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Abstract Reformers urge that representation no longer

earns its explanatory keep in cognitive science, and that it

is time to discard this troublesome concept. In contrast, we

hold that without representation cognitive science is utterly

bereft of tools for explaining natural intelligence. In order

to defend the latter position, we focus on the explanatory

role of representation in computation. We examine how the

methods of digital and analog computation are used to

model a relatively simple target system, and show that

representation plays an in-eliminable explanatory role in

both cases. We conclude that, to the extent that biologic

systems engage in computation, representation is destined

to play an explanatory role in cognitive science.
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Representation in cognitive science

Cognitive Science is a discipline founded on the conviction

that natural intelligence can be explained in terms of

computational processes that take place in the biologic

substrate of cognition. Because computation is governed by

the contents of the representations it implicates, or so one

influential story goes,1 the prospects for cognitive science

have long been linked to the explanatory credentials of

representation. But representation has lately come under

attack from several quarters.

Two lines of argument stand out. The first and older

stems from the worry that semantic properties are, by

nature, incapable of shaping cognitive processes. Indeed,

the causal work of a digital computer is normally attributed

to the syntactic properties of its internal states, rendering

the semantic properties of such states irrelevant to com-

putation. It was precisely this worry that prompted Stephen

Stich to advocate the replacement of the computational

theory of mind with the syntactic theory of mind (Stich

1983). There have been a number of responses to this way

of formulating the problem. One is to insist that repre-

sentational descriptions of cognitive processes, because

they operate at a higher level of generality and present the

processes as ‘‘rational problem-solving strategies’’ (Ram-

sey 1997, p. 41), have an important heuristic value.

Another is to appeal to the fact that minds, unlike computer

artefacts, causally interact with the environment via sen-

sory and effector systems, and that these hook-ups endow

cognitive states with representational content.2 Neither of

these responses is very compelling. The former effectively

concedes that representational explanations are inferior to

mechanistic or syntactic ones. And with regard to the latter,

since mind-world connections are extrinsic to cognitive

states, it is hard to see how they can influence the causal

powers of such states.3
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A second line of argument derives from the failure of

the computational approach to deliver on its promise of

explaining intelligence (and the failure of traditional AI to

construct deeply intelligent systems). Here, the so-called

‘‘knowledge problem’’ looms large—the problem of

equipping a cognitive system with the informational

resources to consider and choose appropriate courses of

action in real time, in response to open-ended internal goals

and subtly changing conditions. According to many cog-

nitive scientists, this problem is so severe as to suggest that

cognitive science’s flirtation with representation is mis-

conceived: ‘‘when we examine very simple intelligence we

find that explicit representation and models of the world

simply get in the way…Representation is the wrong unit of

abstraction in building the bulkiest parts of intelligent

systems’’ (Brooks 1991, p. 140).

The combined effect of these two lines of argument has

been the marginalisation of representation in recent cog-

nitive science. Various ‘‘anti-representational’’ approaches,

from dynamical systems theory to the embodied-embedded

framework, are currently seeking the basis of a new ‘‘post-

cognitive’’ paradigm.4 What unites these approaches is a

general skepticism about explaining intelligence in terms

of computational processes defined over internal

representations.

In our view, without representation cognitive science is

utterly bereft of tools for explaining natural intelligence.

We would go further: without representation there is no

cognitive (as distinct from behavioral, biologic, or just

plain physical) science in the first place. It is thus incum-

bent on those who admire cognitive science to secure the

explanatory credentials of representation. The task we have

set ourselves in this paper is to take one small step down

that road.

Rather than respond to both lines of argument that make

trouble for representation, in this paper we aim to show that

representation does earn its explanatory keep in computa-

tional accounts of cognition. Our strategy will be to

examine how the methods of digital and analog computa-

tion are employed in modeling a relatively simple target

system. In so doing we’ll demonstrate that representation is

essential to explaining computation in all its forms, but that

there are important differences between digital and analog

methods. In particular, we’ll argue that:

• representation has an indirect role in digital computa-

tion (in a sense to be explained), and that this fact

motivates the recent skepticism about representation in

cognitive science;

• representation has a direct role in analog computation,

and hence that an analog conception of cognition

promotes a healthy realism about representation.

