
RESEARCH REPORT

Gerard O’Brien Æ Jon Opie

How do connectionist networks compute?

Received: 13 July 2005 / Revised: 19 July 2005Accepted: 19 July 2005
� Marta Olivetti Belardinelli and Springer-Verlag 2005

Abstract Although connectionism is advocated by its
proponents as an alternative to the classical computa-
tional theory of mind, doubts persist about its compu-
tational credentials. Our aim is to dispel these doubts by
explaining how connectionist networks compute. We
first develop a generic account of computation—no easy
task, because computation, like almost every other
foundational concept in cognitive science, has resisted
canonical definition. We opt for a characterisation that
does justice to the explanatory role of computation in
cognitive science. Next we examine what might be re-
garded as the ‘‘conventional’’ account of connectionist
computation. We show why this account is inadequate
and hence fosters the suspicion that connectionist net-
works are not genuinely computational. Lastly, we turn
to the principal task of the paper: the development of a
more robust portrait of connectionist computation. The
basis of this portrait is an explanation of the represen-
tational capacities of connection weights, supported by
an analysis of the weight configurations of a series of
simulated neural networks.

Keywords Computation Æ Connectionism Æ
Representation Æ Resemblance

Introduction

Connectionism was first widely recognised as a
potential rival to the classical computational theory of

mind nearly 20 years ago.1 Yet, despite all that has
since been written about this approach to cognition,
we still lack a satisfactory account of how connec-
tionist networks compute. Into this vacuum has crept
doubt about connectionism’s computational credentials.
This doubt takes three forms. One is the view that
connectionism, far from being a rival computational
paradigm, is nothing more than a modern version of
associationism, and hence suffers from all the well-
known vices of this much older position.2 A second is
the claim that while connectionists typically interpret
the states and activity of connectionist networks in
representational terms, closer scrutiny reveals that
these putative representations fail to do any explana-
tory work, and since there is ‘‘no computation without
representation’’ (Pylyshyn 1984, p. 62), the connec-
tionist framework is better interpreted non-computa-
tionally.3 And a third is the suggestion that
connectionist networks are better characterised as
dynamical systems rather than computational devices.4

If connectionism is ever to stand as a serious alter-
native to the classical computational theory of mind, this
doubt must be dispelled. And the only way to do this is
to explain how connectionist networks compute. That is
the task we have set ourselves in this paper. We begin by
developing a generic account of computation—no easy
task, since like almost every other foundational concept
in cognitive science, computation has resisted canonical
definition. In the face of this problem, we opt for a

Communicated by John Sutton

G. O’Brien (&) Æ J. Opie
Discipline of Philosophy, University of Adelaide,
5005 Adelaide, SA, Australia
E-mail: gerard.obrien@adelaide.edu.au
URL: http://arts.adelaide.edu.au/humanities/gobrien/
Tel.: +61-8-8303-5298
Fax: +61-8-8303-5241

1We use ‘‘connectionism’’ generically to denote the explanatory
framework that models human perceptual and cognitive processes
in terms of the operations of neuron-like processing units con-
nected together to form neural-like networks. While this explana-
tory framework has antecedents running back more than 50 years,
we take the appearance of Rumelhart and McClelland (1986) and
McClelland and Rumelhart (1986) as the moment when connec-
tionism, in the guise of parallel distributed processing, came of age.
2This claim is most famously associated with Fodor (e.g. Fodor
and Pylyshyn 1988; Fodor 2000, Ch. 3) but it pops up in a number
of different places (Pinker 1997, pp. 112–131 and 2002, pp.78–83).
3See, e.g. Ramsey (1997).
4See, e.g. the various contributions to Port and Van Gelder (1995).

Cogn Process (2005)
DOI 10.1007/s10339-005-0017-7



characterisation that captures the intended role of
computation in cognitive science. Next we examine what
might be regarded as the ‘‘conventional’’ account of
connectionist computation. We show why this account is
inadequate and hence fosters the kinds of doubt we have
just enumerated. We then turn to the principal task of
the paper: the development of a more robust portrait of
connectionist computation. The basis of this portrait is
an explanation of the representational capacities of
connection weights, supported by an analysis of the
weight configurations of a series of simulated neural
networks. Once this explanation is in place, it will be
apparent how connectionist networks compute.

Toward a proper understanding of computation
in cognitive science

Computation is a concept so overused and so variously
defined that we sometimes despair of it ever being
meaningfully deployed. And yet we also believe that
computation is the most important concept in all of
cognitive science. Indeed, we would argue that without
the concept of computation there is no cognitive (as
distinct from behavioural, psychological, biological, or
just plain physical) science in the first place. So some-
thing must be done.

In all that has been written about computation in
cognitive science, two extreme characterisations are
discernible. At one extreme is a depiction of computa-
tion in terms of the symbol manipulations of a digital
computer; at the other is the claim that computation is
simply a matter of implementing a function. We’ll briefly
say what’s wrong with these proposals, before develop-
ing a middle ground characterisation that does justice to
the explanatory role of computation in cognitive science.

