
0

Programmable Spike-Timing Dependent Plasticity learning circuits in
neuromorphic VLSI architectures

Mostafa Rahimi Azghadi∗, University of Zurich and ETH Zurich and the University of Adelaide
Saber Moradi∗, University of Zurich and ETH Zurich
Daniel B. Fasnacht, University of Zurich and ETH Zurich
Mehmet Sirin Ozdas, University of Zurich and ETH Zurich
Giacomo Indiveri, University of Zurich and ETH Zurich

Hardware implementations of spiking neural networks offer promising solutions for computational tasks that require com-
pact and low power computing technologies. As these solutions depend on both the specific network architecture and the
type of learning algorithm used, it is important to develop spiking neural network devices that offer the possibility to recon-
figure their network topology and to implement different types of learning mechanisms. Here we present a neuromorphic
multi-neuron VLSI device with on-chip programmable event-based hybrid analog/digital circuits; the event-based nature
of the input/output signals allow the use of Address-Event Representation infrastructures for configuring arbitrary network
architectures, while the programmable synaptic efficacy circuits allow the implementation of different types of spike-based
learning mechanisms. The main contributions of this paper are to demonstrate how the programmable neuromorphic system
proposed can be configured to implement specific spike-based synaptic plasticity rules and to depict how it can be utilised
in a cognitive task. Specifically, we explore the implementation of different Spike-Timing Plasticity learning rules on-line,
in a hybrid system comprising a workstation and when the neuromorphic VLSI device interfaced to it, and we demonstrate
how after training the VLSI device can perform, as a stand-alone component (i.e., without requiring a computer), binary
classification of correlated patterns.

Categories and Subject Descriptors: CCS [Emerging technologies]: Neural systems

General Terms: VLSI, emerging technologies

Additional Key Words and Phrases: Neuromorphic, STDP, asynchronous, AER, subthreshold, learning, plasticity, real-time

ACM Reference Format:
Mostafa Rahimi Azghadi, Saber Moradi, Daniel B. Fasnacht, Mehmet Sirin Ozdas and Giacomo Indiveri, 2014. Pro-
grammable Spike-Timing Dependent Plasticity learning circuits in neuromorphic VLSI architectures. ACM J. Emerg. Tech-
nol. Comput. Syst. 0, 0, Article 0 (2013), 17 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION
Artificial spike-based neural networks offer a promising paradigm for a new generation of brain-
inspired computational models. A wide range of theoretical and computational models have already
been proposed for both basic neuroscience research [Kempter et al. 1999; Gerstner and Kistler
2002] and practical applications [Belatreche et al. 2006; Rowcliffe and Feng 2008]. Neuromorphic
Very Large Scale Integration (VLSI) circuits represent an ideal technology for implementing these
types of networks using hybrid analog/digital design techniques, and for building devices that have

This work was supported by the European Community’s Seventh Framework Programme ERC grant # 257219 – “neuroP”.
∗Authors equally contributed to this work.
Author’s addresses: M. Rahimi Azghadi, Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich,
Switzerland and School of Electrical and Electronic Engineering, The University of Adelaide, Australia; Saber Moradi,
Daniel B. Fasnacht, Mehmet S. Ozdas and Giacomo Indiveri, Institute of Neuroinformatics, University of Zurich and ETH
Zurich, Zurich, Switzerland.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies show this notice on the
first page or initial screen of a display along with the full citation. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to
redistribute to lists, or to use any component of this work in other works requires prior specific permission and/or a fee.
Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701
USA, fax +1 (212) 869-0481, or permissions@acm.org.
c© 2013 ACM 1550-4832/2013/-ART0 $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

Accepted Version - ACM Journal on Emerging Technologies in Computing Systems, Vol. 0, No. 0, Article 0, Pub. date: 2013.

0:2 Rahimi Azghadi et al.

a very high potential in a wide range of applications such as pattern and data classification [Mitra
et al. 2009; Giulioni et al. 2009; Schmuker et al. 2014], object recognition [Nere et al. 2012; Khosla
et al. 2014], feature extraction [Vogelstein et al. 2007], and orientation selectivity [Choi et al. 2004;
Chicca et al. 2007]. In particular, the main advantage of implementing these spiking neural networks
in neuromorphic VLSI technology is their compactness and low power consumption which are
critical features when implementing large scale neural architectures [Mead 1990; Chicca et al. 2014;
Azghadi et al. 2014b].

In these types of networks, synapses represent an essential component for signal processing, as
they are at the same time the site of memory (they store the network’s synaptic weight values),
and play a fundamental role in computation (they implement crucial temporal and non-linear dy-
namics). Synaptic weight values can be updated following the prescription of different types of
learning algorithms that typically depend on the pre- and post-synaptic neuron activity [Abbott and
Gerstner 2004; Brader et al. 2007; Graupner and Brunel 2012]. The different learning strategies
have a profound effect on the post-synaptic neuron functionality and on the spiking-neural network
behavior [Laughlin and Sejnowski 2003]. Implementing such types of synapses and learning mech-
anisms in compact electronic systems is essential for developing efficient large-scale spiking neural
networks and brain-inspired computing technologies [Azghadi et al. 2013a; Azghadi et al. 2014a].
However, as the implementation of the learning algorithm often depends on the specific application
domain and on the nature of the data to process, it can be useful to develop compact electronic
implementation of spiking neural networks in which the weights can be adjusted by off-chip learn-
ing algorithms (e.g. implemented on a workstation, micro-controller, or Field Programmable Gate
Arrays (FPGAs)).

In this paper we demonstrate how it is possible to train a hardware spiking neural network, us-
ing software-defined spike-based learning algorithms. We present a hybrid Software (SW) - Hard-
ware (HW) neural processing system that comprises a mixed signal analog/digital spiking neural
network VLSI device interfaced to a workstation. The custom VLSI device comprises analog sil-
icon neuron circuits [Indiveri et al. 2011], analog synaptic dynamics elements, and asynchronous
digital event-based interfacing circuits for transmitting and receiving spikes. The device also in-
tegrates asynchronous digital programmable synaptic weight circuits for setting and changing the
strengths of the silicon synapses with off-chip learning algorithms that can implement different
types of spike-based synaptic plasticity rules [Pfister and Gerstner 2006; Brader et al. 2007; Clopath
et al. 2010; Graupner and Brunel 2012]. The mixed signal analog/digital neural network device
used in this work has already been described in detail in [Moradi and Indiveri 2014]. Here we ap-
ply the device to spike based learning problems, describing the details of the experimental setup
required for controlling and programming the proposed neural device. We interface the device to
a workstation and show how the hybrid SW - HW system can implement different types of spike-
based learning algorithms on-line. Finally, after training a perceptron architecture, we demonstrate
how the device can act as an efficient stand alone binary classifier of correlated patterns, without
requiring a workstation in the loop.