Despite these differences, we will conclude that to the

extent that biologic systems engage in some form of

computation, representation is destined to play an explan-

atory role in cognitive science.

Digital computation

In this section and the next, we examine the characteristics

of digital and analog computation by considering how each

is used to model the behavior of a simple physical system:

a block and spring that together act as a harmonic oscil-

lator. Our analysis permits us to unpack the role of

representation in explaining digital and analog modeling,

respectively.

The target system

Our target system is a block, of mass m, attached to a

vertical spring hanging from an overhead support (Fig. 1).

We label the rest position of the block ‘‘0’’ on the vertical

axis, and can represent any displacement of the mass as a

positive number (when the spring is stretched and the block

dips below the horizontal axis) or a negative number (when

the spring is compressed and the block rises above the

horizontal axis).

Under the right conditions this system, call it T, displays

simple periodic behavior. When the block is displaced

downwards (say, by gently pulling it with the fingertips)

the spring reacts by pulling in the opposite direction,

causing the block to move upwards. This motion continues

past the rest position so that the spring becomes increas-

ingly compressed, generating a force which sends the block

back downwards. The block continues in this manner,

4 See, e.g., Beer (1995); Brooks (1991); Clark (1997a, b); Keijzer

(2001, 2002); Port and Van Gelder (1995); Van Gelder (1995);

Wallace et al. (2007); Wheeler (2005).

Fig. 1 A block on a spring in three different positions. In the second

and third positions the spring is stretched and compressed, respec-

tively, compared to the rest position (x = 0)
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oscillating about its rest position, but eventually comes to a

stop as its energy is dissipated, as heat, by friction in the

spring (Fig. 2).

Our computational task is to determine the block’s

position at any time t given its initial displacement and

velocity. We have chosen this particular task because there

are well-known techniques, both analog and digital, for

modeling a harmonic oscillator of this kind. We begin with

a digital model.

Digital modeling

The first step in a digital approach to our computational

task is to derive a mathematical description of the target

system. That work has already been done—the behavior of

this system is known to be accurately captured by the

following differential equation:

m
d2x

dt2
þ c

dx

dt
þ kx ¼ 0: ð1Þ

This equation says that the motion of the block depends

on its mass, and on two forces: the pull or push generated by

the spring as it is alternately stretched and compressed (the

third term in the equation), and the internal friction caused

by this motion (the second term).5 The first of these forces is

proportional to the distance x of the block from its rest

position and the spring constant k, which is a measure of the

strength of the spring. The friction is proportional to the

block’s velocity dx/dt and the damping constant c, which is

determined by the material constitution of the spring.

To model the behavior of the system using this equation

one enters appropriate values of k and c and integrates.

There are two ways to do this: using analytic techniques

that produce a closed-form solution, namely an equation

for the block’s displacement expressed as a function of

time; or by discrete numerical methods that track the

position of the block from moment to moment.6 The latter

involves converting Eq. 1 into finite difference equations in

which time is discretized using a fixed minimum interval

Dt. Since the block’s equation of motion contains a second

derivative we end up with a pair of difference equations

with which to determine values of x:

xnþ 1 ¼ xn þ vnDt ð2aÞ

vnþ 1 ¼ vn 1 � cDt

m

� �
� xn

kDt

m
: ð2bÞ

Here, Dt is some small fraction of the block’s period of

motion and v = dx/dt is its velocity. To calculate the

position x1 and velocity v1 of the block at time t = t0 ? Dt,

initial values of the position x0 and velocity v0 are entered

into the right hand side of Eqs. 2a and 2b. The results

[x1 = x0 ? v0Dt; v1 = v0(1-cDt/m) - x0kDt/m] are fed

back into the equations to calculate x2 and v2 at

t = t0 ? 2Dt, and so on. In this way, the behavior of the

block can be modeled without the use of an analytic

solution and, in principle, to any desired accuracy (Fig. 3).

With Eqs. 2a and 2b in hand, there are straightforward

pencil and paper techniques for computing the behavior of

the block using nothing more than basic arithmetic. Com-

puter science has discovered various ways to mechanize

and sequence such operations. Babbage was the first to

design a general-purpose device of this kind. Turing later

formalized the process by describing an abstract machine

capable of automating any sequence of numerical opera-

tions that can be finitely specified. What is needed, he

realized, is a systematic means of symbolically represent-

ing numbers, and a rule-governed mechanism that

recognizes and manipulates these symbols purely on the

basis of their material properties, but in a fashion that

respects their mathematical interpretation.

