
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/authorsrights

http://www.elsevier.com/authorsrights


Author's personal copy

Inductive reasoning and forecasting of population dynamics of
Cylindrospermopsis raciborskii in three sub-tropical reservoirs by
evolutionary computation

Friedrich Recknagel a,*, Philip T. Orr b, Hongqing Cao a

a School of Earth and Environmental Sciences, University of Adelaide, SA 5005, Australia
b Seqwater, PO Box 16146, City East, Qld 4002, Australia

1. Introduction

Lakes Wivenhoe, Somerset and Samsonvale are subtropical,
warm-monomictic and mesotrophic reservoirs located near
Brisbane in the subtropical southeast of Queensland, Australia.
Each of these reservoirs have annual recurring blooms of the
potentially toxic cyanobacterium Cylindrospermopsis raciborskii

(Woloszynska) Seenaya et Subba Raju (Orr et al., 2010). C.

raciborskii produces cylindrospermopsins (CYN’s) which are
hepatotoxic alkaloid cyanotoxins that present a risk to human
health (e.g. Hawkins et al., 1985) and which must be removed from

raw water during water treatment. Controlling the development of
C. raciborskii within these reservoirs is a key goal of Seqwater, the
water authority responsible for the management of the reservoirs.
However, C. raciborskii is ecologically adaptable and can form
blooms under a range of light, temperature and nutrient regimes
(Isvanovics et al., 2000; Sprober et al., 2003; Briand et al., 2002). It
also tolerates a wide range of other environmental conditions
including oligohaline waters (Caldwell, 2001) and nitrogen
depleted waters through its ability to fix atmospheric nitrogen
(N2) (Bouvy et al., 2000; Moisander et al., 2008). Although C.

raciborskii is being considered a tropical or sub-tropical species and
recorded in tropical countries such as Brazil (e.g. Bouvy et al., 2000;
Branco and Senna, 1994; DeSouza et al., 1998) it is now
increasingly detected in temperate regions of Europe (Dokulil
and Mayer, 1996; Padisak, 1997; Briand et al., 2002; Fastner et al.,
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A B S T R A C T

Seven-day-ahead forecasting models of Cylindrospermopsis raciborskii in three warm-monomictic and

mesotrophic reservoirs in south-east Queensland have been developed by means of water quality data

from 1999 to 2010 and the hybrid evolutionary algorithm HEA. Resulting models using all measured

variables as inputs as well as models using electronically measurable variables only as inputs forecasted

accurately timing of overgrowth of C. raciborskii and matched well high and low magnitudes of observed

bloom events with 0.45 � r2 > 0.61 and 0.4 � r2 > 0.57, respectively. The models also revealed

relationships and thresholds triggering bloom events that provide valuable information on synergism

between water quality conditions and population dynamics of C. raciborskii. Best performing models

based on using all measured variables as inputs indicated electrical conductivity (EC) within the range of

206–280 mS m�1 as threshold above which fast growth and high abundances of C. raciborskii have been

observed for the three lakes. Best models based on electronically measurable variables for the Lakes

Wivenhoe and Somerset indicated a water temperature (WT) range of 25.5–32.7 8C within which fast

growth and high abundances of C. raciborskii can be expected. By contrast the model for Lake Samsonvale

highlighted a turbidity (TURB) level of 4.8 NTU as indicator for mass developments of C. raciborskii.

Experiments with online measured water quality data of the Lake Wivenhoe from 2007 to 2010

resulted in predictive models with 0.61 � r2 > 0.65 whereby again similar levels of EC and WT have been

discovered as thresholds for outgrowth of C. raciborskii. The highest validity of r2 = 0.75 for an in situ

data-based model has been achieved after considering time lags for EC by 7 days and dissolved oxygen by

1 day. These time lags have been discovered by a systematic screening of all possible combinations of

time lags between 0 and 10 days for all electronically measurable variables. The so-developed model

performs seven-day-ahead forecasts and is currently implemented and tested for early warning of C.

raciborskii blooms in the Wivenhoe reservoir.
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2007), New Zealand (Wood and Stirling, 2003), Canada (Hamilton
et al., 2005) and the U.S. (Chapman and Schelske, 1997; Calandrino
and Perl, 2011).

The drivers of C. raciborskii blooms are highly complex and the
synergism between C. raciborskii bloom development and physi-
cal-chemical water quality conditions is still poorly understood.
Novel techniques for inductive reasoning and forecasting from
historical data can reveal environmental conditions and thresholds
that have triggered blooms of C. raciborskii in the past, and
synthesise short-term forecasting models for up to 14 days ahead.
These models can give early warning for timely operational control
and risk management of cyanobacteria bloom events.

