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Abstract Forecasting models for Anabaena, Apha-

nizomenon and Microcystis have been developed for

the hypertrophic phase from 1979 to 1990 and the

eutrophic phase from 1997 to 2012 of the polymictic

Lake Müggelsee by means of the hybrid evolutionary

algorithm HEA. Comparisons of limnological param-

eters of the two phases revealed not only a distinct

seasonal extension of N-limitation but also higher

water temperatures that rose earlier and lasted longer

between spring and autumn from 1997 to 2012. These

differences were reflected by threshold conditions and

sensitivity functions of the cyanobacteria-specific

models evolved by HEA for the two phases. Seven-

day-ahead forecasts matched well timings of peaking

biomass observed for the three cyanobacteria but

partially failed to predict accurate magnitudes,

whereby coefficients of determination r2 ranged

between 0.48 and 0.76 for models in Phase I and

between 0.42 and 0.69 in Phase II. The threshold

conditions of the models quantified ranges of key

predictor variables such as water temperature and

transparency, concentrations of NO3-N and PO4-P that

were symptomatic for sudden outbreaks of high

biomass of the three cyanobacteria. Sensitivity func-

tions extracted from 20 best performing models for

each of the three cyanobacteria in both phases

indicated different abundances between N-fixing An-

abaena and Aphanizomenon compared to non-N-

fixing Microcystis in response to strengthened N-lim-

itation in Phase II.

Keywords Polymictic eutrophic lake �
Cyanobacteria � HEA � Forecasting � Ecological

thresholds � Sensitivity analysis � Interrelationships

Introduction

Polymictic eutrophic lakes become increasingly sus-

ceptible to nuisance cyanobacteria blooms by more

frequent internal nutrient pulses during extended

stratified periods in summer under the influence of

climate warming (Wilhelm and Adrian, 2008; Wagner

& Adrian, 2009). By contrast, extended stratification

periods in dimictic lakes may strengthen nutrient

limitation in the epilimnion with nutrient pulses

occurring during autumn overturn (Adrian et al.,

1995; Huisman et al., 2004; Elliott et al., 2006; Jöhnk

et al., 2008; Wilhelm & Adrian, 2008; Mooij et al.,

2009; Wagner & Adrian, 2009), whereby access to the
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hypolimnetic nutrient pools may be limited to buoyant

cyanobacteria species (Reynolds, 1984; Paerl, 1988).

The polymictic eutrophic Lake Müggelsee has been

studied extensively with respect to impacts from climate

warming (Adrian et al., 2009; Adrian et al., 2012) and the

development of cyanobacteria blooms (Wilhelm &

Adrian, 2008; Wagner & Adrian, 2009; Huber et al.,

2012). The lake has a mean depth of 5 m, a retention time

of 1–4 months and a catchment area of ca. 7000 km2.

Being exposed to both maritime and continental

climate, the duration of ice cover and circulation

patterns of Lake Müggelsee differ year by year

alternating between thermal stratification and wind-

driven mixing in summer (Wilhelm & Adrian, 2008;

Livingstone & Adrian, 2009; Wagner & Adrian,

2009). Even though the external nutrient load declined

by about 50% over the past two decades (Köhler et al.,

2005), remobilisation from bottom sediments main-

tained high phosphorus concentrations in the lake

during calm summer periods (Wilhelm & Adrian,

2008). Following factors limiting seasonally phyto-

plankton development in Lake Müggelsee have been

revealed by bioassays (Kolzau et al. 2014) and nutrient

ratios (Köhler et al., 2000, 2005): light and temper-

ature in winter and early spring, phosphorus and

grazing in late spring, nitrogen in summer.

The spring biomass of cyanobacteria in Lake

Müggelsee declined since the 1980s (Köhler et al.,

2005) and summer blooms by Planktothrix agardhii,

Aphanizomenon flos-aquae, Anabaena and Microcystis

species became less frequent in recent years. Timing

and magnitude of bloom events were largely controlled

by total phosphorus and mixing intensity largely driven

by meteorological events (Wagner & Adrian, 2009).