Physically implementing Turing’s machine is no easy

feat. First, one must come up with a suitable medium for

symbolic representation. One way to achieve this is to

partition some continuously variable physical property with

a view to provide a semantics for these partitions and their

concatenations. In electronic digital computers, for exam-

ple, the electrical voltages between pairs of wires are

partitioned into ‘‘high’’ and ‘‘low’’ voltage states, and

symbols take the form of combinations of these two kinds of

states. Next, one must find a means of detecting and

transforming these symbols on the basis of their macro-

scopic ‘‘syntactic’’ properties. This is achieved in electronic

computers by combining transistors to form ‘‘gates’’ that are

differentially responsive to high and low voltages. Finally,

one must arrange it so that symbols are transformed in a

manner that is sensitive to their intended interpretation. This

Fig. 2 A graph representing the oscillation of a block on a spring as a

function of time

5 For a derivation see e.g. Kibble and Berkshire (2004), Chap. 2. For

simplicity we ignore the effect of gravity, which does not alter the

sinusoidal character of the block’s motion.

6 Numerical methods are important because for a great many systems

there is no analytic solution to the relevant equation(s) of motion.
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last step presents a challenge because the syntactic structure

of a symbol does not inherently guarantee the semantic

coherence of any manipulations that are applied to it. The

problem is solved, as it is in the case of pencil and paper

calculation, by ensuring that symbol manipulations are

governed by a well-chosen system of structure-sensitive

rules. One of the great discoveries of computer science is

that such rules can themselves be encoded in the form of a

special group of symbols known as a ‘‘stored program’’,

which is a set of instructions for sequencing more primitive

operations (e.g. addition and multiplication). The latter are

realized in electronic digital computers as combinations of

gates that provide the system with a basic computational

competence.

All of these complexities aside, the essential character-

istic of the modeling process we have described is that it

involves the development of a formal model of the system

in whose behavior we are interested. More particularly, to

model the block on a spring one must first describe it

mathematically and then program the digital computer to

‘‘run the maths’’ (the transformation rules specified in

Eqs. 2a and 2b). For this reason, one can think of digital

computation as a kind of two-stage representation process:

first, one represents the physical system formally, and then

one builds7 a device some of whose states represent the

formal (in this case mathematical) entities and whose state-

transitions are interpretable as rule-governed transforma-

tions of those entities.

The role of representation in digital computation

We are now in a position to address the important question:

what explanatory role, if any, does representation play in

digital computation?

If one focuses on the way that the semantic properties of

a symbol are determined, one might conclude that repre-

sentation has no part to play in explaining digital

computation. It is a symbol’s intrinsic syntactic properties

that determine how it is handled by a digital computer.

Such properties provide no guarantee that digital compu-

tation will be sensitive to the intended interpretation of

symbolic states. Instead, the transformations in a digital

computer are governed by carefully chosen rules that dic-

tate how one symbol succeeds another—rules physically

realized by, for example, specific combinations of voltage

gates wired into the machine. And this implies that it is a

physical program and the computational processes it gov-

erns that sustains the semantic coherence of a digital

computer’s state transitions. Computation thus turns out to

be explanatorily prior to and independent of representation.

To put it more simply, computation sustains representation

in digital systems, not the reverse.8

Fig. 3 A plot of the values x1,

x2, etc. generated by a pair of

finite difference equations. The

initial position x0 and velocity

v0 have been set to -2 and 0,

respectively. The minimum

time interval Dt has been set to

about 1/40th of the block’s

period of oscillation

7 In the case of a general purpose digital computer ‘‘builds’’ means

programs, but it is in principle possible to construct a special purpose

device that is hardwired to perform complex formal operations

directly, rather than by sequencing a set of generic primitives.