2. NEUROMORPHIC SPIKING NEURAL NETWORKS
The simulation of Spiking Neural Network (SNN) on standard computers can be very oner-
ous, requiring large amounts of memory and/or CPU time [Azghadi et al. 2014b]. Attempts are
being made to speed-up these simulations using Graphical Processing Units (GPUs) based ap-
proaches [Nageswaran et al. 2009; Fidjeland et al. 2009; Fidjeland et al. 2013], or dedicated comput-
ing architectures [Furber et al. 2013]. Alternatively, full custom VLSI implementations of spiking
neural network can be implemented using dedicated analog, digital, or mixed signal analog/digital
circuits. Examples of both fully digital [Arthur et al. 2012] and hybrid analog/digital [Schemmel
et al. 2010; Moradi and Indiveri 2014] spiking neural network chips have been recently proposed. In
these systems spiking neurons are typically implemented as Integrate-and-Fire (I&F) models [Koch
1999] which collect all of the signals (typically currents) produced by the synapses, and produce
a spike event when the integrated sum exceeds a threshold. The equation governing the neuron’s

Accepted Version - ACM Journal on Emerging Technologies in Computing Systems, Vol. 0, No. 0, Article 0, Pub. date: 2013.

Programmable Spike-Timing Dependent Plasticity circuits in neuromorphic VLSI 0:3

0 0.05 0.1 0.15 0.2
0

0.2

0.4

0.6

0.8

1

Time (s)

M
em

br
an

e
po

te
nt

ia
l (

V
)

Fig. 1: Measured response of a silicon neuron, implementing a model of a leaky I&F neuron, being
stimulated by a 100 Hz input spike train, via an excitatory synapse.

subthreshold dynamics, e.g. in the case of a leaky I&F model neuron [Gerstner and Kistler 2002],
is given by:

τ
d

dt
u(t) = −u(t) +RI(t) (1)

where τ is the leaky integrator time constant, 1/R represents the neuron leak conductance, and I(t)
represents the total synaptic input current. Synaptic currents are produced by the neuron’s synapses
when they get stimulated by the input spikes. Figure 1 shows an example of the response measured
from a silicon neuron being stimulated via an input excitatory synapse with a regular input spike
train of 100 Hz.

Synapses also typically have first order dynamics; but they can have both linear and non-linear re-
sponse properties. In all cases however their response is proportional to their synaptic weight. Learn-
ing occurs by adapting the synaptic weights of all the synapses afferent to a neuron, following the
prescription of the specific learning rule considered. In these types of neural networks, the “source”
neurons produce spikes and transmit them to synapses of other “destination” neurons. Depending
on the network structure (e.g., multi-layer feed-forward architectures, recurrent architectures, etc.)
different types of computational models can be implemented [Dayan and Abbott 2001]. Informa-
tion is processed through the propagation of spikes and the generation of the weighted synaptic
responses in the network [Gerstner and Kistler 2002]. It is widely believed that learning, compu-
tation and memory processes take place in synapses [Sjöström et al. 2008]. Since the learning and
computation in a SNN is a dynamic process, the synapses should also be dynamic and modifiable.
However, the open question is how these modifications take place in the synapses within the brain,
and how they can lead to network properties that allow the system to carry out robust and real-time
computation so efficiently and accurately. Although there is no general agreement as to the answer
to this question, there are several hypotheses stating that these modifications take place in relation to
the activity of pre- and post-synaptic neurons connected to the synapse [Sjöström et al. 2008]. These
hypotheses that govern the synaptic weight changes, are so-called synaptic plasticity models [Mayr
and Partzsch 2010].

Due to the variety of neuron, synapse and synaptic plasticity models, and because of different
spiking neural network structures, it is essential to develop programmable neural network architec-
tures, such as the one presented in this work device, to explore the role of different spike based
learning rules and different neural network structures.

Accepted Version - ACM Journal on Emerging Technologies in Computing Systems, Vol. 0, No. 0, Article 0, Pub. date: 2013.

0:4 Rahimi Azghadi et al.

A
E
R

O
U
T
P
U
T

Bias Generator

SRAM

DECODER-S

A
sy

nc
hr

on
ou

s
C
on

tr
ol

le
r

32 32 W ORDS

EACH WORD= 5bits
X

NEURAL CORE

Bundled-data

REQ
ACK

input [9:5]

Dual-rail

AER I/O

AE
R

-IN
[1

7:
0]

input [12:10]

in
pu

t[
4:

0]

input [17:13]

18

DECODER-X

D
E
C
O
D
E
R
-Y

Synapse Neuron

D
E
-M

U
LT
IP
LE
X
E
R

(a) (b)

Fig. 2: IFMEM chip block diagram. (a) The device comprises a neural-core module with an array
of synapses and integrate-and-fire neurons, an asynchronous SRAM module to store the synaptic
weight values, a bias generator to set the parameters in the analog circuits, and asynchronous control
and interfacing circuits to manages the AER communication. (b) Layout picture comprising the
SRAM, neural core and AER output blocks. In particular, the layout of the SRAM block measures
524×930µm; the synapse array measures 309µm in length, the synapse de-multiplexer measures
132µm, the neuron array 60µm, and the output AER arbiter 105µm.

3. THE “IFMEM” CHIP
The multi-neuron chip used in this work is characterized by the fact that it comprises circuits that
implement models of I&Fs neurons, and a programmable memory for storing the synaptic weights.
Therefore, we will refer to this device as the “IFMEM” chip. The IFMEM chip was fabricated using
a standard 0.35µm Complementary Metal Oxide Semiconductor (CMOS) VLSI technology and
was fully characterized in [Moradi and Indiveri 2014]. It implements a neural network of 32 adaptive
exponential I&F neuron circuits [Indiveri et al. 2011] with dynamic synapse circuits. The IFMEM
chip makes use of the Address Event Representation (AER) protocol to receive and transmit events
that represent input and output spikes, respectively.

A block diagram of the chip architecture is shown in Fig. 2a. All circuits on the chip that im-
plement the neural and synapse dynamics are in the “Neural Core” block. The neuron circuits are
implemented using an “adaptive exponential integrate and fire” model [Brette and Gerstner 2005; In-
diveri et al. 2010], while the part of the synapse circuits responsible for integrating input spikes and
producing temporal response properties that have biologically plausible time constants are imple-
mented using a Differential Pair Integrator (DPI) circuit [Bartolozzi and Indiveri 2007]. Depending
on the input address-event, different types of synapse dynamics can be triggered: excitatory with
slow time constants (e.g., to emulate NMDA-type synapses), excitatory synapses with faster time
constants (e.g., to emulate AMPA-synapses), or inhibitory synapses (e.g., to emulate GABA-type
synapses). Since the DPI can be used as a linear low-pass filter, it is possible to make use of a single
integrator circuit for any of the synapse dynamics considered (e.g., NMDA, AMPA, or GABA), and
multiplex it in time to integrate the contributions from multiple spiking inputs (e.g., via multiple
SRAM cells), thus saving precious silicon real-estate.