The strong influence of hydrodynamic processes in

polymictic lakes complicates predictive modelling of

phytoplankton development. As demonstrated for Lake

Müggelsee, process-based modelling suits well long-

term forecasting by scenario analysis (e.g. Recknagel

et al., 1995) and simulation of seasonal population

dynamics (e.g. Huber et al., 2008). However, short-term

forecasting of timing and magnitudes of species-

specific outbreaks of population densities requires

alternative modelling techniques that quantify

cyanobacteria-specific threshold conditions for popula-

tion outbreaks (Recknagel et al., 2013; Recknagel et al.,

2014c). Wagner & Adrian (2009) applied statistical

methods to long-term data of Lake Müggelsee identi-

fying the following threshold conditions for the

dominance of cyanobacteria: (1) stratification periods

exceeding 3 weeks and exhibiting a Schmidt stability of

0.44 g cm cm-2 favoured fast growth of cyanobacteria

within a critical TP concentration range (70–215 mg/l),

(2) hypolimnetic TP, the intensity of Schmidt stability,

epilimnetic TP and epilimnetic TN/TP were most

important predictor variables for the occurrence of

Aphanizomenon, Anabaena, Microcystis and Plank-

tothrix and (3) stratification periods exceeding 3 weeks

caused a switch in the dominance from non-N-fixing to

N-fixing cyanobacteria species affecting the ecosystem

structure and functioning. These threshold conditions

proved suitable to anticipate cyanobacteria develop-

ment in Lake Müggelsee during heat waves in 2003 and

2006 (Huber et al., 2010).

Evolutionary computation (Holland, 1975) offers an

alternative to rigid, knowledge-constrained process-

based modelling. It applies principles of natural selection

and evolution to infer multivariate IF–THEN-ELSE

models from complex data patterns based on the

cognitive principles ‘generative creation’ and ‘choices

over open-ended possibilities’ (Holland et al., 1986).

When applied to population densities, IF conditions of

these models reveal explicit thresholds and sensitivity

functions between predictor and output variables that

quantify ecological interrelationships indicative for out-

breaks of population density (Recknagel et al., 2014c).

Resulting models are not relying on ad hoc measured data

but use routine monitored data, can be easily updated by

re-training with annually updated data, are simple and

therefor fully transparent, and are easy to implement for

early warning and operational control.

Here we apply the hybrid evolutionary algorithm

(HEA) (Cao et al., 2013; Recknagel et al., 2014a) for

modelling population dynamics of the cyanobacteria

Anabaena, Aphanizomenon and Microcystis in two

different time periods in Lake Müggelsee. In Phase I

(1979–1990), the lake appeared to be hypertrophic,

and in Phase II (1997–2012), the lake became

eutrophic with decreasing external nutrient loads.

The application of HEA to water quality data

patterns of 12 years in Phase I and 16 years in Phase II

of Lake Müggelsee aimed at (1) to develop models for

7-day-ahead forecasting of population dynamics of the

three cyanobacteria within the two phases, (2) to

quantify threshold conditions for sudden outbreaks of

population densities within the two phases, and (3) to

discover differences in the interrelationships between

physical–chemical parameters and the three
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cyanobacteria between the two phases. The forecasting

horizon of 7-day-ahead has been chosen exemplarily

since it is typical for operational algal bloom control.

Based on outcomes (2) and (3) we aimed at testing the

following hypotheses: 1. More frequent seasonal NO3-

N-limitation in Phase II makes the three cyanobacteria

more reliant on sediment-sourced NH4 and N-fixing

capability. 2. More frequent summer heatwaves in

Phase II expand temperature ranges favouring out-

breaks of cyanobacteria population density. 3. Buoyant

Microcystis is less limited by underwater light in Phase

I than Anabaena and Aphanizomenon.

Materials and methods

Data of Lake Müggelsee

Lake Müggelsee (Fig. 1) has been sampled weekly or

biweekly (during winter) since 1979. Until 1987,

samples were taken from 0.5, 4 and 7 m depth at the

deepest site. Since then, 21 volumetrically weighed

subsamples from five stations have been integrated.

Secchi disc depth was measured at the deepest site.

