cells/ml reflected by the sensitivity analysis 
for the ELSE branch (Figure 10c) and abundances higher than 
10,000 cells/ml reflected by the sensitivity analysis for the 
THEN branch (Figure 10b).The sensitivity analysis in Figures 
10b and c reveals that lower alkaline values of pH coincide 
with high Cylindrospermopsis abundances and vice versa. By  

3 clusters 

Figure 8. Ordination and clustering of relationships between ranges of SiO2 concentrations and five diatom species as well as 
the snail Planorbidae in 47 floodplain wetlands along the River Murray in South Australia by means of unsupervised ANN. 
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Figure 9. Time-series plots of water temperature, dissolved oxygen, electrical conductivity, pH and turbidity weekly measured 
from 2000 to 2009 in the Wivenhoe reservoir, Queensland. 
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contrast rising trends of conductivity, turbidity and temperature 
conform to growing trends of Cylindrospermopsis abundances. 

The validation result in Figure 11 suggests that the simple 
rule in Figure 10a is performing the 7-days ahead forecasting 
quite accurately for the timing of fastest growth of Cylindro- 
spermopsis in most of the testing years from 2000 to 2009. 
However it also shows that the magnitudes of Cylindrospermo- 
psis abundance are underestimated for all years even though 
multiple peak events in 2001, 2002 and 2009 have been fore- 
casted as well. Nevertheless these results are encouraging as 
they are solely based on electronically measurable predictor 
variables and will allow the on-line implementation of the mo- 
del for early warning. Since in situ monitoring of phosphate, 
nitrate and silica is not yet supported by the YSI data logger the 
current forecasting results are not determined by nutrient con- 
centrations. 

In order to get an understanding of causal interrelation- 
ships between the chosen input variables and Cylindrospermo- 
psis dynamics an ordination and clustering of the time series 
data has been conducted by unsupervised ANN using the 
MATLAB Toolbox SOM (Vesanto et al., 2000). The results in 
Figure 12 show that high oxygen concentrations coincide with 
either low cell numbers of Cylindrospermopsis indicating win- 
ter season at low water temperatures or with highest cell num- 
bers suggesting photosynthesis at its peak. Low oxygen con- 
centrations seem to be typical for medium high cell numbers 
that may indicate periods in the aftermath of bloom events wi- 
th high microbial respiration by dying algal cells. The alkaline 
pH levels are highest at periods of highest cell numbers with 
photosynthesis at its peak and lowest in periods with low and 
medium high cell numbers. The pattern of electrical conducti- 
vity is neither distinctly related to abundances of Cylindrosper-  
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Figure 10. Predictive rule for forecasting 7-day ahead cell concentrations of Cylindrospermopsis in relationship with water 
temperature WT, pH, electrical conductivity (EC) and turbidity (NTU) in the Wivenhoe reservoir, Queensland. a) rule 
structure, b) sensitivity analysis for the THEN branch of the rule, c) sensitivity analysis for the ELSE branch of the rule. 
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mopsis nor to water temperature but indicates that it is not pri- 
marily driven by evaporation under subtropical climates but 
also by mineral loads through rain events. There seems to be a 
distinctive relationship between turbidity and Cylindrosper- 

mopsis indicating that events with peak cell numbers cause hi- 
ghest turbidity levels. The pattern for water temperature backs 
up the 25.5 °C identified by the evolutionary algorithm HEA 
as threshold between medium and high cell numbers of Cy-   

3 clusters 

Figure 12. Ordination and clustering of relationships between 3 ranges of cell numbers of Cylindrospermopsis (Cyl) and 
water temperature WT, pH, electrical conductivity (EC) and turbidity (NTU) in the Wivenhoe reservoir, Queensland by means 
of unsupervised ANN. 
 

Figure 13. Model library for early warning of Cylindrospermopsis blooms in the Wivenhoe reservoir, Queensland. 
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lindrospermopsis (Figure 12). 

To make early warning systems for cyanobacteria reliable 
and trustworthy tools for routine use it is desirable that enve- 
lopes are forecasted by a set of models rather than just point 
estimates by one model. The Figure 14 shows an envelope for 
Cylindrospermopsis forecasted by the three models documen- 
ted in Figure 13.  

3. Future Directions of Ecological Informatics 

Making informed decisions on the conservation of biodi- 
versity and sustainable environments in spite of pollution and 
climate change is of vital importance for the habitat earth in the 
21st century. Ecological informatics is committed to improve 
ecological understanding and contribute tools for integrating, 
analysing and synthesising the wealth of ecological knowledge 
and data for making informed decision at local, regional and 
global scale. 

Ecological informatics is now focusing its efforts on: (1) 
integrated analysis of genomic, phenotypic and ecological data 
in order to better understand biodiversity and ecosystem beha- 
viour in response to habitat and climate changes; (2) facilita- 
ting data sharing by www-based generic data warehouses tai- 
lored for ecosystem categories at global scale, and (3) imple- 
menting hybrid model libraries generic for ecosystem catego- 
ries at global scale by object-oriented programming and inter- 
net access. 
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