The analog components of these circuits have programmable bias parameters that can be set with
an on-chip 32-bit temperature-compensated programmable bias generator [Delbruck et al. 2010].
The synaptic weights of the synapses are stored in a 32×32 5-bit digital SRAM block, designed
with asynchronous circuits for interfacing to the AER components. The digital weight values are
converted into currents with an on-chip Digital to Analog Converter (DAC), so that the addressed
synapse circuits produce Excitatory Post Synaptic Current (EPSC) with amplitudes proportional to
their weights. Thanks to the synapse time-multiplexing scheme, the total number of synapses that

Accepted Version - ACM Journal on Emerging Technologies in Computing Systems, Vol. 0, No. 0, Article 0, Pub. date: 2013.

Programmable Spike-Timing Dependent Plasticity circuits in neuromorphic VLSI 0:5

Fig. 3: A simple spiking neural network architecture implemented on the proposed neuromorphic
device shown in Fig. 2a. The input spikes are integrated by a physical synapse that acts as an
integrator. The synapse generates EPSC proportional to input firing rate and the synaptic weights
stored on the SRAM cells, through on-chip programmable DACs. The generated EPSC will result
in the silicon neuron to fire spikes if its membrane potential exceeds the spiking threshold. A similar
structure has been used in all of the experiments presented in this paper.

a neuron sees is equivalent to the total number of SRAM cells present in each row. The SRAM
cells can work in “feed-through” mode or in storage mode. In feed-through mode, input events
contain both the address of the destination SRAM cell and the synaptic weight bits, and the synapses
generate EPSC on-line, as the data is received. In storage mode, the input events contain only the
address of the destination SRAM cell, and the weight bits used by the synapses are the ones stored
in the addressed SRAM cell [Moradi and Indiveri 2011]. Therefore it is possible to interface the
device to a workstation and use it in “feed-through” mode to train the spiking neural network on-
line, with all of the HW components in the loop, eventually storing the final synaptic weight matrix
in the SRAM block at the end of the training phase. Once the training has completed, it is possible
to use the device in stand-alone mode, without requiring a PC in the loop, and use the stored weights
to carry out the learned task.

Figure 2b shows a section of the layout of the IFMEM chip comprising the main blocks described
above. As shown, each block is extremely compact, so it is possible in principle to scale up the
network to very large sizes (e.g., a chip fabricated using an inexpensive 0.35µm technology, using
a relatively small area of 55 mm2 would implement a network of 512 neurons and 256k synapses
each having 5 bits precision.

In Fig. 3 we show an example of a simple spiking neural network architecture that can be formed
using the IFMEM chip, using its silicon neurons, integrator synapses and SRAM cells. The SRAM
cells that act as virtual synapses keep the synaptic weights and can be updated according to any
desired spike-based learning algorithm. A neuron in the proposed architecture, shown in Fig. 2a,
can be stimulated by up to 32 × 32 × 4 = 4096 virtual synapses thanks to the demultiplexing
scheme available on the proposed neuromorphic architecture [Moradi and Indiveri 2014]. The post-
synaptic neuron generates spikes when its integrated input currents, i.e. the EPSCs generated by its
related synapses, exceeds a predetermined threshold. At this time, the neuron generates an action
potential and its membrane potential is then reset to a controllable reset potential [Indiveri et al.
2011].

4. THE HARDWARE-SOFTWARE NEUROMORPHIC SYSTEM
4.1. Experimental Setup
The experimental setup, shown in Fig. 4, consists of three main components: a Linux PC, a generic
AER interface, and the neuromorphic hardware. The PC is used to control and interact with the
neuromorphic system. It generates input spike trains (AER input) and transfers them to the IFMEM

Accepted Version - ACM Journal on Emerging Technologies in Computing Systems, Vol. 0, No. 0, Article 0, Pub. date: 2013.

0:6 Rahimi Azghadi et al.

Fig. 4: Experimental setup of the hardware-software neuromorphic system. Dashed lines represent
the control path for setting analog parameters and configuring the IFMEM chip, solid lines represent
the path for the address-events data flow (from and to the IFMEM chip).

Fig. 5: The AEX printed circuit board with the attached daughterboard carrying the IFMEM chip:
A: high-speed USB interface for AER communication, B: USB interface chip, C: FPGA for AER
monitoring and sequencing, D: Parallel AER interface (chip to FPGA), E: Parallel AER interface
(FPGA to chip), F: Serial AER section (unused), G: full-speed USB interface for IFMEM bias con-
trol, H: microcontroller for bias control, I: the IFMEM chip, K: analog voltage output connection.

Accepted Version - ACM Journal on Emerging Technologies in Computing Systems, Vol. 0, No. 0, Article 0, Pub. date: 2013.

Programmable Spike-Timing Dependent Plasticity circuits in neuromorphic VLSI 0:7

chip via an AER interface. The PC also monitors, records and analyzes the AER output of the chip.
Via a separate channel, the PC also sends bias values to the IFMEM chip, which control its various
circuit parameters.

Figure 5 shows two printed circuit boards that host the three main hardware components of the
system (shown in Fig. 4) including an FPGA, a microcontroller and the IFMEM neuromorphic
chip. The PCB shown on the left is the AER motherboard, so called AEX board, which contains the
FPGA. Directly attached to the AEX board, is a daughterboard containing the IFMEM chip and the
microcontroller. The AEX board is a generic AER communication platform derived from the board
first presented in [Fasnacht et al. 2008]. It consists of a high-speed (480 MHz) USB2.0 interface
and an FPGA device. The USB interface enables the FPGA to communicate bi-directionally with
the PC attached. The FPGA receives spike trains from the PC via USB and then generates them
accordingly on its Parallel AER output interface to stimulate the IFMEM chip. Vice versa, the
FPGA monitors the AER output of the IFMEM chip: each address-event received by the FPGA is
sent to the PC, together with a 128 ns resolution timestamp of when exactly the spike was received
at the Parallel AER input of the FPGA. The AEX board also contains a high-speed Serial AER
interface to communicate with other AEX boards. Since only one such board is required in the
single-chip experimental setup described, the Serial AER interface was not used.

Directly attached to the AEX communication board is a daughter-board. Figure 5 shows the
two boards together. The daughterboard contains both the IFMEM chip and the circuitry needed
to support the chip, such as voltage regulators and connectors to measure analog output voltages
generated by the chip. It also contains a simple microcontroller that includes a full-speed (12 MHz)
USB interface. Via this second USB interface the PC sends the bias values to the microcontroller.
The microcontroller then programs the on-chip bias generator circuits to set the circuit bias voltages
to the values specified by the user.