Concentrations of soluble reactive phosphorus (PO4-P),

nitrate (NO3-N), ammonium (NH4-N) and soluble

reactive silica (Si) were quantified using standard

protocols (APHA, 2005). Water temperature and pH

values were measured by a multiprobe sonde (YSI 6600,

Yellow Springs Instruments, USA) at 0.5 m. Phyto-

plankton was counted in sedimentation chambers using

an inverted microscope (Utermoehl, 1958). Lengths of

counted filaments were always measured. Biomass per

cell or filament was calculated assuming simple

geometric bodies. Table 1 summarises limnological

variables of Lake Mueggelsee utilised in this study.

Hybrid evolutionary algorithm HEA

Evolutionary computation infers models from data

(Holland, 1975; Holland et al., 1986). The hybrid

evolutionary algorithm HEA (Cao et al., 2013, 2014)

has been designed to evolve ‘‘fittest IF–THEN-ELSE

models’’ from ecological data by combining genetic

programming (GP) for optimising the model structure

and differential evolution (DE) for optimising model

parameters. GP is applied to search for the optimum

model structure by continually recombining arith-

metic and logic operators based on principles of

crossover, mutation and reproduction as explained in

great detail in Recknagel et al. (2014a). The DE is an

evolutionary algorithm designed for parameter opti-

misation (Storn & Price, 1997) that extracts differen-

tial information (i.e. distance and direction to globalFig. 1 Bathymetric map of Lake Müggelsee

Table 1 Limnological data

of Lake Müggelsee

measured from 1979 to

1990 and 1997 to 2012

Limnological variable 1979–1990

Hypertrophic

1997–2012

Eutrophic

Avg/min/max

Water temperature (�C) 11.3/0.1/24.6 11.6/0.2/26.6

Secchi depth (m) 1.5/0.4/5.1 2/0.5/6.3

pH 8.2/7/9.4 8.3/7.1/9.5

PO4-P (lg/l) 58.5/1/474 70.6/2/521

NO3-N (mg/l) 1.2/0.004/7.4 0.33/0.01/1.91

NH4-N (mg/l) 0.2/0.005/4.2 0.096/0.01/0.81

Si (mg/l) 3.58/0.01/8.1 4.41/0.05/10.5

Anabaena (mg/l) 0.044/0.001/5.34 0.084/0.001/9

Aphanizomenon (mg/l) 2.33/0.001/73.21 0.55/0.001/29.27

Microcystis (mg/l) 0.36/0.001/12.67 0.082/0.0001/6.23
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optimum) from the current population of solutions as

guide to search for the global optimum.

The daily-interpolated time series data of Lake

Müggelsee from 1979 to 1990 and from 1997 to 2012

provided a wealth of seasonal and interannual patterns

of abiotic and biotic limnological variables suitable for

modelling by HEA. In order to take full advantage of

the information content of the data, a cyclic bootstrap

scheme was applied that randomly selected different

data subsets for training and testing (see Recknagel

et al., 2013) for each of 80 evolved generations of

models. After 100 bootstrap runs, the overall ‘‘fittest

model’’ of all 80 generations was determined. The

fitness of each model was evaluated by the root mean

squared error (RMSE) between the measured training

data ŷi and the predicted data yi defined as follows:

Fitness ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

k

X

k

i¼1

ðŷi � yiÞ2

v

u

u

t :

The software HEA automatically carries out sensi-

tivity analyses for the input variables of each

discovered model. For this purpose, it calculates

output trajectories separately for each input range

(mean ± SD) by keeping remaining input variables

constant at mean values. Resulting sensitivity curves

visualise the output trajectories in percentage terms

(0–100%) within their range of each input. In this

study, sensitivity curves of 20 models with the highest

coefficients of determination r2 and P values smaller

than 0.05 of both Stages I and II were averaged and

visualised (Fig. 9).

