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“Topological physics” (Nobel ’16) at the edge

Last five years: physicists produced topological insulators in
photonics, acoustics, cold atoms, metamaterials, Floquet systems,
exiton-polaritons. . .

Most examples are (variants of) Chern insulator: a 2D material,
described in boundaryless-limit by a Z2-invariant Hamiltonian
H = H∗, possessing a “topological spectral gap”.

When the (material) boundary is
introduced, the spectral gap of H is
completely filled up with
edge-following topological states!
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Experiments2: edge-following states

2
Nash et al, PNAS (2015)
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Experiments3: edge-following states

3
Lu et at, Nature Photonics (2014); Süsstrunk, Huber, Science (2015); Klembt et at, Nature (2018) 4 / 17



Heuristic idea of topological insulators

Insulators can have topological
invariants  phases.

At a topological insulator’s
surface, one is at a wall-crossing
⇒ insulating condition violated.

Physicist belief / conjecture: There is a “holographic” duality:
“# surface conducting states = topological # of insulator”

cf. Atiyah–Singer index theorem:
“# solutions to Dirac equation on Mspin = Â-genus of Mspin

My research: Rigorous formulation and justification of above.
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Spectrum of Landau Hamiltonian

Let X = R2 and A = x dy . The Landau Hamiltonian [’30]

HLan,X =
1

2
(d − iA)∗(d − iA), Spec(HLan,X ) =

1

2
+ N,

describes electron on the plane with magnetic field dA = dx ∧ dy .
Basic model for quantum Hall effect (Nobel ’85).

Let U = R+ × R, and HLan,U the Dirichlet
version. Then [De Bièvre, Pulé ’02]

Spec(HLan,U) =
[1

2
,∞
)
.

I will give a modern view of this gap-filling
phenomenon, and demonstrate its
robustness to various deformations.
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Warm-up: Index theory of Toeplitz operators

Under Fourier transform L2(S1) ∼= `2(Z), the Hardy subspace
H2(S1) ⊂ L2(S1) corresponds to `2(N) ⊂ `2(Z).

Let f ∈ C (S1). Multiplication operator Mf ∈ B(L2(S1))
compressed to Hardy space is Toeplitz operator Tf ∈ B(H2(S1)).

Theorem [F. Noether ’21]
Tf is Fredholm iff f is invertible, and its index is −Wind(f ).

“Hole-filling theorem” [Coburn ’66]:⋂
K compact

Spec(Tf + K )

︸ ︷︷ ︸
Weyl spectrum

= Range(f )︸ ︷︷ ︸
curve in C

∪ topological holes︸ ︷︷ ︸
f winds nonzero times

.
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Continuum Toeplitz exact sequence [Ludewig+T:1912.xxxxx]

Let discrete Γ act nicely on Riemannian X , and consider some
generic “half-space” U ⊂ X . Exact sequence:

0 −→ C ∗U(∂U)︸ ︷︷ ︸
boundary

−→ Q∗Γ(U)︸ ︷︷ ︸
bulk−boundary

π−→ C ∗Γ (X )︸ ︷︷ ︸
bulk

−→ 0

Bulk: Γ-invariant Roe C ∗-algebra4 in B(L2(X )).

Bulk-boundary: “Quasi-Γ-invariant” Roe algebra in B(L2(U)).

Boundary: Roe algebra in B(L2(U)), localised at ∂U.

Theorem: Let HX be Γ-invariant Laplace-type operator on X , and
HU be its compression to U with e.g. Dirichlet bc. For ϕ ∈ C0(R),

ϕ(HX ) ∈ C ∗Γ (X ), ϕ(HU) ∈ Q∗Γ(U), π(ϕ(HU)) = ϕ(HX ).

4Norm-closure of locally compact, finite propagation operators.
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Spectral gap filling [T:1908.09559]

If S is a compact separated part of Spec(HX ), its spectral
projection is ϕS(HX ) ∈ C ∗Γ (X ) for suitable function ϕS :

S

ϕS

a b S1 S2 S3

ϕS1∪S2ϕS1

However, ϕS(HU) may not be a projection.

Generally have Spec(HU) ⊃ Spec(HX ).
⇒ spectral gaps of HX partially filled by new spectra of HU .

“Topological” question: Could a whole spectral gap close?
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Topology, K -theory, and gap-filling

Can classify spectral projections ϕS(HX ) ∈ C ∗Γ (X ) abstractly
classified by stable homotopy class in K0(C ∗Γ (X )).

K1 functor is stable homotopy classes of invertibles.

K -theory is a (co)homology theory with cyclic long exact
sequences due to Bott periodicity. For each U ⊂ X , have

K0

(
C ∗U(∂U)

)
K0

(
Q∗Γ(U)

)
K0

(
C ∗Γ (X )

)
K1

(
C ∗Γ (X )

)
K1

(
Q∗Γ(U)

)
K1

(
C ∗U(∂U)

)
.