4.2. Programming the neuromorphic system
As shown in Fig. 4, the synaptic plasticity weight updates, the AER I/O interfacing, as well as the
bias controlling are all programmed in software, on the Linux PC in the neuromorphic setup. In
order to form a spiking neural network with a specific synaptic plasticity rule on this setup, several
steps need to be taken. The first step is to calibrate the silicon neurons, synapse integrators, and
the programmable DACs in the IFMEM chip using an automated routine (developed in Python).
This calibration routine on the host PC can access the IFMEM chip via a microcontroller hosted on
the IFMEM chip daughterboard, and interface to the PC via a USB port. The parameters changed
on the IFMEM chip via the calibration routine, control the behaviors of the neural components
including the response properties of silicon neurons and the dynamics of integrator synapses, on
the neuromorphic device. The calibration process is useful to determine the parameters for setting
desired properties of the neural network, such as membrane time constants, learning rates, etc.

In a second step, after calibration, the PC uses the AEX board to transfer the input spike trains
to the chip and at the same time records AER addresses that correspond to the post-synaptic spikes
being generated by the neurons on the chip. Each AER input (pre-synaptic event) contains four slots
of information including 18 bits as shown in Fig. 2a. These bits describe different specifications
including:

— the address of the post-synaptic neuron (5 bits),
— the address of the SRAM block containing the required synaptic weight (5 bits),
— the type (either inhibitory or excitatory) and the address of the desired physical synapse (3 bits),

and
— the desired digital value for the synaptic weight that will be written to the addressed SRAM block

(5 bits).

Each post-synaptic event (AER output) however only shows the address of the post-synaptic neuron
that generated an event (spike).

Accepted Version - ACM Journal on Emerging Technologies in Computing Systems, Vol. 0, No. 0, Article 0, Pub. date: 2013.

0:8 Rahimi Azghadi et al.

In the third step, the recorded input (pre-synaptic) and output (post-synaptic) spikes are time-
stamped and represented as Address Event (AE) with a time resolution of 1 µs. This data is then
fed to a software module, which implements a specific spike-based learning rule such as STDP.
This module, implemented in C language in our setup, then calculates the required synaptic weight
changes, depending on the spike timings of various pre- and post-synaptic neurons, and uses this
information to update the 5-bit synaptic weights stored in the related SRAM cells of the IFMEM
chip. As the chip produces post-synaptic spikes, in response to the inputs arriving to the chip, and
as a function of the learned synaptic weights, the system continues to learn, in an on-line “feed-
through” mode.

When learning is not required anymore, the system can be set to “storage mode”. In this mode
the synaptic weights cannot be updated anymore and the chip can be used as an stand-alone device
(i.e. disconnected from the PC), to receive input spikes from external sensory devices (e.g., from an
event-based sensory VLSI device [Liu and Delbruck 2010]), process them according to its synaptic
weights, and generate output spikes in result.

5. EXPERIMENTAL RESULTS
In this section we demonstrate how the device can be used in a hybrid SW-HW system to imple-
ment different forms of spike-based plasticity. In particular, we demonstrate that the IFMEM chip
can work with both standard Spike-Timing Dependent Plasticity (STDP) learning prescriptions, as
well as with more elaborate ones, that are being proposed in the computational neuroscience lit-
erature [Gjorgjieva et al. 2011; Clopath et al. 2010; Graupner and Brunel 2012]. In addition, we
demonstrate how the specific variants of STDP that we use can reproduce the properties of the
Bienenstock Cooper Munro (BCM) rate-based learning rule [Bienenstock et al. 1982]. Before im-
plementing any synaptic plasticity rules on the IFMEM chip, first we characterize the response
properties of available silicon neurons and programmable synapses.

5.1. Silicon neuron and programmable synapse response properties
The silicon neurons and programmable synapses available on the IFMEM chip, should be first
calibrated to respond correctly to the input stimuli. In order to calibrate the chip parameters, we
first injected constant current in the neuron circuit and adjusted the silicon neuron parameters to
obtain biophysically realistic response properties, with biologically realistic time-constants (see
Fig. 6a). Furthermore, to calibrate the synapse parameters, we first adjusted the parameters of the
on-chip DACs that convert the SRAM bits into analog subthreshold currents, then we stimulated
the synapse with regular spike trains at different frequencies, and measured the neuron response.
Since the synapse is configured to behave as a linear filter, we stimulated a single synapse with
input frequencies as high as 2000 Hz to represent inputs from many neurons at lower frequencies
(by means of the superposition principle). Figure 6b shows the response of a silicon neuron to these
input spike trains for different synaptic weight values. As shown, we calibrated the on-chip DACs
to set synaptic weights that have a low gain, even for the highest weight value (w=31). As stated
earlier, the DAC parameters for the synapse, as well as the silicon neuron parameters, were set using
a software module implemented on the PC, to control the on chip bias generator circuit [Delbruck
et al. 2010], via a microcontroller, integrated on the host Printed Circuit Board (PCB) (see Fig. 5).

Note that the high input spiking rates are not biologically plausible, for single synapses (which
typically receive spikes with rates in the order of tens of Hertz or less). These inputs however
are meant to represent the spikes arriving from multiple sources (e.g., a 2K Hz input spike train
could represent spikes arriving from 2000 different neurons, each spiking at 1 Hz). This is possible
thanks to the linear properties of the synapse integrator circuit, which can therefore exploit the
superposition principle to collect low-rate spikes arriving from multiple “virtual” synapses into a
single high-rate integration node. In addition to demonstrating the ability of the circuits to process
high input firing rates, we have shown in a previous study that these silicon neurons and synapses
can operate correctly also with biologically realistic times and firing rates [Azghadi et al. 2013].

Accepted Version - ACM Journal on Emerging Technologies in Computing Systems, Vol. 0, No. 0, Article 0, Pub. date: 2013.

Programmable Spike-Timing Dependent Plasticity circuits in neuromorphic VLSI 0:9

0 10 20 30 40 50
0

0.5

1

1.5

2

time (ms)

V
m

e
m

 (
V

)

(a)

0 500 1000 1500 2000
0

50

100

150

200

250

300

f
in

 (Hz)

f o
u

t (
H

z
)

W=4

W=8

W=16

W=31

(b)

Fig. 6: Neuron and synapse characterization. (a) Silicon neuron membrane potential in response
to constant current injection. (b) Output neuron frequency versus frequency of incoming spikes,
representing either a very high firing rate of a single source, or multiple sources at lower firing rates.