Results

Average long-term changes in Lake Müggelsee

between Phase I and Phase II

Figure 2a–f compare the total annual averages of

selected limnological parameters for Phases I and II of

the Lake Müggelsee data (Table 1). Figure 2a shows

that the average water temperature of Phase II was

warming up much faster from mid-March to mid-May

Fig. 2 Annual averages of Phase I (1979–1990) and Phase II (1997–2012) for a water temperature �C, b Secchi Depth m, c the

logarithm of the ratio of (NO3-N ? NH4) to PO4-P, d Anabaena mg/l, e Microcystis mg/l and f Aphanizomenon mg/l
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and reached up to 2�C warmer temperatures from June

till August suggesting that stratification periods may

have occurred earlier and lasted longer in summer.

Interestingly the averaged winter temperatures in

Phase II were about 1�C lower in December, January

and February.

After averaging the observed Secchi depths

(Fig. 2b), it became obvious that the water trans-

parency improved significantly in phase II with a

distinct clear water stage in early summer. The

averaged ratios of dissolved inorganic nitrogen to

dissolved inorganic phosphorus in Fig. 2c clearly

reflected that lowered external nutrient loads have

successfully extended the period of nitrogen limitation

from 3 months in Phase I to 6 months from mid-June

to mid-December in Phase II. Figure 2d demonstrated

on average much higher biomass of Anabaena in July

in Phase II compared to Phase I, and may indicate that

it benefited from longer lasting thermal stratification

(Wagner & Adrian, 2009) and eased competition by

chloro- and bacillariophyta subject to zooplankton

grazing during the clear water stage observed in

Fig. 3 7-Day-ahead

forecasting of Anabaena in

Lake Müggelsee. Phase I:

a IF–THEN-ELSE model,

b validation of the model,

c illustration of threshold

conditions of the model,

Phase II: d IF–THEN-ELSE

model, e validation of the

model and f illustration of

threshold conditions of the

model
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Fig. 2b. This finding does not apply to Microcystis and

Aphanizomenon that show significantly declined aver-

age biomass throughout the year in Phase II compared

to Phase I (Fig. 2e, f).

7-Day-ahead Forecasting

One hundred models have been evolved by HEA for

each of the three cyanobacteria in each Phase I

(1979–190) and Phase II (1997–2012) based on

repeated bootstrap runs. Figures 3, 5 and 7 document

the models with the highest coefficients of determi-

nation r2 and P values smaller than 0.05. The selected

model for Anabaena in Phase I achieved an r2 = 0.76

and forecasted well the timing and magnitudes of two

major peaks in 1983 and in 1986 (Fig. 3b). Minor

peaks (\ 0.5 mg/l) in the remaining years were

matched by timing but either over- or underestimated

in terms of magnitude. The underlying model

(Fig. 3a) identified the water temperature range

between 20.4 and 22.5�C and Secchi depths below

0.9 m as indicative for peaking biomass of Anabaena

in Phase I. Figure 3c clearly illustrates that these

threshold conditions prove to be predictive for

Anabaena biomass greater than 0.5 mg/l. This finding

is underpinned by Fig. 4 that shows how the WT and

Secchi depth ranges of the model separate high and

low values of the measured Anabaena biomass.

Figure 3e provides the validation result of the An-

abaena model developed for Phase II as documented

in Fig. 3d. This model matched well peaking biomass

of Anabaena between 2006 and 2010, but failed to

predict an Anabaena outbreak in 2002. It achieved an

r2 = 0.69 and identified a slightly wider water

temperature range between 21.1 and 25.9�C as

indicative for biomass greater than 1 mg/l in Phase

II (Fig. 3f).

The two models for Aphanizomenon achieved

r2 = 0.48 for Phase I and r2 = 0.42 for Phase II as

documented in Fig. 5. The model for Phase I identified

WT greater than 22.2 or PO4-P concentrations smaller

than 41.9 lg/l as conditions concurring with biomass

of Aphanizomenon greater than 10 mg/l (see Fig. 5c).

Figure 6a, b illustrate that these conditions separate

higher and lower values when applied to the measured

biomass of Aphanizomenon. The model for Phase II

discovered the water temperature range between 20

and 23.4�C and PO4-P concentrations below 122.9 lg/

l as being predictive for biomass of Aphanizomenon

greater than 3 mg/l (Fig. 5d–f). Whilst this model

forecasted reasonably well seasonal and interannual

dynamics of Aphanizomenon biomass for most of the

years between 1997 and 2012, it overestimated

biomass magnitudes in 2002 and 2005. Figures 6c, d

illustrate how the IF condition of the model divides

observed Aphanizomenon data between below and

above 3 mg/l.