8 If you are not convinced on this point, consider how arithmetic

works. The meaning of a numeral such as ‘‘21’’ is not intrinsic to this

physical object, but entirely conventional. What guarantees that a

calculation taking, say, ‘‘21 ? 32’’ as input will produce ‘‘53’’ as

output is the structure of the arithmetic rules applied by a competent

human computer. These rules are purpose-built to produce numeri-

cally coherent results in light of the conventional interpretation of

Arabic numerals.
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We think this line of reasoning is somewhat mislead-

ing; however. The above analysis demonstrates that

representation does not play a direct role in digital com-

putation. A digital computer is a simulacrum of a

semantic engine, a syntactically driven device masquer-

ading as a respecter of meaning. Nonetheless, we would

argue that representation plays a crucial indirect role in

digital computation. To see this, consider again the pro-

cess by which one develops a digital model of some target

system.

Constructing a digital model, we argued, is a two-step

process: first one formally describes the target system,

and then one builds a device that implements this formal

model. The reasoning above focuses on the second stage

of this process—the implementation of the formal model.

And we agree that once a formal model is in place,

physically realizing and operating that model is indeed a

process in which representation plays no part. But this

ignores the first stage of the process—the development of

the formal model. It is here that representation has an

ineliminable role, because a formal model is a symbolic

description of its target, and as such comprises elements

that represent features of the target domain. For example,

the differential equation (Eq. 1) that describes the

behavior of the block, and from which Eqs. 2a and 2b are

derived, contains symbols that stand for the mass of the

block and its distance from the resting position. More-

over, the shape of a formal model is determined by the

representational content of the symbols it contains.

Equation 1 has the form it does because it describes the

way in which the motion of the block depends on its mass

and the two forces acting on it.

Our claim is that representation is essential to formalize

a target system, which in turn is essential for constructing a

digital model of that system. The role of representation

here is indirect in the sense that it constrains the structure

of the formal model, and thereby shapes the rules that

determine the computer’s symbol manipulations, rather

than governing those manipulations directly. There is thus

a crucial interdependence between representation and

computation in digital modeling. Representation plays a

role in shaping a formal model of the target system, which

when implemented as a program in a digital computer

sustains the semantic coherence of (some of) the com-

puter’s internal state transitions, thereby licensing us to

treat those states as symbolic representations.

It is largely because the explanatory role of represen-

tation in digital computation is complex and subtle in this

way that skepticism about representation has gained so

much traction in contemporary cognitive science. But on

the foregoing account, this skepticism is simply not war-

ranted. Without representation, digital computation is

formless.

Analog computation

In this section, we explore the role of representation in

analog computation by considering an analog model of

target system T. We begin by correcting some miscon-

ceptions about the nature of analog computation.

Distinguishing between digital and analog computation

The relationship between digital and analog computation is

subject to some confusion. It is often claimed that the

essential difference between the two styles of computation

is that digital computers use discrete variables to represent

their targets (e.g. high and low voltage states), whereas

analog computers use continuous variables (e.g. voltage,

angle, or area). This way of dividing things up is, we think,

predicated on the view that a physical system performs a

computation just in case its operation can be interpreted as

implementing some function. Churchland et al. (1993)

express the idea as follows:

In a most general sense, we can consider a physical

system as a computational system just in case there is

an appropriate (revealing) mapping between some

algorithm and associated physical variables. More

exactly, a physical system computes a function f(x)

when there is (1) a mapping between the system’s

physical inputs and x, (2) a mapping between the

system’s physical outputs and y, such that (3)

f(x) = y (1993, p. 48).

This view of computation suggests the following way of

distinguishing between digital and analog computers: a

physical system is a digital computer if its state variables

map onto a discrete function, an analog computer if its state

variables map onto a continuous function. Despite the

tidiness of this scheme, and a certain degree of acceptance

within the computer science community, we believe this

way of proceeding is deeply mistaken. It fails on two

grounds.

First, there is good reason to reject the idea that com-

putation is merely a matter of implementing a function.9

Since all law-governed physical systems can be interpreted

as implementing some function or other, this view leads to

the conclusion that all physical systems are computational.

And that conclusion renders the concept of computation

explanatorily vacuous. The concept was originally intro-

duced into cognitive science as a way of distinguishing two

classes of causal processes: those characteristic of systems

9 Churchland et al. (1993) do suggest that the mapping between

physical variables and algorithm should be ‘‘appropriate (revealing)’’

but these modifiers don’t appear to do any real work in their account.