Computation as symbol manipulation

Jerry Fodor is fond of remarking that there is only one
important idea about how the mind works that anybody
has ever had. This idea he attributes to Alan Turing:

[G]iven the methodological commitment to materi-
alism, the question arises, how a machine could be
rational?...Forty years or so ago, the great logician
Alan Turing proposed an answer to this ques-
tion...Turing noticed that it isn’t strictly true that
states of mind are the only semantically evaluable
material things. The other kind of material thing
that is semantically evaluable is symbols... Having
noticed this parallelism between thoughts and sym-
bols, Turing went on to have the following perfectly
stunning idea. ‘‘I’ll bet’’, Turing (more or less) said,
‘‘that one could build a symbol manipulating machine
whose changes of state are driven by the material
properties of the symbols on which they operate (for
example, by their weight, or their shape, or their
electrical conductivity). And I’ll bet one could so

arrange things that these state changes are rational
in the sense that, given a true symbol to play with,
the machine will reliably covert it into other symbols
that are also true’’. (Fodor 1992, p. 6)

The rest, as one says, is history. Cognitive science
emerged as a discipline (or at least, a ‘‘multi-discipline’’)
in the 1950s. What was novel about cognitive science (as
opposed to those already established disciplines that
study the mind, including neuroscience, psychology and
philosophy) was its commitment to the computational
theory of mind: the idea that cognitive processes are the
symbol manipulations of a neurally realised digital
computer.

At its inception, cognitive science thus embraced a
Turing-inspired understanding of computation. Com-
putation is what happens in a digital computer: a causal/
mechanical process in which language-like representing
vehicles are recognised and transformed in a semanti-
cally coherent fashion purely on the basis of their syn-
tactic properties.

The problem with this characterisation is that it
pays scant attention to the history of computer science.
For more than 2000 years, theorists and practitioners
have recognised a distinction between two forms of
computation: digital computation, admirably formalised
by Turing and others, and analog computation. The
latter currently lacks a precise formal definition, but a
quick survey of computer science textbooks of the
1950s and 60s reveals an intuitively clear demarcation:
while digital computers employ semantically inert
symbols (tokens that bear no resemblance to what they
represent), analog computers employ internal models
that physically or structurally resemble their repre-
sentanda.5 Analog computation is thus not properly
conceived as symbol manipulation, but as a physical
process driven by the structural properties of analog
representational media.

From this perspective, Turing’s great achievement
was not that of conceiving the idea of computation, but
of developing one very powerful means of mechanising
computational processes. Drawing this distinction
is important because once it is clear that the idea of
computation is distinct from Turing’s account of how
computational processes might be mechanised, it is
possible to investigate the former independent of the
latter. What we therefore require is a characterisation of
computation that captures more (if not all) of those
processes that have earned this epithet over the last
2000 years.

Computation as implementing a function

In response to this demand, a different kind of charac-
terisation of computation is now popular in cognitive

5See Truitt and Rogers (1960) for both a semi-formal account of
analog computation along these lines, and for numerous examples
of analog computers.



science. For example, in an influential article Church-
land et al. (1990) have this to say on the subject:

In a most general sense, we can consider a physical
system as a computational system just in case there
is an appropriate (revealing) mapping between some
algorithm and associated physical variables. More
exactly, a physical system computes a function f(x)
when there is (1) a mapping between the system’s
physical inputs and x, (2) a mapping between the
system’s physical outputs and y, such that (3)
f(x)=y. (1990)

In this passage, however, it is not obvious that the
reference to an ‘‘appropriate (revealing)’’ mapping is
doing any real work. Once this is removed, what remains
is the proposal that a computation is performed by some
physical system just in case its causal operation can be
interpreted as implementing some function. Chalmers
(1994) summarises the idea as follows:

A physical system implements a given computation
when there exists a grouping of physical states of the
system into state-types and a one-to-one mapping
from formal states of the computation to physical
state-types, such that formal states related by an ab-
stract state-transition relation are mapped onto
physical state-types related by a corresponding causal
state-transition relation. (1994, p. 392)

The bottom line here, according to Chalmers, is that
computation is simply ‘‘ an abstract specification of
causal organisation’’ (1994, p. 396, emphasis in original).

This characterisation does satisfy the desideratum we
mooted above, given that it captures both analog and
digital computation in its net. But it does so at a very
great cost. Since all law-governed physical systems (and,
granting determinism, this equates with all physical
systems) are interpretable as implementing some func-
tion or other, we arrive at the unwelcomed conclusion
that all physical systems are computational. And that
would appear to render the concept of computation in
cognitive science explanatorily vacuous.

Chalmers, for one, resists this conclusion:

This objection expresses the feeling that if every
process, including such things as digestion and oxi-
dation, implements some computation, then there
seems to be nothing special about cognition any more,
as computation is so pervasive. This objection rests on
a misunderstanding. It is true that any given instance
of digestion will implement some computation, as any
physical system does, but the system’s implementing
this computation is in general irrelevant to its being
an instance of digestion.... With cognition, by con-
trast, the claim is that it is in virtue of implementing
some computation that a system is cognitive. That is,
there is a certain class of computations such that any
system implementing that computation is cognitive
(1994, p. 397).

Chalmers’ reasoning fails to reassure, however. The
concept of computation was originally introduced as a
way of distinguishing two classes of causal processes:
those characteristic of the vast majority of physical
systems (e.g. intestines, microwave ovens, cups of tea,
etc.), and those that are the preserve of intelligent sys-
tems alone. Computational processes are supposed to be
special in some way—in a way, moreover, that provides
us with some explanatory purchase with respect to the
problem of intelligent behaviour. Since implementing a
function is a ubiquitous feature of nature, choosing to
characterise computation in this way repudiates the very
motivation for introducing the concept into cognitive
science in the first place.