Fig. 4 Functioning of the IF condition as threshold for

forecasting of a high population densities by the THEN

equation and b low population densities by the ELSE equation

of the model for Anabaena for Phase I
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The IF conditions of the Microcystis model for

Phase I identified water temperatures between 14.5

and 22.2�C and NO3-N concentrations smaller than

0.041 mg/l as indicative for biomass greater than 1

mg/L (see Fig. 7a, c). The model underestimated

the biomass measured for Microcystis in 1982 but

matched well timing and magnitudes of peaking

biomass for the remaining years with an r2 = 0.54

(Fig. 7b). Even though the Microcystis model for

Phase II selected the same threshold criteria, their

ranges were quite different compared to the model

for Phase I with water temperatures between 20.9

and 23.7�C and NO3-N concentrations smaller than

0.2 mg/l (Fig. 7d) that separated well Microcystis

values below and above 0.5 mg/l (Fig. 7f). It

achieved an r2 = 0.48 but failed to forecast high

Microcystis biomass observed in 2002 and 2006

(Fig. 7e). When the IF conditions of the two

models were tested with measured Microcystis data

of the two phases as illustrated in Fig. 8, higher

and lower biomass were clearly selected by these

conditions.

Fig. 5 7-Day-ahead

forecasting of

Aphanizomenon in Lake

Müggelsee. Phase I: a IF–

THEN-ELSE model,

b validation of the model,

c illustration of threshold

conditions of the model,

Phase II: d IF–THEN-ELSE

model, e validation of the

model and f illustration of

threshold conditions of the

model
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Interrelationships

Figure 9 shows averaged sensitivity functions of the

three cyanobacteria in relation to Secchi depth and

concentrations of NO3-N and NH4 for Phase I

(1979–1990) and Phase II (1997–2012) extracted

from 20 cyanobacteria-specific models for each phase

with the highest coefficients of determination r2 and

p-values smaller than 0.05. As Fig. 9a, b indicate, both

Anabaena and Aphanizomenon were more limited by

underwater light in Phase I than in Phase II. Whilst the

highest biomass of both cyanobacteria corresponded

with the lowest Secchi depths in both phases most

likely as result of self-shading, biomass remained still

high at 4–5 mg/l at highest Secchi depths in Phase II

but tended to be close to zero in Phase I. This may

reflect the fact that the Phase I was less nutrient limited

(see Fig. 2c) but more light limited (see Fig. 2b)

compared to Phase II.

Results for Microcystis displayed a similar trend in

Phase II with becoming extinct at Secchi depths

greater than 2 m but responding slightly positive to

increasing Secchi depths in Phase I (Fig. 9c). The

finding for Phase I may refer to the fact that

Microcystis withstands underwater light limitation at

less nutrient limiting conditions by buoyancy enabled

by its cell-intern gas vacuoles also reflected by almost

neutral sensitivity to Secchi depth.

Anabaena displayed positive relationships with

increasing NO3-N concentrations in both phases

(Fig. 9d). Figure 9e suggests a slightly negative

relationship of Aphanizomenon with NO3-N that is

more distinct in Phase I under less nitrogen-limiting

conditions than in Phase II. The fact that biomass of

Aphanizomenon remained still high with 8 mg/l at

NO3-N concentrations of 1.2 mg/l in Phase II demon-

strates that it may take advantage of its N-fixing

capacity.

Fig. 6 Functioning of the

IF condition as threshold for

forecasting of: a high

population densities by the

THEN equation and b low

population densities by the

ELSE equation of the model

for Aphanizomenon for

Phase I, c high population

densities by the THEN

equation and d low

population densities by the

ELSE equation of the model

for Aphanizomenon for

Phase II

68 Hydrobiologia (2016) 778:61–74

123

Author's personal copy



Even though NO3-N concentrations were up to 4

times higher in Phase I compared to Phase II,

Microcystis displayed highest biomass at lowest

NO3-N concentrations and vice versa in Phase I

(Fig. 9f) indicating seasonally high N-consumption by

all phytoplankton phyla. In Phase II, Microcystis

biomass grew hyperbolically with increasing NO3-N

concentrations towards a plateau at about 3.5 mg/l.

