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Available online 7 August 2014 of cyanobacteria densities. Here we show that IF-THEN-ELSE models inferred by the hybrid evolutionary algo-

rithm HEA from multidimensional data of the hypertrophic polymictic Lake Taihu (China) and the mesotrophic
warm-monomictic Lake Kinneret (Israel) perform fairly good 5-day-ahead forecasting of density outbreaks and
indicate thresholds referring to the same environmental factors, such as nitrate and water temperature. The
discovered thresholds suggest that hypereutrophic lakes may reach N-limitation at nitrate concentrations that
are orders of magnitude higher than in a mesotrophic lake, and that cyanobacteria may grow at much lower
water temperatures and within a much wider temperature range at phosphorus sufficiency in a hypereutrophic
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lake than under phosphorus deficiency in a stratified mesotrophic lake.

© 2014 Elsevier B.V. All rights reserved.

Outbreaks in population density of unwanted organisms (e.g. path-
ogenic bacteria, cyanobacteria, pests) can severely impact on human
health and ecological and economic resources. Great efforts are under-
taken to qualitatively determine thresholds as indicators for sudden
shifts in the community composition (e.g. May 1977; Scheffer et al.
2009). However, multivariate nonlinear methods, such as evolutionary
computation, have the capacity to successfully reveal and quantify
specific ecological thresholds from the multidimensional ecological
data (Sonderegger et al. 2009). We investigated the hypothesis that
evolutionary computation can identify and quantify thresholds for
seasonal outbreaks of cyanobacteria blooms that are similar for different
water bodies.

Cyanobacteria blooms contaminate waters globally by cyanotoxins
(Carmichael 1994). Global expansion of cyanobacteria is driven by on-
going eutrophication and climate change (Paerl and Otten 2013).
Knowing thresholds of key environmental factors that are associated
with sudden outbreaks of cyanobacteria blooms is the main frontier in
aquatic ecology, and will inform early warning of these harmful events.

Evolutionary computation learns inferential models from data
(Holland 1975; Holland et al. 1986). The hybrid evolutionary algorithm
HEA (Cao et al. 2014) has been designed for inductive reasoning of “fit-
test” I-THEN-ELSE models from multi-dimensional data patterns in a
spiral-like boot-strap scheme (see Fig. 1). Multi-objective optimisation
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of model structures by genetic programming and of model parameters
by differential evolution advance models to perform fairly accurate
short-term forecasting and reveal threshold conditions. When HEA is
applied to complex ecological parameters, IF-conditions of predictive
models reveal thresholds that indicate outbreaks of population densi-
ties (Recknagel et al. 2014). Alternative inductive modelling techniques
such as artificial neural networks fail to explicitly disclose models and
thresholds but allow to interpret underlying relationships by sensitivity
analysis (Recknagel et al. 2002).

This case study illustrates the capacity of HEA for predictive model-
ling and threshold discovery of cyanobacteria blooms in two well-
studied lakes — the warm-monomictic and mesotrophic Lake Kinneret
(Israel) and the shallow-polymictic and hypertrophic Lake Taihu
(China). Even though the two lakes differ largely with regards to mor-
phometry, trophic state and climate conditions, both lakes are suscepti-
ble to recurrent cyanobacteria blooms. Nine years of limnological data of
both lakes summarised in Table 1 were utilized to model and analyse
the seasonal and inter-annual dynamics of cyanobacteria biomass by
HEA. Key questions of this case study were: (1) can similar driving
forces and thresholds for cyanobacteria outgrowth be discovered for
different lakes, and (2) how do driving forces and thresholds compare
between different lakes.