Artificial neural networks (ANN) and evolutionary computation
(EC) have proved to be powerful techniques for inductive
reasoning and forecasting of highly complex limnological data
(e.g. Recknagel et al., 1997, 2013). Even though both ANN and EC
achieve similar good multivariate forecasting, only EC performs
mathematically explicit synthesises and representation of under-
lying models. The hybrid evolutionary algorithm HEA (Cao et al.,
2006, 2013) has been specifically designed and customised for
inducing predictive and explanatory models from complex
ecological data.

This study applied HEA to 11 years of water quality data
collected from sites close to the dam wall of the three reservoirs
and developed forecasting models to predict C. raciborskii cell
concentrations up to 2 weeks in advance. The models also reveal
underlying ecological relationships that trigger mass develop-
ments of C. raciborskii. Since the three lakes are similar in climate,
circulation patterns and eutrophication levels, collective proper-
ties of C. raciborskii in the three lakes have been identified.

2. Materials and methods

2.1. The Lakes Wivenhoe, Somerset and Samsonvale

Eleven years of water quality data collected from Lakes
Wivenhoe, Somerset and Samsonvale in south-east Queensland,
Australia between 1999 and 2010 (see Table 1) were used for this
study. The reservoirs are located to the north and west of Brisbane
(Fig. 1) and supply drinking water for about 1.5 million people.
Lake Samsonvale (also known as North Pine Dam) (278150S,
1528550E) is the smallest reservoir with a surface area of 21.8 km2

at full drinking water supply volume of 215,000 mL and has a
bubble plume destratifier which is activated during the summer
months to reduce stratification and help control Cylindrospermop-

sis raciborskii cell concentrations. Lake Somerset (27870S, 1528 330E)
is smaller with a surface area of 42.1 km2 at full supply volume of
380,000 mL and is located upstream of the third, largest and most
spatially diverse reservoir, Lake Wivenhoe (278240S, 1528360E) (Orr
et al., 2010). Lake Wivenhoe has a surface area of 107.5 km2 and
full supply volume of 1,165,000 mL. The catchments for these
reservoirs are typically unprotected, with more than 50%
dominated by cattle grazing pasture, and approximately 20%
being natural vegetation (Orr et al., 2010).

Table 1 summarises the water quality data measured in the
three reservoirs over an 11 year periods that have been utilised
for modelling. Since the intervals for measuring the historical
data ranged between weekly and biweekly, and sampling dates
differed for physical, chemical and biological variables, the data
have been interpolated to suit daily time steps for forecasting.
For simplicity, we used linear interpolation and in order to

Table 1
Summary of water quality data of the three reservoirs used in this study.

Wivenhoe Somerset Samsonvale

Historical data 1999–2009 On-line data 2007–2010 Historical data 1999–2009 Historical data 1999–2009

Mean � SD

Electrical conductivity (EC) mS cm�1 354.90 � 72.64 348.75 � 72.1 235.75 � 45.35 226.94 � 41.62

Turbidity (TURB) NTU 12.92 � 56.76 2.71 � 3.59 2.32 � 2.25 2.72 � 1.4

Water temperature (WT) 8C 22.66 � 3.70 22.51 � 3.61 22.69 � 3.98 22.47 � 3.64

Dissolved oxygen (DO) mg L�1 8.67 � 1.25 7.81 � 1.61 7.55 � 1.82 7.96 � 1.4

pH 8.21 � 0.32 8.15 � 0.54 7.97 � 0.46 7.95 � 0.34

Silica (SiO2) mg L�1 3.24 � 2.69 4.25 � 2.13 2.27 � 1.78

Total nitrogen (TN) mg L�1 0.48 � 0.078 0.59 � 0.15 0.56 � 0.09

Total phosphorus (TP) mg L�1 0.019 � 0.012 0.028 � 0.017 0.018 � 0.007

Chlorophyll_a (Chl_a) mg L�1 7.82 � 4.54 6.41 � 3.58 10.66 � 7.49 11.6 � 5.23

Cylindrospermopsis cells/mL 10,108 � 20,698 6098 � 12,466 10,259 � 250,489 14,853 � 19,110

Fig. 1. The locations of the three reservoirs within Australia.
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develop models for 7-day-ahead forecasting the interpolated
input data have been shifted by 7 days against the daily output
data. On-line measured water quality data were available for
Lake Wivenhoe from 2007 to 2010.

