
Multi-Observer Privacy-Preserving
Hidden Markov Models

Hung X. Nguyen and Matthew Roughan
School of Mathematical Sciences, The University of Adelaide, Australia.

E-mail:hung.nguyen, matthew.roughan@adelaide.edu.au

Abstract— Detection of malicious traffic and network health
problems would be much easier if ISPs shared their data.
Unfortunately, they are reluctant to share because doing so
would either violate privacy legislation or expose business secrets.
However, secure distributed computation allows calculations to
be made using private data, without leaking this data. This
paper presents such a method, allowing multiple parties to jointly
infer a Hidden Markov Model (HMM) for traffic and/or user
behaviour in order to detect anomalies. We extend prior workon
HMMs in network security to include observations from multi ple
ISPs and develop secure protocols to infer the model parameters
without revealing the private data. We implement a prototype of
the protocols, and our experiments with the prototype show its
has a reasonable computational and communications overhead,
making it practical for adoption by ISPs.

I. I NTRODUCTION

As the Internet grows, and becomes more and more a
part of the modern world’s critical infrastructure, the issue
of maintaining cyber-security confronts ISPs. There are many
aspects to this problem, broadly falling under the categories of
prevention, detection and mitigation. It may be ideal to prevent
attacks before they can cause damage, but it is currently
impossible to anticipate all possible attacks, and so detection
of novel, or unexpected problems is necessary.

There is a now large literature on network anomaly detec-
tion (for examples see [7], [22]) aimed at detecting network
problems. The range of techniques is large, but the general
approach is to estimate the characteristics of the network under
“normal” conditions, and then to look for substantial devia-
tions from those characteristics. The principle differentiator in
methods is the type of model used for normal conditions, and
the method used to test for uncharacteristic behavior.

A number of authors have applied Hidden Markov Models
(HMMs) to the task [2], [3], [17]. A Markov model is a simple
stochastic process based on random, memoryless transitions
through some series of states. In HMMs, we assume that the
states themselves are not directly observable, but that we can
make some indirect observations, and from these estimate the
underlying process.

HMMs are among the most popular approaches for mod-
elling time series data [13]. They have widespread applications
in areas such as speech recognition, bio-informatics, and
Internet traffic modelling [10], [15], [18], and more pertinently
to finding problems in networks [2], [3], [17]. Once we have
trained such a model, we can then look for unlikely sequences
of observations, and use these to signal anomalies.

There is no doubt that anomaly detection in general, and
HMMs in particular, benefit from having as large a dataset as
possible from as diverse a set of viewpoints as possible. In
the Internet, these might take the form of observations from
multiple ISPs who are all interested in detecting large-scale
problems such Distributed Denial of Service (DDoS) attacks,
worms, or address hijacking. However, such collaboration
between ISPs is rare. The problem is that the type of data that
must be shared is often considered sensitive; either because it
contains business secrets, or customer or other data that has
legal privacy requirements.

There are various approaches one could imagine to solve
this problem. Here we apply an approach called variously
Secure Multi-party Computation (SMC), or Privacy-Preserving
Data Mining (PPDM). It has advantages over alternatives in
that no-one (not even a “trusted” third party) ever learns
the private data of another party. Moreover, there is no
“anonymized” residue, i.e., unanonymised components of the
data (needed in the analysis) that can be used to break the
anonymization of the rest of the data. In effect, the entire
computation is encrypted so that no participant learns anything
except the desired answer.

In this work, we solve the problem of learning a HMM from
observations made by multiple distributed and independent
parties. The observations themselves are private; no-one can
learn any one else’s observations. However, there is almostno
loss of fidelity as might be experienced in some anonymization
schemes. The solution we obtain deviates only slightly from
that if the data were completely public, provided some care is
put into choice of key length and scaling coefficients.

Our solution performs computation in the encrypted domain
to protect data privacy. Although data encryption and decryp-
tion introduce computation and communication overheads, we
show in our experiments that even running on commodity
hardware our prototype implementation can be used for re-
alistic applications.

II. BACKGROUND

We start by briefly introducing the elements of HMMs and
SMC used in this paper.

A. HMM Theory

A Markov chain is a sequence of random variablesQ =
q1 . . . qT with the Markov property: given the present state,
the future and past states are independent. Consider a Markov

chain withN possible statesS = {s1, . . . , sN}. The Markov
property is formally defined as

P(qt+1 = si|q1, q2, . . . , qT) = P(qt+1 = si|qt = sj).

If the states of the Markov process are not directly observed,
but rather we see some output sequence that is probabilistically
associated with the Markov chain, the process is referred toas
a Hidden Markov Model (HMM) [13]. A HMM is formally
defined by the quintuple

• the set ofN statesS = {s1, . . . , sN},
• the set ofM observation symbolsV = {v1, . . . , vM},
• the initial probability

π = (π1, . . . , πN), whereπi = P(q1 = si),

• the time-independent state transition probability

A = (aij)N×N , whereaij = P(qt+1 = sj |qt = si),

• the time-independent observation probability

B = (bik)N×M , wherebik = P(Ot = vk|qt = si).