5.2. Competitive Hebbian learning through STDP
The STDP learning rule has been widely used in many computational studies [Song et al. 2000] as
well as multiple VLSI implementations [Bofill-I-Petit and Murray 2004; Indiveri 2002; Bamford
et al. 2012; Azghadi et al. 2012; 2013; Azghadi et al. 2013b]. The basic STDP rule is expressed as:

∆w =

{
∆w+ = A+e

(−∆t
τ+

) if ∆t > 0

∆w− = −A−e
(∆t
τ−

) if ∆t ≤ 0,
(2)

where ∆t = tpost − tpre is the timing difference between a single pair of pre- and post-synaptic
spikes. According to this model, the synaptic weight will be potentiated if a pre-synaptic spike
arrives in a specified time window (τ+) before the occurrence of a post-synaptic spike. Analo-
gously, depression will occur if a pre-synaptic spike occurs within a time window (τ−) after the
post-synaptic spike. These time windows are not usually longer than about 50 ms. According to
Eq. 2 the magnitude of potentiation/depression will be determined as a function of the timing differ-
ence between pre- and post-synaptic spikes, their temporal order, potentiation and depression time
constants, and their relevant amplitude parameters (A+ and A−).

It has been shown that changes in synapses trained by the basic STDP learning mechanism lead
eventually to a bi-modal distribution, in which synapses are either strongly potentiated, or strongly
depressed. This behavior has been described as “Competitive Hebbian Learning” [Song et al. 2000].
In particular, the bi-modal distribution arises when (i) the weight of individual synapses is bounded
and (ii) on average synapses tend to be depressed more than they tend to be potentiated (e.g.
A+τ+ < A−τ− in Eq. 2, when the area under the STDP curve for LTP and LTD are compared).

Here, we reproduce the competitive Hebbian learning behavior in our system by configuring a
network composed of a single I&F neuron connected to its 32 5-bit digital synapses. We demonstrate
how, when governed by STDP, the synaptic weights diverge into two distinguished groups over time.

The experiment is summarized as follows: We initialize the system by injecting a small constant
current to one silicon neuron, to increase its excitability, and by setting all the weights of its 32 input
synapses to their mid value of w=16. Next, we apply 32 independent Poisson spike trains with firing
rates of 50 Hz to all these 32 synapses. The weighted EPSCs produced by the synapses are integrated
by the silicon neuron, which eventually produces spikes, and transmits them as address-events to
the workstation, using the AER protocol. The timing of the post-synaptic spikes (measured from
the HW) and of the pre-synaptic spikes (synthesized in SW), applied to each of the 32 synapses is

Accepted Version - ACM Journal on Emerging Technologies in Computing Systems, Vol. 0, No. 0, Article 0, Pub. date: 2013.

0:10 Rahimi Azghadi et al.

0 10 20 30
0

10

20

30

Weight bin

F
ra

ct
io

n
in

 b
in

0 10 20 30
0

10

20

30

Weight bin

F
ra

ct
io

n
in

 b
in

0 10 20 30
0

10

20

30

Weight bin

F
ra

ct
io

n
in

 b
in

0 10 20 30
0

10

20

30

Weight bin

F
ra

ct
io

n
in

 b
in

0 10 20 30
0

10

20

30

Weight bin

F
ra

ct
io

n
in

 b
in

Time = 0s

Time = 100s

Time = 250s Time = 1000s

Time = 500s

Fig. 7: Synaptic weights evolve to reach an equilibrium state, when modified by STDP learning rule.
Here, 32 synaptic weights (weight bins) each one with 32 digital states, are altered by STDP over
time. The top figure shows that all 32 synaptic weights are set to 16 in the beginning at time=0 s,
i.e. the fraction of weights in weight bin 16 is 32. The other figures show the evolution of weights
over time to reach a steady state at time=1000 s. The synaptic weights stay almost fixed thereafter,
and the post-synaptic neuron firing rate held in an almost direct relation to the mean firing rate of
pre-synaptic spike trains, i.e. 50 Hz.

then used to update the values of the 5-bit weights stored in the synapse corresponding SRAM cells,
following a SW algorithm that implements the rule of Eq. 2. The SW algorithm first measures the
∆ts among the pre-synaptic from various synapses and the post-synaptic spikes, and then according
to the STDP learning rule shown in Eq. 2 and its parameters, computes and returns the magnitude of
the weight changes for all 32 synapses connected to the neuron. The STDP parameters used for this
experiments are: A+=0.5, A−=0.527, and τ+=τ+=20 ms. Please also note that, during all synaptic
plasticity experiments presented in this paper, the nearest neighbour spike interaction model (as
opposed to the all-to-all spike interaction) is utilised.

Figure 7 shows how the synaptic weights evolve over time to reach a stable state in which they
show the expected bi-modal distribution. Note how we were able to reproduce the competitive
Hebbian learning behavior even with weights bounded to 5-bit resolution, and with hybrid SW-
HW spike-timing interactions.

5.3. Implementing BCM through STDP
Although BCM is an inherently rate-based rule and depends on the activities of pre- and post-
synaptic neurons, recent studies have shown that timing-based triplet STDP learning rule can
reproduce BCM-like functionality [Gjorgjieva et al. 2011]. Here we demonstrate how this rate-
based functionality can be realized by our SW-HW system, by using the triplet STDP learning
rule [Gjorgjieva et al. 2011] to update the 5-bit synaptic weight values of the IFMEM chip.

Accepted Version - ACM Journal on Emerging Technologies in Computing Systems, Vol. 0, No. 0, Article 0, Pub. date: 2013.

Programmable Spike-Timing Dependent Plasticity circuits in neuromorphic VLSI 0:11

The triplet-based STDP, can be formulated as

∆w =

∆w+ = e
(
−∆t1
τ+

)
(
A+

2 +A+
3 e

(
−∆t2
τy

)
)

∆w− = −e(
∆t1
τ−

)
(
A−

2 +A−
3 e

(
−∆t3
τx

)
)
,

(3)

where ∆w = ∆w+ for t = tpost and if t = tpre then the weight change is ∆w = ∆w−. A+
2 ,

A−
2 , A+

3 and A−
3 are potentiation and depression amplitude parameters, ∆t1 = tpost(n) − tpre(n),

∆t2 = tpost(n)− tpost(n−1)− ε and ∆t3 = tpre(n)− tpre(n−1)− ε, are the time differences between
combinations of pre- and post-synaptic spikes. Here, ε is a small positive constant which ensures
that the weight update uses the correct values occurring just before the pre or post-synaptic spike of
interest, and finally τ−, τ+, τx and τy represent time constants [Pfister and Gerstner 2006].

It has been shown [Pfister and Gerstner 2006] that for Poisson distributed spike trains Eq. 3 can
be approximated as:

〈dw/dt〉 = −A−
2 τ−ρpreρpost −A

−
3 τ−τxρ

2
preρpost +A+

2 τ+ρpreρpost +A+
3 τ+τyρ

2
postρpost (4)

where ρpre and ρpost represent the mean firing rates of the pre- and post-synaptic spike trains,
respectively.