Computation as content-shaped causal processing

What we need is a way of characterising computation
that limns a middle path between the restrictiveness of
digital computation and the promiscuity of abstract
causal organisation. One way to do this is to re-visit the
account of computation we get from digital computers,
and consider whether this can be liberalised to some
degree without falling prey to the problem of explana-
tory vacuity.

Digital computation, remember, is symbol manipu-
lation: a causal/mechanical process in which language-
like representing vehicles are recognised and trans-
formed in a semantically coherent fashion purely on the
basis of their syntactic properties. But as already re-
marked, the practice of computation has not historically
been restricted to processes defined over symbols. Con-
sider, for example, the familiar tactic of representing a
physical variable, such as the velocity of a particle, using
a curve on the plane. If we plot velocity on one axis, and
time on the other, it is possible to compute distance
travelled by measuring the area under the curve, or
acceleration by constructing tangents to the curve. These
are examples of analog computations which employ a
non-symbolic representing vehicle.

Viewed from this less-restrictive perspective, there are
two distinctive features of computational processes (as
opposed to causal processes in general). First, they are
associated with representing vehicles of some kind.
Second, and more importantly, computational processes
are shaped by the contents of the very representations
they implicate. We thus arrive at the following charac-
terisation:

Computations are causal processes that implicate one
or more representing vehicles, such that their trajectory
is shaped by the representational contents of those
vehicles.

Talk of representational content ‘‘shaping’’ the causal
trajectory of computation is vague, of course. But this
is deliberate. Prima facie, there are different ways of
organising physical systems such that representational



content can play this role. In the case of digital sys-
tems, while computational operations only ever have
access to the syntactic properties of symbols, the rules
that govern these syntactic manipulations are none-
theless carefully crafted so as to ensure that they re-
spect the contents of the symbols. In Dennett’s
memorable terms: digital computers are syntactic en-
gines that behave as if they were semantic engines
(Dennett 1987, p. 61). Analog computers, by contrast,
are systems whose behaviour is driven not by content-
sensitive rules, but by semantically ‘‘active’’ analog
representations that physically or structurally resemble
what they represent.6

Although this strategy of characterising computation
in terms of operations shaped by representational contents
is quite common in the literature7 it does not find favour
everywhere. Chalmers, for instance, has this to say:

The original account of Turing machines by Turing
(1936) certainly had no semantic constraints built in. A
Turing machine is defined purely in terms of the
mechanisms involved, that is, in terms of syntactic
patterns and the way they are transformed.... To
implement a Turing machine, we need only ensure that
this formal structure is reflected in the causal structure
of the implementation.... [W]hen computer designers
ensure that their machines implement the programs
that they are supposed to, they do this by ensuring that
the mechanisms have the right causal organisation; they
are not concerned with semantic content. In the words
of Haugeland (1985), if you take care of the syntax, the
semantics will take care of itself (1994, p. 399).

In our view, this represents a profound misreading of
both Turing and Haugeland. Far from eschewing
semantic considerations, computer science is in the
business of designing and implementing formal opera-
tions that satisfy semantic constraints. In the passage of
his classic text just prior to articulating his famous
‘‘formalists’ motto’’ (quoted approvingly by Chalmers),
Haugeland takes himself to be addressing the following
question:

Interpretation and semantics transcend the strictly
formal—because formal systems as such must be self-
contained. Hence to regard formal tokens as symbols
is to see them in a new light: semantic properties are
not and cannot be syntactical properties. To put it
dramatically, interpreted formal tokens lead two lives:
SYNTACTICAL LIVES, in which they are mean-
ingless markers, moved according to the rules of some
self-contained game; and SEMANTIC LIVES, in
which they have meanings and symbolic relations to
the outside world. The corresponding dramatic
question then is this: how do the two lives get to-
gether? (1985, p. 100).

The answer that Haugeland goes on to develop is the
fundamental basis of digital computation:

The idea...is to design these formal systems so that
they can be interpreted as axiomatic systems in the
intuitive sense. That requires two things of the system
(as interpreted);

1. the axioms should be true...; and
2. the rules should be truth preserving (1985,

pp. 103–105).

In this light, the whole point of Haugeland’s formalists’
motto is to reinforce the message that it is only when the
syntactically specified rules of the system are so crafted
that they satisfy these semantic constraints, that ‘‘the
semantics will take care of itself’’.

This isn’t just an exercise in academic exegesis.
Understanding the role of representational content in
shaping computational processes is pivotal to under-
standing why the concept of computation arose in the
first place. Intelligence is a rare commodity, and one that
provokes a profound question: how is that some physi-
cal systems are capable of intelligent behaviour when the
majority of systems in the universe are not? The concept
of computation is supposed to provide some leverage
here—intelligent systems are special because they alone
engage in computation. But this answer won’t suffice
unless computational processes are themselves special.
The characterisation developed above explains why they
are (computational processes are shaped by the repre-
sentational contents of the vehicles they implicate) and
hence explains why the concept of computation is
foundational for cognitive science.

With this characterisation of computation in place we
can now turn to the principal task of the paper: that of
explaining how connectionist systems compute. To sat-
isfy this task we will need to show how representational
content plays a role in shaping the trajectory of con-
nectionist computational processes.

Connectionist computation: what’s wrong
with the conventional story?