HMMs have been used successfully in detecting network
problems [2], [3], [17]. In these applications, a HMM is built
for normal traffic conditions. For example, HMMs are built
in [2] for application protocols and in [3] for SSH traffic.
Using these models, we can quickly evaluate the probability
of an observed traffic stream. When an anomaly occurs, the
likelihood of the observations will drop, and the deviationcan
be detected.

To apply HMMs to network problems, we need to solve the
following two basic problems:

• The training problem, which is the task of estimating the
model parametersw = {A,B,π} from some sequence
of observationsO. We could also estimate the set of states
S and the set of observation symbolsV . This training
problem is crucial for most applications of HMMs, and
so has been extensively studied, and good algorithms to
solve this problem are available.

• The evaluation problem, which is the task of taking an
observation sequenceO = O1O2 . . . OT , and a model
w = {A,B,π}, and efficiently computing the probabil-
ity P(O|w). The probability reflects how well a given
model matches the observations and is the key to using
HMMs to detect network problems. For example, one can
compute the likelihood of an event and compare it with
a threshold. If the likelihood is lower than this threshold,
it would trigger an alarm.

Solutions to these problems have long been known [13] for the
single observer case. The solutions are, as a result, centralized.

The HMM we consider here differs in two ways. Firstly, we
allow multiple observers: that is, we consider that there isa
single set of statesS and transitions of those states governed
byA, but there are multiple sequences of observations of these
states, each potentially with its own observation matrixB

(i).
This type of model could be subsumed in a standard HMM by
increasing the size ofV . However, our second modification to

the standard HMM is to assume that the parties are unwilling
to share their individual observation sequences, so the solution
must be (i) privacy preserving; and (ii) distributed.

Examples where data need to be combined from multiple
ISPs have been studied in the past [8], [21]. Multiple observers
can improve detection probabilities without a corresponding
increase in false alarm rate as a tradeoff.

Our main interest in this paper is in the distributed solution
to the HMM inference problems with multiple observers such
that the data of one party is protected from other parties:
the data could be pooled at a trusted third party; or it could
be anonymized before sending to other parties. Neither of
these solutions have been widely adopted in the Internet.
Trusted third parties are not common in this domain, and
anonymization (e.g., [6]) has technical limitations in that part
of the data is lost (the part that is anonymized), but some
residue remains (that part that is used in some computation).
The problems in anonymization are not trivial [4], and the
approach is rarely used except to allow scientific researchers
access to certain datasets, often with legal machinery designed
to prevent reverse engineering of the data.

The solution we are pursuing in this research is to allow
the ISPs to jointly compute the HMMs without revealing the
private data. This problem falls into the general class of secure
multi-party computation problems, which we discuss next.

B. Introduction to Secure Multi-Party Computation

Secure Multi-party Computation (SMC) is a field of cryp-
tography that provides means to perform arbitrary compu-
tations between multiple parties who are concerned with
protecting their data. Mathematically, there arem parties
P1, . . . , Pm. Each party has private dataxi. They want to
compute a joint function(y1, . . . , ym) = f(x1, . . . , xm). The
goal is to computef without Pi learning anything aboutxj

or yj for all j 6= i, other than what can be inferred form their
own dataxi and outputyi.

The field of SMC originated from the work of Yao [19] on
the Millionaire Problem: two millionaires want to find which
one has a larger fortune, without revealing their wealth to each
other. Yao later showed that any polynomial time function
could be computed in a secure distributed manner but the
method is computationally expensive [20]. A great deal of
following work has considered how to do so efficiently.

There is now a substantial literature on secure distributed
computation and data mining. The parts most relevant to
this work include work on applications to network manage-
ment [5], [14], and anomaly detection using principle compo-
nent analysis [9]; and application of SMC to HMMs [12], [16].
However our work is quite different from the last two cases,
which consider the situation where one party holds the model,
and the other the observations. That problem was relevant for
a particular application, but has no obvious connection with
network management. Instead, in our problem the observations
are partitioned between the different parties.

We apply here the now standardsemi-honestsecurity model.
In this model, the parties in the computation will follow the

2

protocol correctly, but may perform additional (polynomial
time) computations to attempt to learn additional information.
Many of the techniques we use here have been extended to deal
with adversaries who are willing to corrupt the protocol itself
leading to invalid results, however, the resulting approaches
are then more complex, and have larger overhead that is
usually unnecessary for data-mining applications where itis
in everyone’s interest to find the correct solution. There is
a subsidiary issue of free-loading — participants who don’t
contribute to the calculation — but this is outside the scope
of this paper, as free-loading is difficult to discover without
recourse to the original measurements. We plan to solve this
problem in future work using the same types of techniques
espoused here.