Generally, the BCM theory suggests that the synaptic weight changes are in a linear relationship
with the pre-synaptic, and a non-linear relationship with the post-synaptic mean firing rates [Bi-
enenstock et al. 1982]. Therefore, a general description of the BCM rule can be written as:

dw/dt = ρpre · φ(ρpost, θ) (5)

where φ is a function that satisfies the conditions φ(ρpost > θ, θ) > 0, φ(ρpost < θ, θ) < 0 and
φ(0, θ) = 0. Essentially, if the post-synaptic firing rate ρpost is below the threshold θ, then dw/dt
is negative and the synaptic weight is depressed. Conversely, the synaptic weight is potentiated if
the post-synaptic firing rate is larger than the threshold θ, and it is left unchanged if φ = 0, i.e., if
ρpost = θ [Pfister and Gerstner 2006].

The equations 4 and 5 can be mapped together, if two conditions are satisfied. The first condition
requires having a linear relationship between the pre-synaptic firing activity (ρpre) and the synaptic
weight change (〈dw/dt〉), as shown in Eq. 5. This condition is satisfied if A−

3 = 0, in the triplet
STDP equation (Eq. 4). This will lead to a minimal version of the Triplet Spike-Timing Dependent
Plasticity (TSTDP) rule presented in [Pfister and Gerstner 2006], which has been shown to account
for various synaptic plasticity neuroscience experiments, including those dealing with higher order
spike trains [Wang et al. 2005]. The second condition requires that the sliding threshold θ, that de-
termines the frequency, in which depression turns to potentiation, is proportional to the expectation
of the pth power of the post-synaptic firing rate (ρpost) [Pfister and Gerstner 2006; Bienenstock
et al. 1982]. This second condition can be satisfied if the threshold of the BCM rule is defined as

θ = 〈ρppost〉(A−
2 τ− +A+

2 τ+)/ρp0A
+
3 τ+τy (6)

Given this equation, the sliding threshold effect of the BCM rule is proportional to the post-
synaptic firing rate, with the proportionality factor set by the STDP rule parameters.

To implement BCM via the triplet STDP rule in the IFMEM chip setup, we used a single synapse,
connected to a post-synaptic silicon neuron and changed its efficacy using the STDP rule of Eq. (3).
At the beginning of the experiment, the initial weight of the synapse is set to its maximum value
of 31. This high synaptic weight makes the post-synaptic neuron fire at a high rate, proportional to
the pre-synaptic firing rate [Azghadi et al. 2013]. The SW pre-synaptic spike train, and the spike
train produced by the silicon neuron, are then used to calculate the amount of weight changes in the
corresponding synaptic efficacy, according to a minimal model of triplet STDP [Gjorgjieva et al.
2011].

Accepted Version - ACM Journal on Emerging Technologies in Computing Systems, Vol. 0, No. 0, Article 0, Pub. date: 2013.

0:12 Rahimi Azghadi et al.

Fig. 8: The sliding threshold feature of the rate-based BCM rule is replicated through Triplet STDP
rule, implemented on the IFMEM chip.

Figure 8 shows the total amount of weight changes in response to Poisson spike trains of 20 s
length, for a range of pre-synaptic spike rates from 0 Hz up to 100 Hz. In this figure, the sliding
threshold feature of the BCM learning rule is regenerated through changing the amount of one of the
parameters of the TSTDP learning rule, i.e.A+

3 . According to Eq. 6, with increase inA+
3 parameter,

the threshold decreases and slides toward lower post- synaptic firing rates. Please note that, in the
presented experiment, the silicon neuron parameters, as well as the synaptic weight parameters
in its corresponding physical synapse, i.e. the differential pair integrator, are calibrated in a way
that pre- and post-synaptic neuron are in a relatively linear relationship [Moradi and Indiveri 2014;
Azghadi et al. 2013]. In this figure, each data point corresponds to the mean of the weight changes
over 10 trials, and the error bar represents the standard deviation of the weight change over these
trials. This amount of weight changes can then be discretized and written back into the SRAM. The
STDP parameters that have been used in this experiment are as follows: A−

3 =A+
2 =0, A−

2 =0.0068,
τ+=16.8 ms, τ−=33.7 ms, and τy=114 ms.

5.4. Classification of complex correlated patterns
Here we use the TSTDP learning rule, with its parameters tuned for exhibiting BCM behavior (see
Fig. 8), to demonstrate how the proposed VLSI device can perform classification of binary patterns
with high levels of correlations.

The neural classifier implemented is composed of one neuron and 30 synapses, which are ar-
ranged in a single layer perceptron-like architecture. The goal is to train the perceptron synaptic
weights, via the TSTDP algorithm, to learn to distinguish two input patterns, UP and DOWN, in
an unsupervised fashion. After training, the HW perceptron should be able to respond with a high
firing rate to pattern UP, and a low one to pattern DOWN. This is a similar experimental scenario,
to the semi-supervised learning scenario utilized in a similar classification task using spiking neural
networks [Giulioni et al. 2009].

The two UP and DOWN patterns can have various degrees of correlations. The correlation deter-
mines the amount of overlap in the input synapses used, and the similarity in the output response of
the neuron: when there is no correlation, one pattern is applied to 15 random synapses and the other
pattern is applied to the remaining 15 synapses (no overlap).

The pattern UP stimulates 15 synapses with Poisson spike trains that have a high mean firing rate
of 300 Hz, while pattern DOWN comprises 15 Poisson spike trains with a low mean firing rate of
20 Hz. Therefore, in the case of zero correlation, the two patterns are likely to produce different

Accepted Version - ACM Journal on Emerging Technologies in Computing Systems, Vol. 0, No. 0, Article 0, Pub. date: 2013.

Programmable Spike-Timing Dependent Plasticity circuits in neuromorphic VLSI 0:13

100 200 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fr
ac

tio
n

in
bi

n

Trial 1

DOWN
UP

100 200 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Trial 5

100 200 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Trial 10

100 200 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Trial 20

Freq [Hz]

Fig. 9: Distribution of the neuron output frequencies during different stages of learning. In the
beginning of the learning phase, when initial weights are random, the neuron cannot distinguish
between the two patterns. During the learning trials, the synapses are being modified and the neuron
begins to effectively discriminate between the two patterns from trial 20. In this experiment the
correlation is equal to 20 %, i.e., there are 6 inputs that are common to the two patterns that always
receive high firing rates.

outputs (depending on the values of the synaptic weights) even before learning. However, for the
case of non-zero correlations, a random subset of N input synapses are always stimulated by high
mean firing rate spike trains of 300 Hz, while the rest of the synapses are assigned to the two UP and
DOWN patterns. For instance, if the number of correlated synapses is 10, 10 randomly synapses are
stimulated by Poisson spike trains of 300 Hz, and the remaining 20 synapses will be reserved for
the UP and DOWN patterns. In this case, because of the N common high input synapses, the two
patterns will have closer mean firing rates, and therefore their classification becomes more chal-
lenging. Therefore, in the beginning of learning phase, the output frequency range of the perceptron
cannot be distinguished between the two patterns and as a result learning is required to classify the
two patterns.