Fig. 2 illustrates an [F-THEN-ELSE model for cyanobacteria develop-
ment in Lake Taihu from 2000 to 2008. The Fig. 2A shows good correspon-
dence between measured and 5-day-ahead forecasted cyanobacteria
dynamics in Lake Taihu (coefficient of determination, r*> = 0.8). The
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Fig. 1. Conceptual diagram of the hybrid evolutionary algorithm (HEA). HEA evolves ‘fittest’ (best-matching) models from the multi-dimensional data by cyclically applying genetic
programming for the design of [F-THEN-ELSE rules and differential evolution for multi-objective parameter optimisation along thousands of loops. For each loop the model population
is initialised and data are boot-strapped. Model fitness is evaluated by lowest root mean square error (RMSE) and highest coefficient of determination (r2).

underlying model matches well both timing and magnitudes of fast
growth events of cyanobacteria observed over nine consecutive years.

Table 1
Summary of water quality data of Lake Kinneret and Lake Taihu from 2000 to 2008 used in
this study.

Lake Kinneret Lake Taihu
Mean + SD

Water temperature (WT) 227 +£5 17.8 + 8.36
°C

Secchi depth (SD) 34+06 0.33 £ 0.06
m

Dissolved oxygen (DO) 86+ 1.8 93+ 16
mg/L

pH 8.6 +£ 0.3 8.1+ 03

Nitrate (NOs-N) 0.09 £ 0.12 1.24 £+ 0.86
mg/L

Phosphate (P04-P) 0.0002 + 0.0014 0.04 + 0.02
mg/L

N/P (N:P) 54 + 76.1 41.7 + 359

Bacillariophyta 126 + 274 7+ 119
g/m?

Chlorophyta 213 £ 21 39 + 44
g/m*

Cyanophyta 10.7 £ 11.5 25.1 + 206
g/m?

The model associated the water temperature range 18.8 to 27.3 °Cand ni-
trate concentrations of smaller than 1.85 mg/L with high biomass of
cyanobacteria in different years. These conditions agree well with findings
that N-limitation of phytoplankton in summer is typical for Lake Taihu
(Paerl et al. 2011), and suggest that N,-fixing cyanobacteria would out-
compete non-N,-fixing cyanobacteria. However, cyanobacteria in Lake
Taihu in summer are dominated by non-N,-fixing Microcystis (Chen
et al. 2003) that may successfully bypass nitrate limitation by utilizing
ammonium (NH,4) released from anaerobic sediments during summer.
The Fig. 2B and C illustrates relationships of cyanobacteria with NO;-N
concentrations and water temperature, as discovered by sensitivity
analyses of ten best-performing models developed by HEA. Whilst
cyanobacteria biomass is inverse-exponentially declining with increased
nitrate concentrations, it displays linear growth at increasing water
temperatures. Fig. 2D and E eidetic illustrates how the [F-conditions of
the model separate ‘high’ and ‘low’ cyanobacteria biomasses observed
over the various years.

The Fig. 3A illustrates an IF-THEN-ELSE model that achieved
good 5-day-ahead forecasting results for seasonal dynamics of
cyanobacteria biomass in Lake Kinneret. The model predicts well popu-
lation dynamics of cyanobacteria between the years 2000 and 2008, but
underestimates magnitudes of peak events in 2000 and 2001 reflected
by a moderate r? = 0.62.

Sensitivity analyses of ten best performing models developed by HEA
show that cyanobacteria biomass in Lake Kinneret is increasing at
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Fig. 2. 5-day-ahead forecasting of cyanobacteria biomass in the upper productive stratum of Lake Taihu from 2000 to 2008 by the model:

IF18.8 < =WT < 27.3 AND NO5-N < 1.85
THEN cyanobacteria = (DO = (DO — In(Secchi = 41.1)))
ELSE cyanobacteria = (In(15.7/N:P) — ((((—96.95) / DO) / NO3-N) — WT)).