It is possible to identify something of a consensus
among proponents of connectionism as to the nature
of computation in connectionist networks. The argu-
mentative burden of this section is to establish that
this ‘‘conventional’’ account of connectionist compu-
tation is unsatisfactory, and to explain why it has
nurtured doubts about connectionism’s computational
credentials.

The conventional story

The characterisation of computation we developed in
the preceding section emphasises the importance of

6See O’Brien (1999) for further discussion.
7See, e.g. Cummins and Schwarz (1991), p.64; Dietrich (1989);
Fodor (1975), p. 27; and Von Eckardt (1993), pp. 97–116.



representation for computation. It is not surprising,
therefore, that the conventional account of connectionist
computation focuses on showing how activity across
connectionist networks admits of a representational
interpretation.

The story goes like this. A connectionist network is a
collection of interconnected processing units (modelled
on neurons), each of which has an activation level
(modelled on a neuron’s spiking frequency) that is
communicated to other units in the network via modi-
fiable, weighted connections (modelled on synapses).
From moment to moment, each unit sums the weighted
activation it receives, and generates a new activation
level that is some threshold function of its current
activity and that input. Via this process, a network
transforms patterns of activity across its input layer into
patterns of activity across its output layer. Altering the
network’s connection weights alters the activation pat-
terns the network produces in response to its inputs.
Consequently, a network can be taught to generate a
range of target patterns in response to a range of inputs.
These patterns of activity, because they are produced by
a training regime that gradually shapes the network’s
responses so that it is successful in negotiating some task
domain, are thought to constitute a form of information
coding, often termed activation pattern representation.
According to this account, therefore, connectionist net-
works compute by transforming activation pattern rep-
resentations across their input units into activation
pattern representations across their output units.8

But this account is superficial. What we really want to
know is how connectionist networks are able to transform
their input representations into appropriate output rep-
resentations. It is at this point that the conventional story
gets both more complicated and more interesting. The
proffered explanation focuses on the fact that the hidden
unit landscape of a trained network is partitioned into
linearly separable regions, regions that capture the cate-
gorial distinctions necessary for generating a solution to
the computational problem(s) posed by the inputs.

To illustrate this idea, consider a three layer, feed-
forward network designed by Laakso and Cottrell
(2000) to perform colour categorisation (see Fig. 1). The
task of this network is to take reflectance spec-
tra—which provide a measure of the relative amounts of
light reflected by an object across a range of wave-
lengths—and produce a colour judgment corresponding
to that of a normal human observer. The inputs to the
network are 523 reflectance spectra selected from a
database produced at the University of Kuopio (anon-
ymous 1995; Parkkinen 1989).9 Each spectrum is mea-
sured over the 400–700 nanometre range in 5 nm

‘‘bins’’, and is thus a 61-dimensional vector of which the
first component is the reflectance intensity at a wave-
length of 400 nm; the second, the reflectance at 405 nm,
and so on, through to the 61st component which is the
reflectance at a wavelength of 700 nm. The input layer
thus has 61 input units onto which are locked the
amplitude values of the spectra. There are three units in
the hidden layer, and five binary units in the output layer
for encoding the relevant colour categories (red, green,
blue, yellow, and purple). After training via backprop-
agation of errors, the network achieved better than 90%
accuracy in its assignment of input spectra to colour
categories. (See Laakso and Cottrell 2000, pp. 58–67 for
further details.)

We reproduced these results by training a series of
networks on the same data set. The activity at the hidden
layer of a trained network can be portrayed as a three-
dimensional activation space, in which the activity of
each hidden unit is represented along one coordinate
axis. For each input to the network, one gets a different
pattern of activation on the hidden layer, and a corre-
sponding point in activation space. We found that each
colour-categorisation network partitions its activation
space into linearly separable regions (in three-dimen-
sions, these are regions that can be cleanly divided by a
plane), such that the activation points corresponding to
the various colour categories are located in distinct parts
of the space (Fig. 2). This is typical of feedforward neural
networks, and it is widely agreed that it is by virtue of
organising their activation spaces in this way that such
networks are able to correctly categorise their inputs.

This much about hidden unit activation pattern rep-
resentation is common lore among connectionists. What
is not always appreciated about hidden unit activation
patterns, however, is that collectively they structurally
resemble aspects of the task domain over which the net-
work has been trained. Indeed, it is the existence of this
structural resemblance relation that anchors the repre-
sentational interpretation of activation patterns in the
first place (O’Brien and Opie 2001; 2004). Since this
structural resemblance theory of representational content
will be important to the argument developed in the next
section, we will pause here to examine it in some detail.

Resemblance is a fairly unconstrained relationship,
because objects or systems of objects can resemble each
other in a huge variety of ways, and to various different
degrees. The most straightforward kind of resemblance
involves the sharing of one or more physical properties.
Thus, two objects might have the same colour, or mass,
the same density, or electric charge, or be equal along a
number of physical dimensions simultaneously. We
shall refer to this kind of relationship as first-order
resemblance.10 A representing vehicle and its represented

8See, e.g. Bechtel and Abrahamsen (2002); Clark (1989), 1993; and
Tienson (1987).
9These spectra were generated by measuring the reflectance profile
of colour cards in the Munsell Book of Color (anonymous 1976), a
set of cards that is used in standard psychometric tests of colour
perception.

10We are here adapting some terminology developed by Shepard and
Chipman (1970). They distinguish between first- and second-order
isomorphism. Isomorphism is a very restrictive way of characterising
resemblance, and hence we prefer to avoid this terminology (see
O’Brien and Opie 2004).



object resemble each other in this way if they have
physical properties in common.