The training phase is composed of several trials. In each trial, one of the two patterns, UP or
DOWN is randomly applied to the 30 input synapses, with a set degree of correlation, and with a
new distribution of Poisson spikes. The two patterns have equal probability to be selected. For each
trial the synaptic weights are modified according to the TSTDP. In our experiment the synaptic
weights reach a steady state and do not change significantly after about 20 trials, in which the input
spike trains lasted 10 s each.

Figure 9 shows how the distribution of the neuron output firing rates changes with learning, after
1, 5, 10, and 20 trials. The output neuron rates were collected over 20 classification runs, with
each run comprising 20 learning trials and 20% correlation. In each run the synaptic weights are

Accepted Version - ACM Journal on Emerging Technologies in Computing Systems, Vol. 0, No. 0, Article 0, Pub. date: 2013.

0:14 Rahimi Azghadi et al.

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

ΔF

Correlation percentage

Fig. 10: The performance of the classifier implemented on the IFMEM chip. Here ∆F = (Fmin
UP −

Fmax
DOWN)/Fmin

UP , where Fmin
UP and Fmax

DOWN are the minimum and the maximum frequencies for
pattern UP and DOWN, respectively, for all 20 runs at the end of learning in trial 20.

initialized to random 5-bit values, the definition of UP and DOWN patterns is changed, and a new
random order of UP and DOWN patterns applied across trials is defined.

As expected, the TSTDP learning rule used tends to decrease the weights of the synapses targeted
by the DOWN pattern, while it tends to increase the weights of both the UP and correlated (overlap-
ping) synapses. After learning, the neuron will therefore fire with high firing rates when stimulated
with UP patterns, and low firing rates when stimulated by DOWN patterns. While after a few trials
(e.g. see second and third panels of Fig. 9) the neuron already performs above chance levels, many
trials (20 in our experiments) are required to unambiguously classify the two patterns.

This classification performance is robust and holds for also large amounts of correlations (up to
90 %) in the input patterns. In terms of classification accuracy, we consider a DOWN pattern cor-
rectly classified if the neuron output frequency is less than a set threshold in response to that pattern;
and similarly, an UP pattern is correctly classified, if the neuron response to such pattern has a fir-
ing rate higher than the threshold. In our experiments the classifier has 100 % correct performance,
even with correlation levels of 87 % (i.e., 26 overlapping synapses), if the classification threshold
is adaptive (e.g., if it is set just below to the minimum frequency in response to the UP patterns).
What changes however is the difference in the responses to the two patterns. Figure 10 shows how
this difference decreases as the correlation among the input patterns increases.

Although the developed classification device demonstrates promising results in the targeted clas-
sification scenario, its ability in more challenging pattern classification tasks yet to be evaluated in
future research.

6. CONCLUSIONS
We presented a hybrid SW-HW neuromorphic system that utilizes a previously developed pro-
grammable neuromorphic VLSI device (IFMEM chip) that comprises silicon neurons and event-
driven synapses, with programmable synaptic weight circuits. We demonstrated how this device can
be used in the developed system, to implement different types of spike-timing dependent plasticity
learning rules, and demonstrated how these rules can reproduce interesting competitive Hebbian
learning and rate-based behaviors, even with the limitations of the hardware implementation (5-bit
resolution for the weights, mismatch of the analog subthreshold circuits, etc.). Finally we described

Accepted Version - ACM Journal on Emerging Technologies in Computing Systems, Vol. 0, No. 0, Article 0, Pub. date: 2013.

Programmable Spike-Timing Dependent Plasticity circuits in neuromorphic VLSI 0:15

how the hybrid SW-HW learning setup proposed can be used to train a perceptron to perform binary
classification in an unsupervised way, and to be robust to extremely high correlations in the input
patterns.

The device and setup proposed therefore represents a useful real-time low-power computing plat-
form for exploring the effectiveness of different types of spike-based learning algorithms, validating
their performance at run-time on real-time custom analog/digital hardware, and implementing robust
perceptron-like neural networks to carry out real-time classifications tasks. If the task can be solved
after training the weights of the neural network, without requiring continuous or on-line training,
then the platform proposed represents a stand-alone compact and low-power alternative to standard
full-digital computing solutions (no PC is required in the loop). The use of the AER representation
for receiving inputs, computing with spikes, and transmitting signals in output, make this device
an ideal computational platform for building embedded neuromorphic event-based computational
systems that process events generated by neuromorphic sensory systems [Liu and Delbruck 2010].

REFERENCES
L.F. Abbott and W. Gerstner. 2004. Homeostasis and learning through spike-timing dependent plasticity. In Methods and

Models in Neurophysics. Editors: D. Hansel, C. Chow, B. Gutkin, and C. Meunier.
J.V. Arthur, P. Merolla, F. Akopyan, R. Alvarez, A. Cassidy, A. Chandra, S. Esser, N. Imam, W. Risk,

D.B.D. Rubin, R. Manohar, and D.S. Modha. 2012. Building Block of a Programmable Neuromorphic Sub-
strate: A Digital Neurosynaptic Core. In International Joint Conference on Neural Networks, IJCNN 2012.
DOI:http://dx.doi.org/10.1109/IJCNN.2012.6252637

M. Rahimi Azghadi, S. Al-Sarawi, D. Abbott, and N. Iannella. 2013a. A neuromorphic VLSI design for spike timing and
rate based synaptic plasticity. Neural Networks 45 (2013), 70–82.

M. Rahimi Azghadi, S. Al-Sarawi, D. Abbott, and N. Iannella. 2013b. Pairing Frequency Experiments in Visual Cortex
Reproduced in a Neuromorphic STDP Circuit. In 2013 IEEE International Conference on Electronics, Circuits, and
Systems. 229–232.

M. Rahimi Azghadi, S. Al-Sarawi, N. Iannella, and D. Abbott. 2012. Efficient Design of Triplet Based
Spike-Timing Dependent Plasticity. In International Joint Conference on Neural Networks, IJCNN 2012.
DOI:http://dx.doi.org/10.1109/IJCNN.2012.6252820

M. Rahimi Azghadi, S. Al-Sarawi, N. Iannella, and D. Abbott. 2013. A new compact analog VLSI model for Spike Timing
Dependent Plasticity. In 2013 IFIP/IEEE 21st International Conference on Very Large Scale Integration (VLSI-SoC).
7–12.

M. Rahimi Azghadi, S. Al-Sarawi, N. Iannella, and D. Abbott. 2014a. Tunable Low Energy, Compact and High Per-
formance Neuromorphic Circuit for Spike-Based Synaptic Plasticity. PLoS ONE 9, 2 (2014), art. no. e88326.
DOI:http://dx.doi.org/10.1371/journal.pone.0088326

M. Rahimi Azghadi, N. Iannella, S. F. Al-Sarawi, G. Indiveri, and D. Abbott. 2014b. Spike-Based Synaptic Plasticity in
Silicon: Design, Implementation, Application, and Challenges. Proc. IEEE 102, 5 (2014), 717–737.