Figure 9f clearly shows that the growth of Microcystis

is inhibited by the extended nitrogen limitation in

Phase II (see also Fig. 2c).

Negative logarithmic relationships with ammo-

nium appeared to be typical for the three cyanobac-

teria in Phase I reflecting their seasonal competition

for N (Fig. 9g–i). However, in Phase II, Anabaena

and Aphanizomenon displayed not only positive

linear relationships with increasing NH4 concentra-

tions indicating their preference but also increasing

reliance on ammonium under extended nitrate

limitation in that phase. Microcystis appeared to be

neutral to changes in ammonium concentrations in

Phase II.

Fig. 7 7-Day-ahead

forecasting of Microcystis in

Lake Müggelsee. Phase I:

a IF–THEN-ELSE model,

b validation of the model,

c illustration of threshold

conditions of the model,

Phase II: d IF–THEN-ELSE

model, e validation of the

model and f illustration of

threshold conditions of the

model
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Discussion

(1) Differences in annual averages of physical param-

eters of Lake Müggelsee revealed that water temper-

atures were rising earlier and lasting up to 2�C higher

during summer in Phase II, and Secchi depth was up to

1 m higher throughout the year including a distinct

clear water stage in early summer in Phase II

compared to Phase I. These findings were reflected

by higher and broader ranged temperature thresholds

of the models supposed to be favouring the develop-

ment of Anabaena, Aphanizomenon and Microcystis.

The sensitivity analyses displayed high biomass of

Anabaena and Aphanizomenon at high water trans-

parency in Phase II.

(2) The strengthening of nitrogen limitation through-

out summer and autumn in Lake Müggelsee in Phase II

was also reflected by threshold conditions of the

cyanobacteria models. Typical concentrations of PO4-P

concurring with highAphanizomenonbiomass in Phase I

were below 41.9 lg/l and in Phase II below 122.9 lg/l. It

indicated that even though three times more PO4-P was

available in Phase II, it had not been utilised by

phytoplankton most likely because of N-limiting stoi-

chiometry. In addition, sensitivity analyses revealed

lesser reliance of Anabaena and Aphanizomenon on

NO3-N concentrations but increasing utilisation of

ammonium in Phase II possibly combined with N-fix-

ation from gaseous sources. By contrast, the non-N-

fixing Microcystis demonstrated increasing reliance on

NO3-N in Phase II.

(3) The models for the three cyanobacteria fore-

casted well the timing of peaking biomass in both

phases. However, magnitudes of high peak events

were partially underestimated and magnitudes of low

peak events overestimated.

Fig. 8 Functioning of the

IF condition as threshold for

forecasting of: a high

population densities by the

THEN equation and b low

population densities by the

ELSE equation of the model

for Microcystis for Phase I,

c high population densities

by the THEN equation and

d low population densities

by the ELSE equation of the

model for Microcystis for

Phase II
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(4) Threshold conditions of the Anabaena models

indicating biomass greater than 0.5 mg/l in Phase I and

biomass greater than 1 mg/l in Phase II included the

water temperature range between 20.4 and 22.5�C, and

Secchi depths smaller than 0.9 m in Phase 1 and the

water temperature range between 21.1 and 25.9�C in

Phase II. The temperature ranges corresponded well

with optimum temperatures for maximum growth of

Anabaena (Reynolds, 1984), whereby the wider range

to a much higher upper temperature conformed with

the higher summer temperatures in Phase II (see

Fig. 2a) and distinct heatwaves in 2003 and 2006

(Huber et al., 2010). The selection of diminished water

transparency as threshold in Phase I could be

attributed to shading by high algal biomass during

the peak growing season.