2.2. Hybrid evolutionary algorithm HEA

This study was conducted using the hybrid evolutionary
algorithm HEA developed by (Cao et al., 2006, 2013) and which
had been successfully applied for predictive modelling of
cyanobacteria growth in a variety of lakes and rivers worldwide
(e.g. Chan et al., 2007; Kim et al., 2007; Recknagel et al., 2008). The
design of HEA combines genetic programming (GP) for optimising
the model structure and differential evolution (DE) for optimisa-
tion of model parameters (see Fig. 2). We use GP according to Koza
(1992) to evolve the rule model structure. Since GP typically
operates on parse trees rather than traditionally used bit strings, it
suits well to evolve equations or formula for input-output
relationships. Based on the three function sets: logic functions
(FL = {AND, OR}), comparison functions (FC = {>, <, �, �}) and
arithmetic functions (FA = {+, �, *, /, exp, ln}), GP represents IF-
THEN-ELSE rule models as a vector of multiple trees (Tree 1, Tree 2,
Tree 3) where Tree 1 denotes the IF condition branch, Tree 2 and
Tree 3 denote the THEN branch and ELSE branch respectively.
Hence their function sets are: FTree1 = FL [ FC [ FA and FTree2/
Tree3 = FA. Cao et al. (2006) illustrate in great detail the design of
IF-THEN-ELSE model by GP.

Differential evolution (DE) is one of the most recent evolution-
ary algorithms for solving real-parameter optimisation problems
proposed by Storn and Price (1997). It is an effective global
optimisation algorithm which extracts the differential information
(i.e., information on distance and direction towards global
optimum) from the current population of solutions to guide its
further search. It doesn’t require separate probability distribution
that makes the scheme completely self-organizing. More details on
how DE is implemented in HEA are provided in Cao et al. (2013).

Since HEA induces models from data patterns, it requires
cleansed and formatted cross-sectional or time-series data that are
representative of the system to be modelled for both the number of

observations and their relevance. The more event-related patterns
the historical data contains, the more generic models tend to
become, and the more likely the model’s predictive validity
reaches beyond the data limits. Ecosystem evolution requires that
models become regularly upgraded by updated data.

Time series between 1999 and 2010 from the three reservoirs
used in this study provided seasonal and interannual patterns of
physical and chemical water quality data as well as population
dynamics of C. raciborskii. In order to utilise the information
content of available data the boot-strap scheme has been
implemented for the training of HEA as illustrated in Fig. 3. It

Fig. 2. Design and functioning of the hybrid evolutionary algorithm HEA (Recknagel et al., 2013).

Fig. 3. Scheme of boot-strap training applied to the hybrid evolutionary algorithm

HEA (Recknagel et al., 2013).
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7-day-ahead Forec as�ng of Cylind rospermopsis cell s mL-1

Wivenhoe Somerset Samsonvale
IF EC>=279 .7
THEN Cylind rosp ermops is=
(ln(|(Chla/(5.20 6-SiO2)) |)*
exp(( WT/(23 .514 /pH))) )
ELSE  Cylind rosp ermops is=
(Chla*(( (Chla*Chla)+WT)*3.954 ))

IF EC>=206 .1  
THEN Cylind rosp ermops is=
(((exp(pH)/111 .3)-(( DO/ pH)*DO)) *
(132 /(( TP*26 .8)/(WT+(-22)))))   
ELSE   Cylind rosp ermops is=
((WT+(-22 .3)) *(132 /(( TP*26 .8)/
(98 .2/pH))))  

IF EC<225 .9
THEN Cylind rosp ermops is=
((ln(|(WT/SiO2)|)*WT)*((-1.2)-
((Chla+TP)*(-21 .4))))   
ELSE Cylind rosp ermops is=
((ln(|(WT/SiO2)|)*WT)*
((TURB/TP) -(-56 .7)) )
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Fig. 4. 7-day-ahead forecasting of C. raciborskii utilising all water quality data of the Lakes Wivenhoe (left column), Somerset (middle column) and Samsonvale (right column)

documented by the model equations (upper row), model validation (middle row) and thresholds (bottom row).