The approach we take here is to use a number of well
developed ideas from SMC as building blocks orprimitives
to create the algorithm we need. The challenge is to do
so efficiently, and without intermediate data leaking useful
information. The principle primitive used here is homomorphic
encryption, which we describe in detail because the details
matter. Homomorphic encryption, and related techniques op-
erate on a field of integers, whereas most HMM estimation
algorithms assume floating point numbers, and so we must
perform scaling as part of the implementation. We also briefly
describe the other techniques used in this paper (secure logsum
and secure negation).

1) Homomorphic Encryption:A homomorphic encryption
scheme is a special type of public-private crypto-system with
the property that some operation in the plain-text are mirrored
by operations in the cipher-text. In practice, that means we
can perform computations on the encrypted text, e.g.,

x⊕ y = D
[

E[x]⊗ E[y]
]

,

for some operators⊗ and ⊕. The homomorphic encryption
scheme we use here is the Paillier crypto-system [11], which
we detail below.

• Key generation:Choose two large prime numbersp and
q randomly and independently such that gcd(pq, (p −
1)(q − 1)) = 1. Let n = pq and λ = lcm(p − 1, q −
1). Let Z

∗

n2 ⊆ Zn2 = {0, 1, . . . , n2 − 1} be the set
of non-negative integers that have multiplicative inverse
modulon2. Select a random integerg ∈ Z

∗

n2 such that
gcd(L(gλ modn2), n) = 1 where L(u) = u−1

n
with

the division being the quotient ofu − 1 divided by n.
The public key is(n, g) and the private key is(p, q) or
equivalentlyλ.

• Encryption: For a plain-texts ∈ Zn, select a random
nonce1 r ∈ Zn. The cipher text is then

E[s; r] = gs · rn modn2.

• Decryption:The decryption algorithm for cipher-textc <
n2, is

D[c] =
L(cλ modn2)

L(gλ modn2)
modn,

1A nonceis a number used once to prevent replay and similar attacks. Its
value is inconsequential as long as it is chosen randomly.

such that
D
[

E[s; r]
]

= s.

The following homomorphic properties hold for the Paillier
crypto-system

D
[

E[s1; r1]× E[s2; r2] modn2
]

= s1 + s2 modn,

D
[

E[s1; r1]
s2 modn2

]

= s1 × s2 modn,

so we can add or multiply numbers (modn) by multiplying or
exponentiating their encrypted values, respectively. Thelatter
operation is not perfectly privacy preserving, ass2 is in the
clear, however, using this in combination with other SMC
techniques allows the flexibility we need for our application.

The other primitives we use are:

• Secure logsum:This is a simple protocol that uses the
homomorphic properties of the Paillier crypto-system.
Consider two parties A and B where A has a vector
of encrypted values(E[log(x1)], . . . , E[log(xm)]), and B
holds the decryption key. A and B want to jointly com-
puteE[log

∑m

i=1 aixi] for a public vector(a1, . . . , am).
Algorithms for this protocol appear in [12], [16].

• Secure negation:We need to be able to allow two parties
A and B to compute the encrypted negationE[−a] of
an encrypted valueE[a]. Our protocol for doing so is a
simple application of the homomorphic properties of the
Paillier crypto-system.

Input: Party A has encrypted valueE[a] and the public
encryption key, and B has the private decryption key.

Output: Party A obtainsE[−a] and B learns nothing.
1: Party A generates a random numberR, uniformly

distributed in{0, . . . , n− 1} and computes

E[a+R] = E[a] ·E[R].

2: Party A sendsE[a+R] to B.
3: Party B decryptsE[a+R] to obtaina+R and then

sends backE[−a−R].
4: Party A computesE[−a] = E[−a−R] ·E[R].

III. HMM S WITH MULTIPLE OBSERVERS

A. Problem Statement

Assume that we have a HMM with parameters{A,B,π}
as described in section II-A. There arem parties denoted by
P1, P2, . . . , Pm that make observations of the same underlying
Markov process. Without loss of generality, assume that the
observations are made between time0 andT , and that the time
interval is divided intoT slots [1, . . . , T]. Each party makes
its own observations of the system and these observations
are secret. At each time slot, we havem observations of the
underlying HMM. The observation set now becomes

O = {O1, . . . ,OT },

where each elementOt is a vectorOt = {O1t, . . . , Omt} of
observations from each party. The sequence ofT observations
that partyPj makes is denoted asO(j) = {Oj1, . . . , OjT }.
An example of this model is given in Figure 1.

3

q1 q2 q3 qT

O11O21 Om1 Om2O12O22 O2T OmTO1T

Fig. 1. A HMM with multiple observers.

Note that in real measurements, a party may not make a
measurement on a particular time slot. The HMM can be easily
extended to this case by including anull state inV to represent
“no observation” [21].

We shall assume that the observations of the different parties
are independent. That is a natural assumption, as dependence
between observations would weaken the need for privacy.
Moreover, in this paper we assume all parties have the same
observation probability given by the matrixB = {bik}, though
we plan to extend our model to the heterogeneous case in
future work. Under these conditions the probability of a setof
observations at timet, conditional on the state of the Markov
process is given by

P(Ot|qt = si) =
m
∏

j=1

P(O
(j)
t = vkj

|qt = si) =
m
∏

j=1

bikj
.