First-order resemblance is clearly unsuitable as a
general ground of neural representation, since it is

incompatible with what we know about the brain. It is
quite obvious that our brains are capable of representing
features of the world that are not replicable in neural
tissue. There is, however, another kind of resemblance

Fig. 1 The structure of the
colour-categorisation network,
showing an example of an input
spectrum to be encoded on the
input layer

Fig. 2 Hidden unit activation
space for one of the colour-
categorisation networks



available, which we shall refer to as second-order
resemblance.11 In second-order resemblance, the
requirement that representing vehicles share physical
properties with their represented objects can be relaxed
in favour of one in which the relations among a system
of representing vehicles mirror the relations among their
objects. For example, a mercury thermometer can be
used to represent temperature in virtue of the linear
relationship between the length of a column of mercury
and ambient temperature—variations in the one corre-
spond systematically with variations in the other.

Although first-order resemblance cannot be the gen-
eral ground of neural representation, the same is not true
of second-order resemblance. Two systems can share a
pattern of relations without sharing the physical prop-
erties upon which those relations depend. Second-order
resemblance is actually a very abstract relationship.
Essentially, nothing about the physical form of the
relations defined over a system of representing vehicles is
implied by the fact that it resembles a set of represented
objects at second-order; second-order resemblance is a
formal relationship, not a substantial or physical one.

As already foreshadowed, the form of second-order
resemblance that is relevant in the present context is
structural resemblance. One system structurally resembles
another when the physical relations among the objects
that comprise the first preserve some aspects of the
relational organisation of the objects that comprise
the second. Structural resemblance would seem to be
the right second-order resemblance relation for
explaining the representational content of connectionist
representing vehicles. Hidden unit activation space is a
mathematical space used by theorists to portray the set
of activation patterns a network is capable of producing
over its hidden layer. Activation patterns themselves are
physical objects (patterns of neural firing, if realised in a
brain), and thus distance relations in activation space
actually codify physical relations among activation
states. What is crucial here is that the set of hidden unit
activation patterns generated across any trained-up
connectionist network constitutes a system of repre-
senting vehicles whose physical relations sustain a sec-
ond-order resemblance relation with respect to the task
domain over which the network has been trained.

Consider, for example, the relationship between the set
of hidden layer activation patterns generated by the col-
our-categorisation network and its task domain. Physical
similarities and differences among these patterns of
activity (which appear as relative distances in the activa-

tion space) correspond to similarities and differences
among the reflectance spectra that the network is
responding to (see Sect. 4 for a more detailed discussion).

The structural resemblance relation between hidden
unit activation patterns and aspects of a connectionist
network’s task domain licenses an interpretation of the
former as representing vehicles. This in turn appears to
support the claim, made by the proponents of connec-
tionism, that these networks are in the computing
business. Why then have doubts about connectionism’s
computational credentials continued to linger in the
cognitive science literature? It is to this issue that we will
now turn.

What’s wrong with the conventional story?

The conventional story about connectionist computa-
tion is elegant, but incomplete. Recall that a computa-
tional interpretation of connectionism must not only
show that connectionist networks implement represent-
ing vehicles; it must also show how processing in net-
works is shaped by the representational contents of
those vehicles. It is this latter requirement that the
conventional story fails to satisfy.

To see this, consider the colour-categorisation net-
work we described above. This network is required to
sort spectra into colour categories, a task at which it
succeeds because the network’s hidden unit activation
space is partitioned into regions corresponding to those
categories. And it is a relatively simple exercise to map
from regions in activation space to binary representa-
tions of colour on the network’s output layer. Notice,
however, that given any spectrum as input, it is the
configuration of weights between the input and hidden
layers that determines the resulting hidden layer activity.
Furthermore, since they govern each and every such
mapping, it is these weights that are responsible for the
global structure of the hidden unit activity space. The
representing vehicles on which the conventional story
focuses—activation patterns across the hidden layer—
are not causally implicated in these transformations.
They are the products, not the source, of processing. And
as such, their representational contents play no role in
shaping the trajectory this processing takes.12

It is precisely this kind of analysis which invites the
charge that connectionism is nothing more than a latter
day version of associationism. This interpretation is
quite consistent with a representational understanding
of the activity across the layers of connectionist net-
works. It’s just that it restricts connectionist networks to
the mere association of ‘‘ideas’’, rather than the content-11Bunge (1969), in a useful early discussion of resemblance, draws a

distinction between substantial and formal analogy which is close to
our distinction between first- and second-order resemblance. Two
theorists who have kept the torch of second-order resemblance
burning over the years are Palmer (1978) and Shepard (Shepard
and Chipman 1970; and Shepard and Metzler 1971). More recently,
Blachowicz (1997); Cummins (1996); Gardenfors (1996); Johnson-
Laird (1983); O’Brien (1999) and Swoyer (1991), have all sought to
apply, though in different ways, the concept of second-order
resemblance to representation.

12This is not to deny that the physical relations among activation
patterns on the hidden layer have a bearing on downstream pro-
cesses, both at the output layer and in other networks. Our point is
simply that this (diachronic) relational structure is governed by
some other (synchronic) feature of the network, namely, the con-
figuration of its connection weights.



driven forms of information processing that are neces-
sary to explain intelligent behaviour.