Fig. 5. 7-day-ahead forecasting of C. raciborskii utilising electronically measurable water quality data of the Lakes Wivenhoe (left column), Somerset (middle column) and

Samsonvale (right column) documented by the model equations (upper row), model validation (middle row) and thresholds (bottom row).
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randomly selects rmax data-subsets for training and testing for each
of which tmax generations of models are evolved. After the
completion of rmax boot-strap runs it determines the overall
‘‘fittest model’’ of all the generations evolved through the
principles of genetic programming and differential evolution. In
this study a value of rmax = 100 was applied to all modelling
experiments while tmax = 80 was used for modelling historical data
from the three reservoirs and tmax = 100 was used for modelling
on-line data from Lake Wivenhoe.

3. Results

3.1. Forecasting models of C. raciborskii based on historical water

quality data from 1999 to 2010

3.1.1. Model validation and thresholds

Modelling results for the three reservoirs based on 11 years of
water quality data summarised in Table 1 are shown in Fig. 4. The
best performing models match the timing of Cylindrospermopsis

raciborskii bloom development for the 11 consecutive years but
sometimes underestimate the magnitudes of bloom events and
this is reflected by r2 values of 0.61, 0.45 and 0.5 respectively. The
three models conform by suggesting low levels of electrical
conductivity EC as thresholds for triggering different abundances
of C. raciborskii as shown in the bottom row of Fig. 4.

The three best performing models for the three lakes developed
only from electronically measurable input variables including WT,
EC, pH, DO, TURB and Chl_a fluorescence are documented in Fig. 5.
Whilst r2 values of 0.57 for Wivenhoe, 0.4 for Somerset and 0.43 for
Samsonvale are slightly lower compared with the models where
chemical and biological data are included (Fig. 4), the annual

timing of C. raciborskii bloom development is still accurately
predicted, and magnitudes of peak abundances well approximated.
The models also indicate that bloom development in Wivenhoe
and Somerset may be triggered by WT in contrast to Samsonvale
where TURB has been indicated as a criterion for excessive or
diminished abundances of C. raciborskii. The derived water
temperature range of 25.6 < WT < 32.7 8C for Wivenhoe (Fig. 5,
left column) correlates well with the known temperature optimum
of C. raciborskii (Briand et al., 2002). A similar threshold value of
25.5 8C for WT triggering C. raciborskii blooms in Somerset (Fig. 5,
middle column) also correlates with the published temperature
optimum of this species.

The turbidity level of 4.8 NTU discovered as threshold for high
abundances of C. raciborskii in Samsonvale may reflect inter-
relationships between increasing water cloudiness by growing cell
concentrations and underwater light conditions. Even though one
peak in 2003 seems to be related to TURB > = 4.8 NTU the
remaining peak events correspond with TURB < 4.8 NTU and
therefore higher water transparency.

3.1.2. Ecological relationships

Fig. 6 shows the input selection frequencies for the 20 best
models of each of the three reservoirs. Water temperature was the
most frequently selected parameter by more than 90% of the
models while electrical conductivity was shown to be least
frequently selected. The biggest difference in the selection
frequency between the three reservoirs was observed for TURB
that ranked second after WT for Wivenhoe and Samsonvale but
ranked last for Somerset.

Fig. 7 summarises the relationship between C. raciborskii cell
concentrations, WT and TURB that have been discovered by
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Fig. 6. Input selection frequencies of the twenty best performing models for the three Lakes Wivenhoe, Somerset and Samsonvale.
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sensitivity analyses of the 10 best models for the three lakes. It
suggests that C. raciborskii starts to grow at WT higher than 20 8C
and reaches its fastest growth at approximately 23 8C (Fig. 7, top
row). Results from Wivenhoe and Somerset indicate a WT range of
between 25 and 29 8C are required for sustained cell concentra-
tions in excess of 2 � 104 cells mL�1 (Fig. 7, middle row). Rising cell

concentrations coincide with increasing turbidity levels in Lakes
Wivenhoe and Samsonvale (Fig. 7, bottom row).

The relationships between C. raciborskii, EC and pH are shown in
Fig. 8. The results for Wivenhoe suggest that cell concentrations of
up to 5 � 105 cells mL�1 are exponentially declining within the EC
range from 203 to 504 mS cm�1. Declining effects on cell

Fig. 7. Interrelationships between C. raciborskii and water temperature (top and middle row) and turbidity TURB (bottom row) extracted from sensitivity analysis of 10 best

performing models of the Lakes Wivenhoe (left column), Somerset (middle column) and Samsonvale (right column). Dashed lines indicate trend lines.