(5) Threshold conditions of the Aphanizomenon

models indicating biomass greater than 10 mg/l in

Phase I and greater than 3 mg/l in Phase II included

water temperature and PO4-P concentrations in both

phases. Whilst water temperatures greater than 22.2�C
were selected for Phase I, the range between 20 and

23.4�C was revealed for Phase II corresponding well

with optimum temperatures for maximum growth of

Aphanizomenon (Reynolds, 1984). However, there

were distinct differences in the PO4-P concentrations

suggested to be smaller than 41.9 lg/l in Phase I

compared to be smaller than 122.9 lg/l in Phase II.

Since on average Aphanizomenon was much less

abundant and grew mainly in late summer in Phase II

compared to Phase I (see Fig. 2f), the N-limitation was

most recognisable at that time as well (Fig. 2c) leaving

Fig. 9 Average sensitivity functions of 20 cyanobacterium-

specific models for phase I and phase II revealing interrelation-

ships between: Secchi depth and: aAnabaena,bAphanizomenon

and c Microcystis; NO3-N and d Anabaena, e Aphanizomenon

and fMicrocystis; NH4 and g Anabaena, h Aphanizomenon and

i Microcystis
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more unutilised PO4-P in the water that perhaps

occasionally has been enriched by PO4-P remobilised

from sediments by wind-induced turbulences.

(6) Threshold conditions of Microcystis models

indicating biomass greater than 4 mg/l in Phase I and

greater than 0.5 mg/l in Phase II included water

temperature and concentrations of NO3-N. The tem-

perature range between 14.5 and 22.2�C in Phase I was

somewhat surprising since optimum temperatures for

Microcystis growth are known to be at around 23�C
(Reynolds, 1984) which is well matched by the

temperature range from 20.9 to 23.7�C in Phase II.

However, Fig. 10a confirms that biomass of 6–8 mg/l

has been observed at temperatures at around 15�C in

Phase I most likely related to the transition from late

summer to autumn and thus been recognised as ‘high

biomass’ by the model. The NO3-N concentrations

that were identified by the models to coincide with

high biomass of Microcystis in summer were smaller

than 0.041 mg/l for Phase I and smaller than 0.2 mg/l

for Phase II. These findings by the models correspond

with the observed relationships between Microcystis

and NO3-N as shown in Fig. 10b, c. In Phase I between

1979 and 1990, there is a pattern of biomass greater

than 8 mg/L at NO3-N concentrations below 0.05 mg/l

reflecting the fastest N-consumption at fastest growth

of Microcystis, whilst highest biomass of greater than

1 mg/l occur at NO3-N concentrations below 0.2 mg/l

in Phase II.

Overall, this study has demonstrated that the hybrid

evolutionary algorithm HEA is a powerful tool for

unravelling and synthesising complex relationships in

ecological data by developing models that allow short-

term forecasting of sudden outbreaks of population

densities as prerequisite for early warning of cyanobac-

teria blooms. The resulting models also provide access to

precious information contained in complex data by

quantifying thresholds and interrelationships that explain

environmental conditions which are symptomatic for

outbreaks of cyanobacteria population density.

Fig. 10 Relationship between: a observed water temperatures

and biovolumes of Microcystis in Lake Müggelsee in Phase I,

b observed NO3-N concentrations and biovolumes of

Microcystis in Lake Müggelsee in Phase I, and c observed

NO3-N concentrations and biovolumes of Microcystis in Lake

Müggelsee in Phase II
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The functionality of HEA is steadily upgraded, and

forecasting accuracy of models is expected to improve

by continuingly testing and integrating alternative

algorithms for multi-objective evolutionary computa-

tion. Future research on modelling Lake Müggelsee

will focus on the succession and phenology of the

phytoplankton phyla chlorophyta, bacillariophyta,

cyanophyta and dinophyta taking into account not

only physical–chemical predictor variables but also

interrelationships with the zooplankton groups cope-

poda, cladocera and rotifer as well as with Dreissena

polymorpha.

Inferential modelling by HEA suits very well for

meta-analysis of lakes classified by trophic state and

circulation type (Recknagel et al., 2008, 2014b, c), and

is in preparation for a wide range of lakes worldwide.
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