We are interested in solving the training and evaluation
problems for HMMs as defined in Section II-A in a privacy
preserving manner. That is, the parties jointly compute the
likelihood of the observations and the HMM parameters in
such a way that at the end of the computation all parties learn
the correct parameter value but do not learn anything more
about the data of the other parties other than those that can be
directly inferred from the output and their inputs. The solution
requires two separate extensions to both the HMM algorithms
and the privacy-preserving computation techniques.

B. Solution of HMMs with multiple observers

We present first our modification to the centralized algo-
rithms for HMMs in [13] to handle multiple observers.

The forward procedure: We are interested in computing
P (O|w), the likelihood of the observationsO given the
parametersw = (π,A,B). Define the forward variables

αt(i) = P(O1,O2, . . . ,Ot, qt = si|w),

i.e., αt(i) is the probability of partial observation sequence
from 1 to t and the state of the process at timet is qt = si,
given the model parametersw.

The following forward algorithm computes theαt(·) in
linear time:

1) Initialization:

α1(i) = πi

m
∏

j=1

bikj
,

where kj ∈ [1, . . . , N], Oj1 = vkj
and bikj

is the
probability thatPj observesvkj

given that the state of
the HMM at time 1 issi.

2) Induction: fort ∈ [2, T] compute

αt(j) =
N
∑

i=1

αt−1(i)aij

m
∏

l=1

bjkl
, (1)

where Ojt = vkl
and bjkl

is the probability thatPl

observesvkl
given the state of the HMM at timet is sj .

Here, as elsewhere, the only difference from the standard
estimation algorithm for HMMs is the inclusion of multiple
observers. Once we have theαt(i) we can compute the
likelihood P (O|w) =

∑N

i=1 αT (i).
The Baum-Welch algorithm: There is no known method

to effectively select parametersw to globally maximize the
probability of the observed sequence. However, the Baum-
Welch algorithm provides a local maximum that is often
sufficient. It proceeds as follows.

We first define a backward variablesβt(i), analogously to
the forward variableαt(i), as

βt(i) = P(Ot+1Ot+2 . . .OT |qt = si,w), (2)

i.e., βt(i) is the probability of partial observation sequence
from t + 1 to the end, given that the state of the process is
qt = si at time t and the model parameters arew.

We can writeβt(i) for 1 ≤ t < T inductively as

βt(i) =
N
∑

j=1

aij

m
∏

l=1

bjkl
βt+1(j), (3)

whereOjt = vkl
and bjkl

is the probability thatPl observes
vkl

given the state of the HMM at timet+ 1 is sj .
We also need the following variablesξt(i, j) – the proba-

bility of being in statesi at time t and statesj at time t+ 1
given the observations, i.e.,

ξt(i, j) = P(qt = si, qt+1 = sj |O,w). (4)

The ξt(i, j) can be computed from the forward and backward
variablesαt(·) andβt(·) as

ξt(i, j) =
αt(i)aij

∏m

l=1 bikl
βt+1(j)

P(O|w)
, (5)

wherekl is the index of thetth observation by PartyPl, i.e.,
Olt = vkj

.
Thenγt(i), the probability of being in statesi at timet given
the observation sequence and the model parameters, is simply
the sum ofξt(i, j) over all j:

γt(i) =

N
∑

j=1

ξt(i, j). (6)

Summation ofγt(i) over time can be interpreted as the
expected number of transitions from statesi, and summation
of ξt(i, j) over all time slots can be interpreted as the expected
number of transitions from statei to statej:

T−1
∑

t=1

γt(i) = expected number of transitions fromsi,

T−1
∑

t=1

ξt(i, j) = expected number of transitions fromsi to sj .

4

Once we have calculatedγt(i) andξt(i, j), we can estimate
the initial state and state transition probabilitiesπ,A as:

πi = γ1(i), and aij =

∑T−1
t=1 ξt(i, j)
∑T−1

t=1 γt(i)
. (7)

Estimation of the observation probabilitiesB is based on the
the ratio between the expected number of times the process is
in statesi and the expected number of timesvk is observed,
however, our formula is slightly different from the standard
HMM in that we must take into account observations from
multiple observers:

bik =

∑T

t=1 γt(i)
∑m

j I{Ojt = vk}

m
∑T

t=1 γt(i)
, (8)

whereI{Ojt = vk} is the indicator function:

I{Ojt = vk} =

{

1, if Ojt = vk,
0, otherwise,

i.e., the function is 1 when the observation made by partyPj

at time t is vk.

IV. PRIVACY PRESERVINGPROTOCOLS

A. Protocol for Secure Forward Algorithm

The first step we consider is deriving a secure version of the
forward algorithm. Our protocol encrypts data and performs
computation in the encrypted domain using homomorphic
encryption to protect privacy of the parties.