Fig. 8. Interrelationships between C. raciborskii and electrical conductivity (top row) and pH (bottom row) extracted from sensitivity analysis of 10 best performing models of

the Lakes Wivenhoe (left column), Somerset (middle column) and Samsonvale (right column). Dashed lines indicate trend lines.

F. Recknagel et al. / Harmful Algae 31 (2014) 26–34 31
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concentrations along somewhat lower EC ranges have also been
discovered for Somerset and Samsonvale. Rising cell concentra-
tions of C. raciborskii correspond with increasing pH in Wivenhoe
and Somerset, whilst cell concentrations in Samsonvale stagnate
within a comparable pH range (Fig. 8, bottom row).

Comparing responses of C. raciborskii to changing concentra-
tions of TP and TN in Fig. 9 suggests that all three lakes experience
highest cell concentrations when TP and TN concentrations are
lowest, and lowest cell concentrations when nutrient concentra-
tions are highest (Fig. 9, top and middle row). Since SiO2

concentrations of Samsonvale were noticeably lower compared
to the other two lakes (Table 1), Wivenhoe and Somerset
experienced stimulating effects on cell concentrations with
changing SiO2 concentrations along the range between 2 and
8.5 mg L�1 but cell concentrations at Samsonvale showed declin-
ing effects along the range from 0 to 4.8 mg L�1 (Fig. 9, bottom
row).

3.2. Forecasting models for C. raciborskii in the Lake Wivenhoe based

on online data from 2007 to 2010

After demonstrating the suitability of electronically measurable
water quality variables as predictor variables for 7-day-ahead
forecasting in Fig. 5, online water quality monitoring data from
September 2007 to December 2010 from Lake Wivenhoe was used
for modelling and forecasting the timing and magnitude of
Cylindrospermopsis raciborskii population dynamics using HEA.
Fig. 10 shows results by including online measured Chl_a (left
column) and excluding Chl_a (middle column) as input variable. In
both cases the correlation is good with r2 values greater than 0.65.
Similarly good correlation has been achieved between measured

and forecasted timing of maximum growth rate of cell concentra-
tions, but better estimation of peak cell concentrations were
obtained by excluding Chl_a as an input variable. Interestingly WT
and EC thresholds for triggering excessive and diminished
concentrations of C. raciborskii found by both models matches
the thresholds for models of Wivenhoe based on historical data
(left columns of Figs. 4 and 5). To learn more about lag times in the
response of the C. raciborskii population to changing water quality
conditions, a systematic screening experiment has been conducted
testing all combinations of time lags between 0 and 10 days for the
5 online monitored input variables WQ, DO, pH, TURB and EC. The
best forecasting results have been achieved by considering a 7 days
delay between C. raciborskii and EC, and a 1 day delay between C.

raciborskii and DO. However no significant forecasting improve-
ments have been observed by time lags imposed on the remaining
3 input variables. Fig. 10 (right column) shows a slightly improved
forecasting result being achieved by the lagged inputs of EC and DO
in comparison with un-lagged inputs (Fig. 10, left and middle
column). The threshold values of WT and EC for separating high
and low abundances of C. raciborskii selected by the model
including time-lags (Fig. 10, right column) match the previously
discovered thresholds by models for the Lake Wivenhoe.

4. Discussion

This study has demonstrated the ability of evolutionary
computation to perform inductive reasoning and forecasting
through exploration of the rich information content of complex
water quality monitoring data from aquatic ecosystems such as
drinking water reservoirs. In particular it has shown the strength of
evolutionary computation in: (1) predictive modelling of fast

Fig. 9. Interrelationships between C. raciborskii and total phosphorus (TP) (top row), total nitrogen (TN) (middle row) and SiO2 concentrations (bottom row) extracted from

sensitivity analysis of 10 best performing models of the Lakes Wivenhoe (left column), Somerset (middle column) and Samsonvale (right column). Dashed lines indicate trend

lines.
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processes such as population growth of Cylindrospermopsis

raciborskii in response to multivariate environmental driving
variables, and (2) discovering knowledge about synergies between
environmental driving variables and population dynamics of C.

raciborskii. A particular novel outcome of this research is the
revealing of ecological thresholds that indicate alternative states of
the three drinking water reservoirs: ‘mass development or
restrained development of C. raciborskii’. Both, ecological thresh-
olds and interrelationships between water quality variables and
population dynamics of C. raciborskii contribute to improved
understanding and informed management of this species.