Subsequent formulations of the idea, e.g. Chalmers (1994), have not

improved the situation.
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(such as ovens, cups of tea, and cyclones) that show no

signs of intelligence, and those that are the preserve of

intelligent systems alone. Computational processes are

supposed to be special in some way—in a way, moreover,

that provides us with some explanatory purchase with

respect to the problem of intelligent behavior. Imple-

menting a function is a ubiquitous feature of nature, so

characterizing computation in this way undermines the

motivation for introducing the concept in the first place.10

Secondly, recourse to the divide between discrete and

continuous variables is at odds with the way computer

scientists themselves have generally drawn the analog/

digital distinction. Digital computers have their origins in

the methods of arithmetic. Modern digital machines can be

traced back to early devices such as the abacus and the

Pascaline11 that were designed to automate numerical

calculation, using machine states (the position of spoked

wheels and metal gears in the case of the Pascaline) as

symbolic representations of objects and numbers. Analog

computation, in contrast, originates with non-symbolic

graphical and geometric methods. Consider, for example,

the familiar tactic of representing a physical variable as a

curve on the plane. If we plot the velocity v of a moving

object on one axis and time on the other, it is possible to

compute distance travelled by measuring the area under the

curve, or acceleration by constructing tangents to the curve

(Fig. 4).

These computations employ an analog representing

vehicle, a 2–d curve plotted against a pair of linear axes.

What makes this vehicle analog is the existence of a

relation-preserving mapping between the curve and its

target. Velocity is represented as the projection of the curve

onto the y-axis, such that relations among velocities cor-

respond to relations among those points. If the velocity at

some time t1 is greater than the velocity at t2, then its

representative point v1 will be further along the y-axis than

v2; if the velocity at t3 is mid-way between the first two

velocities, then v3 will lie between v1 and v2, and so on. In

other words, there is a simple physical analogy between the

curve and the variable it represents. Such analogies also

underpin the use of a model aeroplane and wind tunnel to

predict the effects of air currents on the full-scale system,

and the orrery, a clockwork mechanism for representing the

relative positions and motions of the planets, to compute

changes in planetary positions.

Classic texts in engineering and computer science such

as Analog Computation (Jackson 1960), Basics of Analog

Computers (Truitt and Rogers 1960) and Analog Methods

in Computation and Simulation (Soroka 1954) make pre-

cisely this point.

Devices that rely… on the analogous relationships

that subsist between the physical quantities associated

with a computer and the quantities associated with a

problem under study are called analog computers

(Jackson 1960, p. 1).

All (analog computers) have one characteristic in

common—that the components of each computer …
are assembled to permit the computer to perform as a

model, or in a manner analogous to some other

physical system (Truit and Rogers 1960, p. 3).

The term analog means similarity of properties or

relations without identity. When analogous systems

are found to exist, measurements or other observa-

tions made on one of these systems may be used to

predict the behavior of the others (Soroka 1954, p. v).

In our terms, what these authors are suggesting is that an

analog computer is a device designed to exploit an analogy

between the physical properties of a system of representing

vehicles and some target system. Digital computers do not

work that way. In particular, digital computers deploy

symbolic vehicles whose physical properties stand in an

arbitrary relationship to the objects they represent.12

Returning to our original point, the implication here is that

the distinction between continuous and discrete variables is

not fundamental to the relationship between analog and

digital computation. And that is all to the good, because it

is not hard to find examples of analog systems that repre-

sent their target domain using discrete variables.

Think of the humble clock. Digital clocks, whatever

their internal mechanism, represent time using fixed-length

numerical symbols. The system of representation here is

Fig. 4 A graph of velocity versus time. The distance travelled

between t1 and t2 can be computed by measuring the area of the

shaded region. The acceleration at t3 can be computed by measuring

the slope of the tangent to the curve at that point

10 For further discussion see O’Brien and Opie (2006). We there

suggest an alternative characterization of computation that avoids this

criticism.
11 A mechanical calculator capable of performing addition and

subtraction. It was designed by Blaise Pascal to reduce the workload

of his father, a tax commissioner.