π∗

ExpUIndU

π∗

Theorem: If ExpU [ϕS(HX )] 6= 0, then ϕS(HU) cannot be a
projection. Then HU has spectrum in the whole gap above S .
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Topology, K -theory, and gap-filling by edge states

True significance of

top. insulator︷ ︸︸ ︷
[ϕS(HX )] 6= 0: its K -theory exponential

gives a topological obstruction for HU to maintain spectral gap!

Compute 0
?
6≡ ExpU : K0(C ∗Γ (X ))→ K1(C ∗U(∂U)).

Strategy: Combine physics intuition with Roe’s
cobordism-invariant partitioned manifold index theorem, reducing
problem to standard U =half-space.

Remark: Persistence of edge states (the “extra spectra of HU”)
under deformations of U, is precisely the most remarkable feature
of topological insulators. This had never been shown rigorously!
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“Cobordism” invariance of ExpU

Take U ⊂ X = R2 example, with Γ = Z2.

• Partition U = U+ ∪ U− with N = U+ ∩ U− a hypersurface.

• For invertible A ∈ C ∗U(∂U)+, show that ΠU+A is invertible
modulo compacts, thus Fredholm.

• Get index morphism θU+ = Ind(ΠU+ · ) : K1(C ∗U(∂U))→ Z.

• Show that U− can be replaced by U ′− without affecting θU+ .

• Swap U+ and U− roles. So U may be replaced by U ′ = R+ × R.

⇒ K0(C ∗Γ (X ))
ExpU−−−→ K1(C ∗U(∂U))

θU+−−→ Z is nonzero, from explicit
computation in U ′ = R+ × R case.
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Chern insulator example

For Γ = Z2 acting freely on X = R2, have

K0(C ∗Z2(R2)) ∼= K0(C ∗r (Z2)) ∼= K 0(T2) ∼= Z[1]⊕ Z[PChern].

First equality is Morita invariance, second is Fourier transform.
Third identification is Chern : K 0(T2) ∼= H0(T2)⊕ H2(T2).

“Chern insulator with Chern number k 6= 0”
⇔ HX = HChern,X has [ϕS(HChern,X )] = k · [PChern].

Proposition: K1(C ∗U(∂U)) ∼= K1(C ∗(∂U ∼ R)) ∼= Z.
We may represent generator by “edge-travelling operator” w
(see later).
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Edge-following topological states

Cobordism reduction & Künneth theorem & θU+([w ]) = 1 shows

θU+(ExpU([ϕS(HChern,X )]) = k 6= 0.

Conclusion: For a Chern insulator, the gap above S becomes filled
by new “edge spectra” of HChern,U , regardless of shape of U.

Example: HLan,X is an example of a Chern insulator
(k = 1 is folk theorem since mid 80s).

The spectral projection class [ϕS(HChern,X )] exponentiates to
k-units of [w ] ∈ K1(C ∗U(∂U)).

. . . Does this say something more about the gap-filling edge states?
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Edge-following topological states

θU+ is actually a cyclic 1-cocycle pairing with K1(C ∗U(∂U)),
measuring “edge current flowing across (any) partition N”.

• •

••

• • • •

•

• • •

◦

◦

×

×

×

×

× ×

×

× ×

⊗

⊗

w

N

•

U+

U−

Lemma: θU+([w ]) ≡ Ind(ΠU+w) = Ind(Shift) = 1.
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Philosophical points

Topologists work on abstract homotopy classification problem, not
so much on analytic consequences.

Analysts want to solve spectral problem for HU , but only possible
for special U on case-by-case basis.

Physicists know empirically that edge currents are robust to
deformations. Don’t care about precise eigenfunctions for specific
HU , only qualitative quantised features common to all HU .

K -theory, NC and coarse (*new!*) geometry and index theory,
provides efficient mathematical setting to study the most
important features of topological matter.

“Topology justifies extrapolation from special case”.
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Some other ongoing projects

I am interested in good mathematical dualities in/from physics of
topological matter and string theory.

With V. Mathai (Adelaide), used T-duality to study non- Euclidean
bulk-boundary correspondences [CMP ’16, AHP ’17, LMP ’18, ATMP ’19].
Application/interpretation/analogues of Baum–Connes conjecture.

With K. Gomi (Tokyo Tech), I discovered crystallographic
T-duality [JGP ’19] of flat orbifolds. Now investigating algebraic
topology consequences.

Mathematics of topological semimetals [CMP ’17]. Collaborated
with physicists [PRL ’19] to explain topological origin of MSSWs
(used in discovery of GMR, Nobel ’07.)
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