The research has shown that electrical conductivity, water
temperature and turbidity are indicative predictors for develop-
ment of C. raciborskii blooms at each of the three study sites. These
findings have further been refined by assessing the relationship
between C. raciborskii cell concentrations and key water quality
variables extracted and generalised from the 10 best performing
models by HEA. These results suggest that the optimum water
temperature range for population growth of C. raciborskii is
25.6 � WT < 32.7 8C which compares well with findings of Briand
et al., 2002 who suggested an optimum temperature range of
25 � WT < 35 8C based on laboratory experiments. The overarch-
ing effect of electrical conductivity on population growth of C.

raciborskii seems to be inhibitory within the range of 140–
206 mS cm�1 and above 280 mS cm�1 with the highest cell
concentrations occurring when EC is between 206 and
280 mS cm�1. The range of EC observed in the 11 data sets reflects
impacts of sustained drought and large inflow events typical of the
subtropical climate in south east Queensland.

Despite the finding that population growth of C. raciborskii

decreases with increasing EC levels, results show that peak cell

concentrations remain high. Therefore it can be concluded that it
tolerates a broad range of salinity as previously suggested by
Briand et al. (2002) and Moisander et al. (2002). Sensitivity results
for Lakes Wivenhoe and Samsonvale suggest self-shading effects of
C. raciborskii reflected by linear relationships between growing cell
concentrations and increasing turbidity. Nevertheless the fact that
highest cell concentrations occur at highest turbidity levels
corresponds with findings by Shafik et al. (2001) that C. raciborskii

can grow well in low underwater light conditions within the
surface mixed layer.

Positive relationships have been discovered for the three
lakes between growing cell concentrations of C. raciborskii and
increasingly alkaline pH. This relationship may refer to the
rapid CO2 consumption during cyanobacteria bloom events
(Shapiro, 1990) but also to the potential of cyanobacteria to use
bicarbonate as their carbon source (Kaplan et al., 1991). As
expected for mesotrophic lakes the nutrient pool of total
phosphorus is exponentially diminished by C. raciborskii

reflected by highest cell concentrations at lowest TP concen-
trations. However the relationship with total nitrogen appears
less dynamic and may suggest that C. raciborskii does not solely
rely on the internal TN pools of the lakes but utilises
atmospheric N sources by nitrogen fixation (Bouvy et al.,
2000; Moisander et al., 2008).

Linear positive relationships have been discovered between
SiO2 and total phosphorus and C. raciborskii for Wivenhoe and
Somerset. These relationships may point at competitive exclusion
between diatoms and C. raciborskii suggesting that in absence of
diatoms the SiO2 consumption is relatively low and therefore high
SiO2 concentration may correspond with high cell concentrations
of C. raciborskii. However the linear inhibitory relationship

Fig. 10. 7-day-ahead forecasting of C. raciborskii in the Lake Wivenhoe utilising online water quality data including chlorophyll_a (left column) and excluding chlorophyll_a

(middle column) and including time-lagged inputs (right column) documented by the model equations (upper row), model validation (middle row) and thresholds (bottom

row).
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discovered for Samsonvale suggests possible coinciding mass
developments of diatoms and C. raciborskii.

5. Conclusions

Overall this study has demonstrated the capacity of the hybrid
evolutionary algorithm HEA to extract and synthesise interrelated
information from complex long-term monitoring data of aquatic
ecosystems. HEA supports both, developing highly accurate
models for short-term forecasting of population dynamics of fast
growing microorganisms such as cyanobacteria and knowledge
discovery on highly complex synergies between changing envi-
ronmental and climate conditions and microorganisms.

More specifically this research has resulted in following
outcomes:

(1) Rule-based models developed by HEA for the three sub-tropical
reservoirs provided accurate 7-day-ahead forecasts of popula-
tion dynamics of Cylindrospermopsis raciborskii by using (i) all
available water quality data as inputs, or (ii) by only using
electronically measurable water quality data.

(2) Rule-based models developed by HEA from on-line measured
water quality data from Lake Wivenhoe performed highly
accurate 7-day-ahead forecasts of population dynamics of C.

raciborskii. These models can now be implemented and tested
for real-time forecasting and early warning of cyanobacteria
blooms.

(3) Threshold conditions of EC and WT that trigger high cell
concentrations of C. raciborskii as revealed by the models
compared well between the three lakes and with findings in the
literature.

(4) Interrelationships between physical and chemical water
quality variables and C. raciborskii revealed by sensitivity
analyses compared well between the three lakes and with
findings in the literature.
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