12 The relationship is arbitrary in the sense that whether or not one

can identify a physical analogy between a system of symbols and their

represented objects, no such analogy governs the computational

processes defined over those symbols.
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discrete in the sense that it has a fixed margin of error: time

cannot be represented with accuracy greater than a prede-

termined smallest interval. Analog clocks do not require

symbols, relying instead on some physical process whose

unfolding is a monotonic function of time, for example, the

changing level of water in a container as it flows through a

hole in the base, or the motion of hands rotating about a

circular display. Many dial clocks represent the passage of

time with smoothly moving hands, and hence continuous

variations in angle. However, some have a second or

minute hand that moves in discrete steps about the dial. A

minute hand that moves in this step-wise fashion is sta-

tionary for almost a full 60 s at each mark, then rapidly

moves to the next mark where it is again quiescent, and so

on. During its rapid sweep from mark to mark the minute

hand does of course pass through the intervening positions

on the dial, but these do not represent instants of time. In

this respect, the system of vehicles here is like that of a

digital clock, the one comprising a finite set of positions

around a dial, the other, a finite set of symbols, each with a

fixed margin of representational error. Nonetheless, all dial

clocks are analog, whether discrete or continuous in for-

mat, because their meaning is determined by the analogy

between the spatial order of positions around a dial and the

ordering of moments in time.13

Analog modeling

With these preliminaries behind us we return to our com-

putational task: to determine, for any time t, the position of

an oscillating block given its initial displacement and

velocity. To perform this task using analog means, we need

a model system whose behavior is, in appropriate respects,

physically analogous to the behavior of the block. A suit-

able candidate is the simple electric circuit M illustrated

below (Fig. 5). M comprises a resistor, a capacitor, an

inductor, and a switch. A current I flows through the circuit

when the switch is closed. Its behavior is described by the

following equation:

L
d2I

dt2
þ R

dI

dt
þ 1

C
I ¼ 0: ð3Þ

What is immediately apparent, even to those not familiar

with differential equations, is that this equation is very

similar to Eq. 1, which describes the behavior of the block

on a spring. Both have the general form of a damped

harmonic oscillator, and the first can be converted into the

second by way of the following simple mapping: x?I,

m?L, c?R, and k?1/C.

These formal similarities reflect the existence of a deep

physical analogy between the two systems. A serial

capacitor and inductor jointly give rise to oscillatory

behavior in a circuit, the capacitor alternately storing and

then releasing electrical energy to produce a current, the

inductor opposing changes in current and thereby causing it

to periodically reverse direction (Fig. 6). The total effect is

analogous to the compression and stretching of the spring,

and the way this influences the motion of the block. In a

circuit, resistance plays a role analogous to friction in that

it dissipates electrical energy, converting it into heat. The

resistor therefore damps the current in the circuit, eventu-

ally reducing it to zero, just as friction eventually brings the

moving block to a standstill.

As a result of all this, the behavior of M turns out to be

ideal for the purpose of representing the motion of the

block. With appropriate choices of L, C and R the current in

M can be made to behave in such a way that I and x are

homomorphic.14 Formally, this means that there is map-

ping from the set of values of x into (or onto) the set of

values of I that preserves the relationships among the

values of x. Informally, it means that if we lay the graph of

I (Fig. 6) over the graph of x (Fig. 2) they should line up

perfectly wherever they overlap. The upshot is that M can

be used to model the target system T, and we can predict or

track the behavior of the latter by observing the former.15

An objection might be raised at this point concerning the

similarity between Eqs. 1 and 3. We argued for the utility

of the electrical model of T partly on the grounds of the

formal similarity of these equations. Is not it therefore the

case that the circuit M, insofar as it plays the role of an

analog computer, is simply computing a mathematical

function described equally well by Eqs. 1 and 3? This

objection misses a crucial and robust distinction between

computing an equation and being described by an equation.

Again, the classic texts in computer science are clear on

this point:

Fig. 5 A circuit M containing a resistor (resistance R), a capacitor

(capacitance C) and an inductive coil (inductance L). When the switch

is closed a current I flows

13 See Lewis (1971) for some further examples of discrete analog

representation.

14 See Bartels (2006) for a nice defense of the view that homomor-

phism is the basis of representation.
15 Lest this example seems a bit contrived, it is worth noting that

circuits of this kind (albeit somewhat more complex) were used in the

1940s to simulate missile trajectories in order to predict and correct

their flight.
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… the analog-computer family consists of all those

devices in which measurable physical quantities are

made to obey mathematical relationships comparable

with those existing in a particular problem. … The

[general purpose analog] computer consists of a

collection of basic building blocks which can be

interconnected so that they are governed by the same

set of equations as those describing the system to be

analyzed (Smith and Wood 1959, p. 1).