We present the protocol for the two party case (m = 2). It
could obviously be extended to the multi-partym > 2 case,
but we may also be able to substantially reduce the overhead
in that case by using, for instance, secure summation protocols
in place of homomorphic encryption. Hence we describe the
two party case here, and leave the multi-party case for future
development.

Denote the two partiesP1 andP2 and assume thatP2 sets
up a private and public key pair for the Paillier crypto-system
and sends the public key toP1. The secure two-party forward
protocol is presented in Protocol 1.

PartyP2 sends only encrypted data toP1, andP1 only sends
P2 the data in the secure logsum protocol at steps 12 and 17,
which is known to be secure [12], [16], so the overall protocol
is secure. The protocol’s performance is dominated by the
logsum protocol, which is calledNT+1 times. Each execution
of the logsum protocol requiresP1 to send2N integers to
P2, where there areN states in the Markov chain. The total
communication cost is thereforeO

(

N2T logn
)

, wheren is
the largest possible integer given the key-size.

The computational cost depends on the cost for encryp-
tion/decryption operations, which is implementation depen-
dent. We explore this cost in our tests of the implementation
of the protocol in Section V.

Protocol 1 Secure Two-Party Forward Protocol
Input: Both parties P1 and P2 know the model

{S,V ,A,B,π}. Each party has a set of private
observationsO(i) = {Oi1, . . . , OiT }. P2 holds the public
and private keys of a Paillier crypto-system on the field
{0, 1, . . . , n− 1}, while P1 knows only the public key.

Output: P (O|w) =
∑N

i=1 αT (i).
1: Initialization (t = 1):
2: kj is the index of thetth observation by Partyj, i.e.,

Ojt = vkj
for j = {1, 2}.

3: for i = 1, . . . , N do
4: P2 sendsE [log(bik2

)] to P1,
5: P1 computes

E[log(bik1
bik2

)] = E[log(bik2
)] · E[log(bik1

)].

6: P1 computes

E[log(α1(i))] = E [log(πi)] ·E [log(bik1
bik2

)] .

7: end for
8: Induction:
9: for t = 2, . . . T do

10: Repeat steps 2-5, replacing the time index witht, so
thatP1 obtainsE[log(bik1

bik2
)] for i = 1, 2, . . . , N .

11: for j = 1, . . . , N do
12: P1 andP2 use the secure logsum protocol to compute

E

[

log
N
∑

i=1

αt−1(i)aij

]

.

13: P1 computes

E [logαt(j)] = E

[

log

N
∑

i=1

αt−1(i)aij

]

·E[log bjk1
bjk2

],

14: end for
15: end for
16: Termination:
17: P1 andP2 use the secure logsum protocol to compute

E
[

logP(O|w)
]

= E

[

log

(

N
∑

i=1

αT (i)

)]

.

18: P2 decrypts the result, and transmit the value toP1.

B. Protocol for Secure Baum-Welch Algorithm

We first need to compute the backward variableβ(·) se-
curely. The secure backward algorithm is directly analogous
to the secure forward algorithms. Due to space constraints,we
will omit the detail.

Once we knowE[logαt(·)] and E[log βt(·)], we can up-
date the model parameters using thesecure Baum-Welch
protocol given in Protocol 2. The protocol uses the Paillier
homomorphic encryption to protect data privacy and perform
computation in the encrypted domain. As with the forward
protocol, we present the case of two parties, for clarity, and
omit the obvious generalization tom > 2.

5

The security of the protocol is guaranteed in the same way
as the forward protocol. The protocol usesN2T + 4 calls
to the logsum protocol in Step 6, 9 and 10, so the total
communications overhead isO(N3T logn).

The protocol describes one iteration of the Baum-Welch
algorithm. In practice, this is iterated in combination with
the forward-backward algorithms until the log-likelihood
logP(O|w) converges. In our case, all of the variables output
from the algorithms are output/input as encrypted logs, and
so iteration is straight forward, except we must also create
a stopping condition for the algorithm. The easiest approach
is to stop the algorithm after a fixed number of iterations
(we found that 10 was satisfactory in our test cases), but a
more general approach is to test whether the log-likelihood
has converged by looking at ratios of values, which can be
easily done by havingP1 compute the log-ratio (using secure
negation), and giving this value toP2 for decryption. Party
P2 can then terminate the algorithm when the procedure has
converged. The advantage is that the algorithm may converge
more quickly; the disadvantage is that the number of iterations
itself may reveal some detail of the private data to one partyor
the other. The choice is a tradeoff of computation cost against
security — in our experiments we use the most secure, fixed
iteration approach.

V. I MPLEMENTATION AND RESULTS

In this section we describe our implementation of the secure
protocols described in the preceding section. The code for our
implementation is available atwww.hxnguyen.net. It is written
in Python, using the Paillier encryption scheme by Ivanov2,
which we have extended by adding the secure logsum and
secure negation protocols. The HMM code was implemented
on top of the standard HMM implementation by Hamiltom3.