There is a fairly standard riposte to this charge in
connectionist circles. Connectionist networks implement
two quite different kinds of representation: in addition
to the information coded in activation patterns, which is
transient and hence obliterated whenever the network is
exposed to new input, information is coded in a long-
term fashion in the network’s connection weights. These
weights, it is often claimed, constitute the network’s
memory. Since it is connection weights that govern the
transformations of activity from layer to layer in a net-
work, it thus appears that we do have a representational
story to tell about the structures that shape the trajec-
tory of connectionist processing.

The trouble with this response, however, is that we
currently lack a representational analysis of connection
weights comparable to the kind of analysis that is
available for activation patterns. Consequently, the
claim that connection weights represent a network’s
long-term knowledge is left unanchored, and commen-
tators are justified in expressing doubts about this claim.
Ramsey, for example, highlights what he takes to be a
fundamental difference between connection weights and
the rules that govern the symbol manipulations of digital
computers:

As the relevant content for this type of representation
is the system’s long-term knowledge...the most obvi-
ous point of comparison should be with the explicit
rules that sometimes govern classical computation
systems and are thought to encode those systems’
knowledge base. Is there an explanatory pay-off in
viewing connection weights as representations that is
similar to the return we get when this is done with
rules in classical models? I believe the answer is ‘no’
for the following reason. [In] classical models it is
typically the case that causally distinct structures en-
code commands for specific stages of the computa-
tion... However, in trained connectionist models, this
type of specificity is not possible. While it might be
true that some connection weights contribute to some
episodes of processing more than others, there is no
level of analysis at which we can say a particular
weight encodes a particular command or governs a
specific algorithmic step in the computation. Instead,
all the system’s know-how is superimposed on all the
weights with no particular mappings between the two.
(1997, pp. 48–49)

Further rumination on this issue eventually leads
Ramsey to conclude that ‘‘there doesn’t appear to be
any other level of understanding or explanatory moti-
vation that requires us to view the weights as represen-
tations’’ (1997, p. 51), and he recommends that we view
connectionist explanations of cognition as dynamical
rather than computational (1997, p. 61).

The dialectical position, we think, is this. However
strong our reasons for interpreting activation patterns in

connectionist networks as representing vehicles, doubts
will persist about connectionism’s computational cre-
dentials unless Ramsey’s challenge can be answered.
What is required is a ‘‘level of understanding or
explanatory motivation that requires us to view the
weights as representations’’. It is time to meet this
challenge.

Connection weight representation

We have seen that activation pattern representation is
supported by a relation of structural resemblance be-
tween the patterns of activity in a connectionist network
and the task domain in which that network operates.
The proposal we explore here is that there is a more
fundamental structural resemblance between the con-
nection weights of such a network and its task domain;
one that supports a species of representation we will call
connection weight representation.13

Although, the relation of structural resemblance be-
tween a trained-up network’s patterns of activity and its
task domain is relatively easy to identify, the same
cannot be said of any such relation between connection
weights and task domain. If such a relation exists, it will
require some teasing out. We will approach this problem
by more closely examining the role of connection
weights in connectionist processing.

Processing with connection weights

It is well-known that networks operating in the same
domain, but trained-up with different initial assignments
of connection weights, come to occupy different points
in ‘‘weight space’’.14 There is no simple relationship
between the position in weight space occupied by a
trained network and the task domain. We demonstrated
this by training a group of 20, three-layer feedforward
networks to perform at close to 100% accuracy on La-
akso and Cottrell’s colour-categorisation task. We then
measured the pair-wise correlations among the (hidden
layer) weight matrices of these networks (for a total of
190 comparisons). The set of correlations turned out to
be randomly distributed about a mean of zero, con-
firming that there is no simple, first-order relationship

13In what follows, we develop this proposal by focusing solely on
the connection weights between the input and hidden layers of
feedforward networks. (We will reinforce this point by occasionally
referring to the ‘‘hidden layer’’ connection weights: these are the
weights that determine the activity across the hidden layer.) It is
our view, however, that this proposal applies to connectionist
systems more generally.
14The weight space of a network is a Euclidean vector space in
which each of the network’s connection strengths is represented as
the position along a distinct coordinate axis. The dimensionality of
this space corresponds to the number of connections in the net-
work. Once can picture training a network as a journey through
weight space, and different final positions in the space as alternative
ways of dealing with the task demands.



between these networks (see Fig. 3). Since the networks
themselves are not related in any straightforward way, it
appears unlikely that each bears some simple relation-
ship to the task domain over which they operate.

It remains a live possibility, however, that connec-
tionist networks embody some (higher-order) internal
structure that warrants a representational understanding
of their connection weights. To explore this possibility
we need to take a closer look at how connectionist
networks process their inputs.

The key players in network processing are what we
call fan-ins. A fan-in is the vector of weights modulating
the effect of incoming activity on a particular hidden
unit. Within any feedforward network there is one fan-in
per hidden unit, each corresponding to a row of the
network’s hidden layer weight matrix (see Fig. 4). Fan-
ins effect the transformation of the network’s input space
into its hidden unit activation space. More specifically,
each fan-in determines how one hidden unit responds to
input, by way of a product of input activation and fan-in
values. This product is then modified by the hidden unit’s
activation function to produce the value along a single
coordinate in activation space. It is thus a network’s fan-
ins that interface directly with the structure of the vectors
coded at the input layer, and which ultimately determine
the structure of activation space. Accordingly, if we are
to discover any structural resemblance between a net-
work’s connection weights and its task domain it is the
fan-ins on which we should focus.