Analog models are devices that behave in a fashion

analogous to others simply because they obey the

same or similar fundamental laws of nature (Truit and

Rogers 1960, p. 7).

An analog computer is ‘‘governed by’’ or ‘‘obeys’’

mathematically expressible laws that are similar to those

governing the represented system. This does not apply to a

digital computer, whose governing equations are, in most

cases, those that apply to the components of a digital

electronic device. A digital computer, when being used to

model some target system, does so by ‘‘running the

maths’’, that is, by producing or calculating the values of a

mathematical function that describes the target process or

object. It does not itself obey those equations, but rather

those that govern the dynamics of its representing medium.

Putting things the other way around, the circuit M does not

calculate the values of its governing equation any more

than the planets calculate the solution to Newton’s or

Einstein’s equations of motion in their movements about

the sun. A circuit just gets on with behaving like a circuit.

When we notice that its behavior is similar to another

system of interest we can use it as an analog model. No

maths need be involved.

The role of representation in analog computation

With this account of analog computation in the foreground,

we can again turn to the critical question: what explanatory

role, if any, does representation play in analog

computation?

We observed in ‘‘Digital computation’’ that representa-

tion has only an indirect role in digital computation. The

semantic coherence of a digital computer is not driven by

the intrinsic properties of its symbolic representing vehi-

cles, but by a carefully chosen set of program rules. The

latter originate with a formal model, a theorists’ repre-

sentation of the target system, which determines the

structure of the program and thereby licenses any attribu-

tion of content to the digital device. None of this applies to

an analog computer. Analog modeling is not a two-stage

affair. There is no process of taking a formal description of

the target domain and implementing that description as a

program. Instead, one simply exploits a physical analogy

between the materials at hand and the system of interest. In

our example, there is a deep and causally significant

analogy between the electric circuit and the block on the

spring. And it is this analogy that sustains the semantic

coherence of the analog model.

These claims require some unpacking. Physical analogy

is a similarity or resemblance relation. Two systems can

resemble each other in a variety of ways. They can share

first-order properties, such as mass or position, or second-

order properties, such as shape or organization. Two balls

resemble each other at first-order if they have similar mass,

conductivity, or specific heat, or if they share simple

relational properties, such as being housed in the same

bearing. Second-order resemblance is best characterized as

a relation-preserving mapping between two systems. A

nice example is the relationship between the thickness of a

tree’s growth rings and the climatic conditions in which the

tree grew. Plentiful seasons produce wide growth rings,

whereas drought years produce comparatively narrow

rings. The relative thickness of growth rings therefore

reflects the variations in the seasons, and permits us to treat

the former as a record of the latter.

Second-order physical analogy, which we elsewhere

refer to as structural resemblance (O’Brien and Opie 2004),

is of particular importance for representation. One system

structurally resembles another when physical relations in

the first support a relation-preserving mapping between the

two. Structural resemblance is the basis of many everyday

examples of representation. A road map captures the spatial

layout of a streetscape by virtue of the spatial relations

among its markings. By preserving relative distance or

topology a well-made map permits one to navigate unfa-

miliar terrain. Likewise, the representing power of a

mercury thermometer is due to the way that variations in

the height of the column of mercury correspond to varia-

tions in ambient temperature. Changes in the level of

mercury inform us about temperature changes because of

this reliable covariation.

What the foregoing makes clear is that structural

resemblance is at the heart of analog representation. In all

Fig. 6 A graph representing an alternating current I in the circuit of

Fig. 3. I is positive when it flows clockwise around the circuit and

negative when it flows counter-clockwise
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of the cases, we have described, from analog clocks to

graphs, road maps and mercury thermometers, it is the

existence of a relation-preserving mapping between phys-

ical properties of the representing vehicles and the modeled

system that grounds the content of those vehicles. And the

same is true of our principal example. Here, it is the

physical relations between the values of the current in the

circuit M that preserve the relations among the displace-

ments of the bouncing block in T, and by virtue of which a

particular current carries its representational content. In

this respect, analog representation is crucially different

from digital representation. Symbols do not carry their

meaning in virtue of physical relations to one another, but

in virtue of a conventional interpretation which only indi-

rectly governs their role in computation.