However, the code is not a trivial extension of these pack-
ages. The crucial implementation issue is that the encryption
scheme applies to a finite field of non-negative integers,
whereas the HMM algorithms were designed to work with
potentially negative floating-point numbers. There is signifi-
cant room for problems if the translation between these two
domains is not performed carefully. We first describe the
implementation issues, and then present experiment results for
the performance of the algorithm.

A. Scaling for HMMs

The first implementation issue in HMM algorithms is the
under-flow problem that arise when multiplying hundreds of
small probabilities. These probabilities are very small for large
number of samples (500 or more) and will cause under-flow
problems when multiplied.

Our secure protocols work in the logarithmic domain and
would therefore avoid the problem but for the secure logsum
algorithm, which converts the logs back to the actual values.
To avoid the issue, we apply the scaling procedure in [13],
however, here it must work in the encrypted domain.

2https://github.com/mikeivanov/paillier
3http://www.cs.colostate.edu/hamiltom/code.html

Protocol 2 Secure Two-Party Baum-Welch Protocol
Input: The encrypted logarithmic of the forward and

backward variables E[logαt(·)], E[log βt(·)], and
E[logP(O|w)]. Each party has a set of private
observationsO(i). P2 holds the public and private keys
of a Paillier crypto-system on the field{0, 1, . . . , n− 1},
while P1 knows only the public key.

Output: The updated model parametersA,B, andπ
1: for t ∈ [1, T] do
2: for i = 1, . . . , N do
3: for j = 1, . . . , N do
4: P1 computesE[log ξt(i, j)] by taking the log of (5)

E[log ξt(i, j)] = E[logαt(i)] · E[log βt+1(j)]
·E[log aij] ·E[log bik1

bik2
] · E[− logP(O|w)].

5: end for
6: P1 and P2 use the secure logsum to compute

E[log γt(i)] from (6)

E[log γt(i)] = E

log

N
∑

j=1

ξt(i, j)

 .

7: end for
8: end for
9: P1 uses (7) to update the model parametersE[log π̄i] =

E[log γ1(i)] and

E[log āij] = E

[

log
T−1
∑

t=1

ξt(i, j)

]

·E

[

− log
T−1
∑

t=1

γt(i)

]

.

10: P1 then updatesE[log b̄ik] as in (8), withm = 2

E[log b̄ik] = E
[

log
∑2

j=1

∑T

t=1 γt(i)I{Ojt = vk}
]

·E
[

− log(2
∑T

t=1 γt(i))
]

,

using the secure logsum and negation protocols.

For each1 ≤ t ≤ T , we first compute the forward variable
αt(i) as in the secure forward protocol, and then we multiply
it by a scaling coefficientct in the encrypted domain, where

E[log ct] = E

[

− log
N
∑

i=1

αt(i)

]

.

The forward and backward variables are then updated as:

E[log α̂t(i)] = E[logαt(i)] ·E[log ct],

E[log β̂t(i)] = E[log βt(i)] ·E[log ct].

The likelihoodP(O|w) is computed fromct

E
[

logP(O|w)
]

= E

[

−

T
∑

t=1

log ct

]

.

The Baum-Welch protocol remains unchanged under scaling.

6

B. Fixed point computation and negative numbers

The Paillier crypto-system is defined over a finite field
Zn = {0, . . . , n − 1}. In our solutions for HMM we need
to encrypt the HMM parameters, which are real numbers.
We translate between floating-point numbers and non-negative
integers by scaling and rounding off the values: a real number
x is translated to integer̄x = ⌊Lx⌋, where ⌊x⌋ is the
largest integer≤x. In our implementation, we incorporate this
operation into the encryption and decryption. For instance, for
x ∈ IR, we take

E′[x] = E
[

x̄
]

= E
[

⌊Lx⌋
]

, and D′
[

E′[x]
]

= x̄/L ≃ x.

Obviously this approximation will be more accurate for larger
values ofL. However, there is a problem in that the largest
value of x that can be represented will be(n − 1)/L, and
in fact, to avoid overflow we must ensure that all values in
calculations lie below this threshold. For large key-sizesthis
is not a significant issue, but could be for smaller keys.

The other important issue is that of encrypting negative
numbers (remember we frequently use the log of probabilities,
which will be negative). We use modulon arithmetic here, and
so negative numbers are represented by their modular additive
inverse, i.e.,x < 0 then

E′[x̄] = E′[x̄+ n].

This changes the domain of the possible values we can work
with to x ∈ [− n

2L ,
n−1
2L]. We will test various combinations of

n andL in the following sections.

C. Experiment results

We construct a simplified HMM for the detection of SSH
brute-force attacks in [3]. In this model, the HMM has two
states where the attackers alternate between “attack” and
“inactive”, i.e. S = {Attack, Inactive}, and there are 6
observation outputs representing possible the traffic counts
V = {v1, v2, v3, v4, v5, v6}.