(A) model validation, (B) nitrate sensitivity of ten best cynobacteria models, (C) water temperature (WT) sensitivity of ten best cynobacteria models, (D) thresholds for high cyanobacteria
biomass, (E) thresholds for low cynobacteria biomass. The model was derived based on daily-interpolated monitoring time-series (Taihu Basin Authority) using the HEA. (WT = water tem-
perature, °C; DO = dissolved oxygen, mg/L; Secchi =Secchi depth, m; NOs-N = nitrate concentration, mg/L; N:P = total nitrogen to total phosphorus ratio.).

declining nitrate concentrations (Fig. 3B), and is increasing along with
rising water temperatures (Fig. 3C). Thus, for both lakes the IF-
conditions computed by HEA refer to the same environmental factors,
such as nitrate and water temperature, but the threshold ranges of IF-
conditions differ remarkably. The Lake Kinneret model suggests that ni-
trate concentrations of smaller than 0.025 mg/L and water tempera-
tures confined between 25.2 and 29.1 °C are associated with high
cyanobacteria biomass over the nine-year period. When applied to the
observed data of Lake Kinneret, these threshold conditions separate
well ‘high’ and ‘low’ cyanobacteria biomass (Figs. 3D and E). The nitrate
threshold quantified by HEA suggests that cyanobacteria blooms in Lake
Kinneret occur during nitrogen limitation as defined with dissolved in-
organic nitrogen concentrations smaller than 0.05 to 0.1 mg/L (Horne
and Cummins 1987). It also corresponds with findings that low nitrate
concentrations are associated with growth of the invasive N,-fixing

cyanobacterium Aphanizomenon ovalisporum (Berman 2001; Gophen
et al. 1999). Whilst the N,-fixing Cylindrospermopsis raciborskii formed
major summer blooms from 2004 to 2006 and since then co-
dominated the summer-fall assemblage with A. ovalisporum, the non-
N,-fixing Microcystis sp. subdominated during the summers of 2001
and 2003 feeding most likely either on NH,4 supplied from remixed
hypolimnetic water or derived nitrogen from amino acids and purines
(Berman 2001).

Thus, the HEA has selected the same driving factors, such as ni-
trate and water temperature, for predicting fast growth events of
cyanobacteria in two very different lakes. This finding suggests that
late summer nitrogen limitation caused by high nutrient uptake rates
may coincide with cyanobacteria blooms no matter if the trophic state
is hypereu- or mesotrophic, if the lake is shallow polymictic or warm
monomictic, and if the climate is temperate or Mediterranean. In
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Fig. 3. 5-day-ahead forecasting of cyanobacteria biomass in the upper productive stratum of Lake Kinneret from 2000 to 2008 by the model:

IFNO3-N < =0.025 AND 25.2 < =WT < =29.1

THEN cyanobacteria = ((((—191) / Secchi?) « (—328.5)) / (zooplankton + 2 « N:P + 143.2))

ELSE cyanobacteria = (399.8/((N:P + 26.3) + (bacillariophyta®  NO3))).

(A) model validation, (B) nitrate sensitivity of ten best cyanobacteria models, (C) water temperature sensitivity of ten best cyanobacteria models, (D) thresholds for high cyanobacteria
biomass, (E) thresholds for low cyanobacteria biomass. The model was derived based on daily-interpolated monitoring time-series (the Lake Kinneret Database) using the HEA.

(bacillariophyta =bacillariophyta biomass, g/m?; other abbreviations as on Fig. 2).

accordance with nutrient stoichiometry it also suggests that a
hypereutrophic lake may reach N-limitation at nitrate concentrations
that are two orders of magnitude higher than in a mesotrophic lake.
The quantified temperature ranges indicate that cyanobacteria may
grow at much lower water temperatures (e.g. 19 °C) and within a
much wider temperature range (e.g. 19 to 29 °C) at phosphorus suffi-

ciency in a hypertrophic lake than under phosphorus deficiency in a
stratified mesotrophic lake.

Overall this study has demonstrated that evolutionary computa-
tion can build predictive models of such complex and fast-evolving
events such as cyanobacterial blooms in waters. Thresholds identi-
fied and quantified by evolutionary computation enable aquatic
and terrestrial ecologists to disclose key limiting factors affecting
population dynamics and study underlying biological and genetic
mechanisms. The case study has also shown that evolutionary com-
putation suits as an excellent tool for meta-analysis of same-
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category systems such as lakes and reservoirs with largely different
environmental conditions.
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