Since the content of analog representing vehicles is

grounded in structural resemblance, it is determined by

intrinsic properties of those vehicles. This fact about

structural resemblance has profound consequences for the

explanatory role of representation in analog computation.

To begin with, there is a deep physical analogy between

M and T, an analogy formally expressed in Eqs. 1 and 3.

The dynamics of the two systems are governed by forces

which, although physically distinct (for example, the

mechanism in a wire that resists current flow is quite dif-

ferent from the mechanism in a spring that gradually

reduces the amplitude of its oscillations) nonetheless

interact in similar ways to produce similar behavior in the

relevant variables. Structural resemblance is thus at the

heart of the generative aspect of computation in an analog

computer: the capacity to produce a system of representing

vehicles whose physical properties support a desired sec-

ond order resemblance relation.16

Once in place, the representations in a computer typi-

cally play some part in producing further representations.

But there is a crucial difference between such transfor-

mations as they occur in analog and digital computers,

respectively. Symbols, like representing vehicles of any

stripe, only have causal impacts by virtue of their intrinsic

properties. Since the representational content of a symbol is

determined by factors extrinsic to that vehicle, its content

can have no bearing on what a symbol does. The repre-

senting vehicles in an analog computer, on the other hand,

acquire content by virtue of their intrinsic physical prop-

erties and the resemblance relation(s) these support. Hence,

the transformations that occur in an analog computer are

driven by the very properties that determine the contents of

its representing vehicles. In this sense, representation has a

direct role in analog computation.

To make this more concrete, suppose we wish to model

the velocity v of the oscillating block in T using our circuit

M. The variable v is implicit in any analog representation

of the block’s position, because velocity is a rate of change

of position. Consequently, if we add a differentiator to M,

an electronic device that produces an output proportional to

the rate of change of its input, we can harness the current in

M to produce an analog representation of the block’s

velocity. What ensures the semantic coherence of this

transformation is that current in M structurally resembles

the position of the block in T, and that a differentiator is

appropriately sensitive to moment by moment variations in

current. Representational content, in the form of current

dynamics, is very much in the driver’s seat here.

All of this has important implications for cognitive

science. We have argued that analog computation is

directly shaped by the content determining properties of its

vehicles. An analog computer is therefore not a mere

semblance of a semantic engine—it is the real thing. Any

organism whose inner processes are analog in nature is

causally indebted to the semantic properties of its inner

states. For this reason, if we adopt the hypothesis that

natural intelligence is down to analog processes realized in

biologic materials, we thereby commit to a healthy realism

about cognitive representation.

Conclusion

We began this paper by describing two lines of argument

that have led to the marginalisation of representation in

contemporary cognitive science. The first claims that the

specifically semantic properties of representing vehicles

are irrelevant to computation and hence cannot play an

explanatory role in cognitive science. The second holds,

more radically, that we should abandon the computational

approach to cognition altogether, given the failure of tra-

ditional AI to construct deeply intelligent systems.

Together these two lines of argument have made popular a

number of ‘‘anti-representational’’ approaches in cognitive

science which are united by the conviction that cognition

cannot be fruitfully understood in terms of computational

processes defined over internal representations.

This is a lamentable situation. If it abandons represen-

tation, and with it computation, cognitive science will be

turning its back on the only good idea we have ever had

about how intelligence might arise in a natural system. In

this paper, we have begun the task of rescuing cognitive

science from this fate. We have shown that semantic

properties do earn their explanatory keep in both digital

and analog modeling, and hence that representation plays

16 More generally, the generative aspect of computation is simply the

capacity to produce representing vehicles of some kind. This capacity

may involve transformations of other representations, but it need not.

For example, both analog and digital systems can incorporate

transducers, devices that take external signals, say, light waves, and

convert them into primary representations.
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an ineliminable role in our understanding of computation in

both its characteristic forms. However, our response is

silent with respect to the second of the arguments mooted

above. At this point, therefore, we can only conclude that

to the extent that biologic systems engage in computation

representation is destined to play an explanatory role in

cognitive science. The task of convincing naysayers that

computation is indeed the basis of biologic cognition is one

that must be left for another time.17
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