The following parameters are used for initial, transition and
observation probabilities

π = (0.01, 0.99),

A =

(

attack inactive

attack 0.95 0.05
inactive 0.05 0.95

)

,

B =

(

v1 v2 v3 v4 v5 v6

attack 0.1 0.1 0.1 0.1 0.1 0.5
inactive 1/6 1/6 1/6 1/6 1/6 1/6

)

.

We simulate a set of 10 realizations for the HMM, for each
set of parameter values, and run both the centralized (insecure)
and secure distributed version of the estimation algorithms to
compare results.

Key length (bits) L P(O|w) π̄ Ā B̄

64 103 6.15 % 7.91 % 8.39 % 15.70 %
128 103 4.98 % 5.42 % 7.32 % 12.57 %
256 103 3.57 % 3.92 % 6.27 % 9.09 %
512 103 1.83 % 3.03 % 5.17 % 6.92 %
64 106 0.16 % 1.53 % 3.08 % 7.17 %

128 106 0.16 % 1.28 % 2.97 % 5.85 %
256 106 0.10 % 0.65 % 2.17 % 4.43 %
512 106 0.10 % 0.6 % 1.09 % 2.03 %

TABLE I

WORST-CASE ERRORS OVER10 RUNS, GIVEN AS PERCENTAGES.

1) Accuracy of the secure protocols:The approximation
of real numbers by integers in the Paillier crypto-system (see
Section V-B) introduces errors. Here, we compare the accuracy
of the secure protocols against results provided by the ideal
result produced by a centralized algorithm. We compare the
ideal result with the secure result using the relative errorǫ =
|p̂ − p|/p, where p̂ is the result of the secure protocol, and
p the ideal estimate. We evaluate the errors by varying the
values of the scaling parameterL and the key length.

Space constraints prevent us presenting results for each
parameter̄πi, āij and b̄ik so we present, in Table I, theworst
caseerrors over each of the estimated components. The results
(given for T = 1000 samples) show that the further through
the estimation process we go, the larger the errors, but that
for large keys, and reasonable scaling parameters, the errors
introduced by integer approximation and consequent over-
or underflow are insignificant (2% in the worst case over
multiple simulations, and parameter estimates). Larger keys
also provide better security, so best performance occurs inthe
most secure case.

2) Runtime analysis:Another important consideration is
the runtime of the protocol. We evaluate the runtime of
our protocols by varying the key length and the number of
samples used to evaluate and train the HMM, withL = 106.
The results, generated on a laptop with a duo core 2.8 Ghz
processor with 4GB of RAM are shown in Figure 2. The
results show that the algorithm is approximately linear in
the number of samplesT , and quadratic as a function of
key length. This quadratic growth is due to the runtime of
the Paillier encryption and decryption functions, which could
be more efficiently implemented. There is a clear trade-off
between security and runtime as the longer the key length the
more secure the protocol but also longer computation time.

The Baum-Welch protocol takes on average 5 times longer
than the secure forward protocol for each iteration, so esti-
mation/training component of running these algorithms repre-
sents a significant workload. However, detection of anomalies
requires only the forward algorithm.

3) Collaboration benefits:The other obvious question to
ask is whether there is an advantage in multiple parties col-
laborating. It is intuitive that a larger set of data is beneficial,
but it may not be obvious that these benefits outweigh the
costs involved in participating in such a protocol. Here we
study these to allow potential collaborators to determine the
cost/benefits.

7

200 400 600 800
0

2000

4000

6000

Number of samples

R
un

 ti
m

e
(s

ec
on

d)

64 bits
128 bits
256 bits
512 bits

Fig. 2. Runtime for the secure forward protocol under different key-length.

Using the same model, we compare the errors as we increase
the number of participants in the protocol. We apply the Baum-
Welch algorithm toT = 100 samples and compare errors in
the estimates. In particular, due to space restrictions, wefocus
on the estimates ofB, which we can see from Table I are
the hardest to estimate accurately, and we calculate the Mean
Squared Error (MSE) over the matrix.

The resultant MSE is shown in Figure 3. The plot shows that
there is a substantial increase in accuracy when two parties
collaborate, but that the marginal improvement lessens with
increasing numbers of participants in the protocol.

1 2 3 4 5 6

0.008

0.01

0.012

0.014

Number of parties

M
ea

n
sq

ua
re

 e
rr

or

Fig. 3. MSE of the observation probabilitiesB.

VI. CONCLUSION AND FUTURE WORK

In this paper we have shown that collaboration between
multiple parties can improve the quality of estimates provided
by HMMs. More importantly, we have shown how the parties
can collaborate without revealing private data to each other. In
the context of ISPs, this would mean that multiple ISPs can
help each other detect network problems without running the
risk of exposing critical data to competitors.

We have implemented the protocol using Paillier’s homo-
morphic encryption, and shown how several details such as
the conversion between real and integer arithmetic can be
handled. The implemented protocols are accurate and secure,
and reasonably fast. However, the protocol comes at a cost.
As with all security there is a computational and communica-
tions overhead in encryption. In the future we plan to study
approaches to allow multiple parties to reduce this cost using
more efficient algorithms.