Connection weights as representing vehicles

Given the crucial role of fan-ins in network processing,
we offer the following proposal: the fan-ins in the hidden

layer of a successful connectionist network structurally
resemble aspects of the network’s task domain.

To investigate this conjecture we trained a series of
three-layer feedforward networks to solve the colour-
categorisation problem using a subset of Laakso and
Cottrell’s original data: about 25 each of the spectra
normally classified as red, green, and blue, respectively.
Each network had 61 input units and three hidden units.
We represented the fan-ins of the trained networks using
weight diagrams and compared these with the means of
the red, green and blue input data sets.

A typical example is shown in Fig. 5. The three fan-
ins are depicted on the right, the mean spectra on the
left. One immediately notices a striking similarity be-
tween the fan-ins of this network and the means of the
data sets. The shape of the fan-in for hidden unit 2, for
example, corresponds nicely to the shape of the mean
spectrum of the 25 inputs that normal observers classify
as red. Likewise, the fan-in for hidden unit 3 resembles
the mean of the ‘‘green’’ spectra, and the fan-in for
hidden unit 1 resembles the mean of the ‘‘blue’’ spectra.
What this indicates is that, for each fan-in, the relative
magnitudes of its component weights mirror the relative
amplitudes of the various wavelengths comprising one of
the mean spectra. Since this mirroring is a similarity at
the level of relations, rather than properties, it is an in-
stance of second-order resemblance. And since it is
grounded in the physical relations among the fan-in
weights (i.e. their relative magnitudes), it is a structural
resemblance.

In the previous section we saw that it is a relation of
structural resemblance that anchors a representational
interpretation of hidden unit activation patterns. We’ve
just seen (Fig. 5) that there is a structural resemblance
between the fan-ins of the colour-categorisation network

Fig. 3 A plot of cumulative
probability against weight-
matrix correlation. A good fit to
the straight line indicates a
normal distribution



and the task domain over which it operates. That
resemblance licenses an interpretation of fan-ins (and
their component weights) as representing vehicles.

Connectionist computation: the real story

The characterisation of computation we offered above
suggests that connectionist systems must satisfy two
conditions if they are to count as computational devices:
(i) they must implicate representing vehicles of some
kind, and (ii) the contents of those vehicles must shape
the causal processes that occur in connectionist pro-
cessing. We established that connection weights may
legitimately be interpreted as representing vehicles, at
least for a significant class of connectionist systems. It
remains to show that the contents of this species of
vehicle influence the trajectory of connectionist pro-
cessing.

We have noted the crucial role of fan-ins in trans-
forming a network’s inputs into hidden layer activation.

It is the ‘‘shape’’ of these vectors that govern the
respective activities of the hidden units they influence, by
way of the so-called ‘‘dot product’’ of weights and input
activation. Taking a dot product is a well-known way of
measuring the similarity of two vectors.15 Each fan-in is,
in effect, a filter looking for input with a particular
shape. The dot product indicates the extent to which a
given input matches a particular fan-in filter, as does the
activity of the corresponding hidden unit. Input that is
presented to the colour-categorisation network, for
example, is filtered through three fan-in vectors, thereby
modifying the activation of the three units in the hidden
layer. Activity in the hidden layer thus reflects the degree
of similarity between the input spectra and the fan-ins.
Correlatively, hidden unit activation space forms a
three-dimensional map that allows us to compare the
filtered versions of the input spectra, one with the other.

Fig. 4 A simple network with
and without its three fan-ins
(r1, r2, & r3) highlighted

15The dot product of two vectors in a Euclidean space is at a
maximum when the angle between them is zero, and decreases as
the angular separation between them increases.



Now the final piece of the puzzle is in place. We
have shown that the fan-ins in the colour-categorisa-
tion network structurally resemble aspects of the task
domain, namely, the mean spectra of the three classes
of input (red, green and blue). That resemblance war-
rants us in regarding those fan-ins, and their compo-
nent weights, as representing vehicles. But, we have
also shown that it is this same resemblance, embodied
in the physical structure of the fan-ins, that drives the
causal processes within the network. It is by virtue of
their resemblance to global features of the input data
that the fan-in vectors contrive to transform reflectance
spectra into a map of categorial colour, and thereby
solve the problem posed to the network. Representa-
tional content is in the driver’s seat here, as we require,
and it appears that connectionist networks are genuine
computational devices.

This is a very satisfying result for proponents of
connectionism. It enables us to meet Ramsey’s chal-
lenge, because we now have a robust explanatory
motivation for viewing connection weights as represen-
tations. And this in turn puts to bed the lingering doubts
about connectionism’s computational credentials.

Connectionist networks are capable of successfully
negotiating their task domains because they structurally
resemble them—a resemblance relation they gradually
acquire in the course of training. This structural
resemblance relation is sustained at two different levels
of description. It is sustained (diachronically), by the
set of activation patterns that are produced across a

network’s hidden units in response to its various inputs,
and, more importantly, it is sustained (synchronically)
by the higher order structure of the network’s hidden
layer connection weights.

These two kinds of structural resemblance support an
interpretation of activation patterns and connection
weights as different species of representing vehicle. And
these two kinds of representing vehicle shape the tra-
jectory of connectionist processing in different ways.
Activation pattern representations shape the impact that
one network has on other networks or motor mecha-
nisms to which it is connected. Connection weight rep-
resentations, by contrast, are responsible for the
production of these activation pattern representations in
the first place.