There are other ways in which the protocol can be enhanced,
for instance, we would use secure distributed protocols to
prevent free-riding, which is hard to detect in the context of
private data, and we aim to tackle this problem in future work.

REFERENCES

[1] RIPE Network Coordination Center.http://www.ripe.net/.
[2] D. Ariu, G. Giacinto, and R. Perdisci. Sensing attacks incomputers

networks with Hidden Markov Models. InProc. of the Machine
Learning and Data Mining in Pattern Recognition, pages 449–463, 2007.

[3] C. Bartolini, L. Gaspary, A. Sperotto, R. Sadre, P.-T. deBoer, and
A. Pras. Hidden Markov Model modeling of SSH brute-force attacks.
In Integrated Management of Systems, Services, Processes andPeople
in IT, pages 164–176. Springer Berlin / Heidelberg, 2009.

[4] M. Burkhart, D. Schatzmann, B. Trammell, E. Boschi, and B. Plattner.
The role of network trace anonymization under attack.SIGCOMM
Comput. Commun. Rev., 40:5–11, January 2010.

[5] M. Burkhart, M. Strasser, D. Many, and X. Dimitropoulos.SEPIA:
Privacy-preserving aggregation of multi-domain network events and
statistics. InUSENIX Security Symposium, Washington, DC, USA,
August, 2010.

[6] J. Fan, J. Xu, M. H. Ammar, and S. B. Moon. Prefix-preserving IP
address anonymization: measurement-based security evaluation and a
new cryptography-based scheme.Comput. Netw., 46:253–272, Oct.
2004.

[7] A. Lakhina, K. Papagiannaki, M. Crovella, C. Diot, E. D. Kolaczyk,
and N. Taft. Structural analysis of network traffic flows. InACM
SIGMETRICS / Performance, 2004.

[8] X. Li, M. Parizeau, and R. Plamondon. Training Hidden Markov Models
with multiple observations-a combinatorial method.IEEE Trans. Pattern
Anal. Mach. Intell., 22:371–377, April 2000.

[9] S. Nagaraja, V. Jalaparti, M. Caesar, and N. Borisov. P3CA: Private
anomaly detection across ISP networks. In S. Fischer-Hübner and
N. Hopper, editors,Privacy Enhancing Technologies, volume 6794 of
Lecture Notes in Computer Science, pages 38–56. Springer Berlin /
Heidelberg, 2011.

[10] H. X. Nguyen and M. Roughan. SAIL: Statistically Accurate Internet
Loss Measurement. InProceedings of ACM Sigmetrics 2010 Conference,
New York, NY, June, 2010.

[11] P. Paillier. Public-key cryptosystems based on composite degree residu-
osity classes. InADVANCES IN CRYPTOLOGY - EUROCRYPT 1999,
pages 223–238. Springer-Verlag, 1999.

[12] M. Pathak, S. Rane, W. Sun, and B. Raj. Privacy preserving probabilistic
inference with Hidden Markov Models. InProc. of ICASSP 2011, 2011.

[13] L. R. Rabiner. A tutorial on Hidden Markov Models and selected
applications in speech recognition.Proc. of the IEEE, 77(2):257–286,
February 1989.

[14] M. Roughan and Y. Zhang. Secure distributed data-mining and its
application to large-scale network measurements.ACM SIGCOMM
Computer Communication Review, 36(1):7–14, January 2006.

[15] K. Salamatian and S. Vaton. Hidden Markov Model for network
communcation channels.Proceedings of ACM SIGMETRICS, 2001.

[16] P. Smaragdis and M. Shashanka. A framework for secure speech recog-
nition. Audio, Speech, and Language Processing, IEEE Transactionson,
15(4):1404 –1413, May 2007.

[17] Y. Song, S. Stolfo, and T. Jebara. Markov models for network-behavior
modeling and anonymization. InTechnical reports-Columbia University,
http://hdl.handle.net/10022/AC:P:10682, 2011.

[18] C. V. Wright, F. Monrose, and G. M. Masson. On inferring application
protocol behaviors in encrypted network traffic.J. Mach. Learn. Res.,
7:2745–2769, December 2006.

[19] A. C. Yao. Protocols for secure computations. InProceedings of the 23rd
Annual Symposium on Foundations of Computer Science, SFCS ’82,
pages 160–164, Washington, DC, USA, 1982. IEEE Computer Society.

[20] A. C. Yao. How to generate and exchange secrets. InProceedings of
the 27rd Annual Symposium on Foundations of Computer Science, pages
162–167, 1986.

[21] S.-Z. Yu and H. Kobayashi. A Hidden Semi-Markov Model with missing
data and mulitple observation sequences for mobility tracking. Elsevier
Transations on Signal Processing, 83:235–250, December 2003.

[22] Y. Zhang, Z. Ge, M. Roughan, and A. Greenberg. Network anomog-
raphy. In Proceedings of the Internet Measurement Conference (IMC
’05), Berkeley, CA, USA, October 2005.

8