This last point is important because it secures a
computational understanding of connectionist process-
ing, at least according to the characterisation we have
developed in this paper. The causal operations that
generate a hidden unit activation pattern implicate one
or more representing vehicles (the fan-in connection
weights) and the trajectory of this process is shaped by
the representational content of these vehicles (since it is
the structural resemblance relation that determines the
representational content of the fan-ins). Connectionist
networks are not merely association engines or dynam-
ical systems; they are full-blooded computational
mechanisms. And they compute by exploiting relations
of structural resemblance between their connection
weights and their target domains.

Fig. 5 On the left are the mean
spectra of the three classes of
inputs; those classified (from top
to bottom) as red, green and
blue. On the right are the three
fan-ins of the network, with
weight value on the y-axis and
input index on the x-axis



References

Anonymous (1976) Munsell book of color: matte finish collection.
Munsell Color Company, Inc

Anonymous (1995) Kuopio color database. http://www.lut.fi/ltkk/
tite/research/color/lutcs_database.html

Bechtel W, Abrahamsen A (2002) Connectionism and the mind:
parallel processing, dynamics, and evolution in networks.
Blackwell, Oxford

Blachowicz J (1997) Analog representation beyond mental imagery.
J Philosophy 94:55–84

Bunge M (1969) Analogy, simulation, representation. Revue-
Internationale-de-Philosophie 23:16–33

Chalmers DJ (1994) On implementing a computation. Mind Mach
4:391–402

Churchland PS, Koch C, Sejnowski T (1990) What is compu-
tational neuroscience? In: Schwartz E (eds) Computational
neuroscience. MIT Press, Cambridge

Clark A (1989) Microcognition: philosophy, cognitive science, and
parallel distributed processing. MIT Press, Cambridge

Clark A (1993) Associative engines: connectionism, concepts, and
representational change. MIT Press, Cambridge

Cummins R (1996) Representations, targets, and attitudes. MIT
Press, Cambridge

Cummins R, Schwarz G (1991). Connectionism, computation and
cognition. In: Horgan T, Tienson J (eds). Connectionism and
the philosophy of mind. Kluwer, Dordrecht

Dennett D (1987) The intentional stance. MIT Press, Cambridge
Dietrich (1989) Semantics and the computational paradigm in

cognitive psychology. Synthese 79:119–141
Fodor JA (1975) The language of thought. Harvester Press,

London
Fodor JA (1992) The big idea: can there be a science of the mind?

Times Literary Supplement July 3: 5–7
Fodor JA (2000) The mind doesn’t work that way: the scope and

limits of computational psychology. MIT Press, Cambridge
Fodor JA, Pylyshyn ZW (1988) Connectionism and cognitive

architecture: a critical analysis. Cognition 28:3–71
Gardenfors P (1996) Mental representation, conceptual spaces and

metaphors. Synthese 106:21–47
Johnson-Laird P (1983) Mental models. Harvard University Press
Laakso A, Cottrell G (2000) Content and cluster analysis: assessing

representational similarity in neural systems. Philos Psyc 13:47–76

McClelland JL, Rumelhart DE (eds) (1986) Parallel distributed
processing: explorations in the microstructure of cognition,
Vol. 2. MIT Press, Cambridge

O’Brien G (1999) Connectionism, analogicity and mental content.
Acta Analytica 22:111–131

O’Brien G, Opie J (2001). Connectionist vehicles, structural
resemblance, and the phenomenal mind. In: Veldeman J (eds).
Naturalism and the phenomenal mind, a special issue of
Communication and Cognition. 34: 13–38

O’Brien G, Opie J (2004) Notes towards a structuralist theory of
mental representation. In: Clapin H, Staines P, Slezak P (eds)
Representation in mind: new approaches to mental represen-
tation. Elsevier

Palmer S (1978) Fundamental aspects of cognitive representation.
In: Rosch E, Lloyd B (eds) Cognition and categorization.
Lawrence Erlbaum

Parkkinen JPS, Hallikainen J, Jaaskelainen T (1989) Characteristic
spectra of Munsell colors. J Opt Soc A 6(2):318–322

Pinker S (1997) How the mind works. Norton, New York
Pinker S (2002) The blank slate: the modern denial of human

nature. Viking, New York
Port R, van Gelder TJ (1995) Mind as motion: explorations in the

dynamics of cognition. MIT Press, Cambridge
Pylyshyn ZW (1984) Computation and cognition: toward a foun-

dation for cognitive science. MIT Press, Cambridge
Ramsey W (1997) Do connectionist representations earn their

explanatory keep? Mind Lang 12(1):34–66
Rumelhart DE, McClelland JL (eds) (1986) Parallel distributed

processing: explorations in the microstructure of cognition, vol.
1. MIT Press, Cambridge

Shepard R, Chipman S (1970) Second-order isomorphism of
internal representations: shapes of states. Cog Psychol 1:1–17

Shepard R, Metzler J (1971) Mental rotation of three-dimensional
objects. Science 171:701–703

Swoyer C (1991) Structural representation and surrogative
reasoning. Synthese 87:449–508

Tienson J (1987) Introduction to connectionism. South J Philos
26:1–16

Truitt TD, Rogers AE (1960) Basics of analog computers. John F.
Rider

Von Eckardt B (1993) What is cognitive science? MIT Press,
Cambridge



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