M. Rahimi Azghadi, S. Moradi, and G. Indiveri. 2013. Programmable neuromorphic circuits for spike-based
neural dynamics. In 2013 IEEE 11th International New Circuits and Systems Conference (NEWCAS).
DOI:http://dx.doi.org/10.1109/NEWCAS.2013.6573600

S. Bamford, A.F. Murray, and D.J. Willshaw. 2012. Spike-timing-dependent plasticity with weight dependence evoked from
physical constraints. IEEE Transactions on Biomedical Circuits and Systems 6, 4 (2012), 385–398.

C. Bartolozzi and G. Indiveri. 2007. Synaptic dynamics in analog VLSI. Neural Computation 19, 10 (2007), 2581–2603.
A. Belatreche, L.P. Maguire, and M. McGinnity. 2006. Advances in Design and Application of Spiking Neural Networks.

Soft Computing 11, 3 (2006), 239–248.
E.L. Bienenstock, L.N. Cooper, and P.W. Munro. 1982. Theory for the development of neuron selectivity: orientation speci-

ficity and binocular interaction in visual cortex. Journal of Neuroscience 2, 1 (1982), 32–48.
A. Bofill-I-Petit and A.F. Murray. 2004. Synchrony detection and amplification by silicon neurons with STDP synapses.

IEEE Transaction on Neural Networks 15, 5 (2004), 1296–1304.
J. Brader, W. Senn, and S. Fusi. 2007. Learning real world stimuli in a neural network with spike-driven synaptic dynamics.

Neural Computation 19 (2007), 2881–2912.
R. Brette and W. Gerstner. 2005. Adaptive Exponential Integrate-and-Fire Model as an Effective Description of Neuronal

Activity. Journal of Neurophysiology 94 (2005), 3637–3642.
E. Chicca, F. Stefanini, C. Bartolozzi, and G. Indiveri. 2014. Neuromorphic electronic circuits for building autonomous

cognitive systems. Proc. IEEE (2014). DOI:http://dx.doi.org/DOI:10.1109/JPROC.2014.2313954

Accepted Version - ACM Journal on Emerging Technologies in Computing Systems, Vol. 0, No. 0, Article 0, Pub. date: 2013.

0:16 Rahimi Azghadi et al.

E. Chicca, A.M. Whatley, P. Lichtsteiner, V. Dante, T. Delbrück, P. Del Giudice, R.J. Douglas, and G. Indiveri. 2007.
A multi-chip pulse-based neuromorphic infrastructure and its application to a model of orientation selectivity. IEEE
Transactions on Circuits and Systems I 5, 54 (2007), 981–993.

T.Y.W. Choi, B.E. Shi, and K. Boahen. 2004. An ON-OFF Orientation Selective Address Event Representation Image
Transceiver Chip. IEEE Transactions on Circuits and Systems I 51, 2 (2004), 342–353.

C. Clopath, L. Büsing, E. Vasilaki, and W. Gerstner. 2010. Connectivity reflects coding: a model of voltage-based STDP
with homeostasis. Nature Neuroscience 13, 3 (2010), 344–352.

P. Dayan and L.F. Abbott. 2001. Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems.
Taylor & Francis.

T. Delbruck, R. Berner, P. Lichtsteiner, and C. Dualibe. 2010. 32-bit Configurable bias current generator with sub-off-current
capability. In International Symposium on Circuits and Systems, ISCAS 2010. 1647–1650.

D.B. Fasnacht, A.M. Whatley, and G. Indiveri. 2008. A Serial Communication Infrastructure for Multi-Chip Address Event
System. In International Symposium on Circuits and Systems, ISCAS 2008. 648–651.

A. Fidjeland, D. Gamez, M. P. Shanahan, and E. Lazdins. 2013. Three Tools for the Real-Time Simulation of Embodied
Spiking Neural Networks Using GPUs. Neuroinformatics 11, 3 (2013), 267–290.

A. Fidjeland, E.B. Roesch, M.P. Shanahan, and W. Luk. 2009. NeMo: A platform for Neural Modelling of spiking neurons
using GPUs. In IEEE Application-specific Systems, Architectures and Processors Conference ASAP. 137–144.

Steve B. Furber, David R. Lester, Luis A. Plana, Jim D. Garside, Eustace Painkras, Steve Temple, and Andrew D. Brown.
2013. Overview of the SpiNNaker System Architecture. IEEE Trans. Comput. 62, 12 (2013), 2454–2467.

W. Gerstner and W.M. Kistler. 2002. Spiking Neuron Models: Single Neurons, Populations, Plasticity. Cambridge University
Press.

M. Giulioni, M. Pannunzi, D. Badoni, V. Dante, and P. Del Giudice. 2009. Classification of correlated patterns with a
configurable analog VLSI neural network of spiking neurons and self-regulating plastic synapses. Neural Computation
21, 11 (2009), 3106–3129. DOI:http://dx.doi.org/10.1162/neco.2009.08-07-599

J. Gjorgjieva, C. Clopath, J. Audet, and J.-P. Pfister. 2011. A triplet spike-timing–dependent plasticity model generalizes the
Bienenstock–Cooper–Munro rule to higher-order spatiotemporal correlations. Proceedings of the National Academy of
Sciences 108, 48 (2011), 19383–19388.

M. Graupner and N. Brunel. 2012. Calcium-based plasticity model explains sensitivity of synaptic changes to spike pattern,
rate, and dendritic location. Proceedings of the National Academy of Sciences 109 (2012), 3991–3996.

G. Indiveri. 2002. Neuromorphic Bistable VLSI Synapses with Spike-Timing-Dependent Plasticity. In Advances in Neural
Information Processing Systems, Vol. 15. 1091–1098.

G. Indiveri, B. Linares-Barranco, T.J. Hamilton, A. van Schaik, R. Etienne-Cummings, T. Delbruck, S.-C. Liu, P. Dudek,
P. Häfliger, S. Renaud, J. Schemmel, G. Cauwenberghs, J. Arthur, K. Hynna, F. Folowosele, S. Saighi, T. Serrano-
Gotarredona, J. Wijekoon, Y. Wang, and K. Boahen. 2011. Neuromorphic silicon neuron circuits. Frontiers in Neuro-
science 5 (2011), 1–23.

G. Indiveri, F. Stefanini, and E. Chicca. 2010. Spike-based learning with a generalized integrate and fire silicon neuron. In
International Symposium on Circuits and Systems, ISCAS 2010. 1951–1954.

R. Kempter, W. Gerstner, and J.L. van Hemmen. 1999. Hebbian learning and spiking neurons. Physical Review E 59, 4
(1999), 4498–4514.

D. Khosla, D.J. Huber, and C. Kanan. 2014. A neuromorphic system for visual object recognition. Biologically Inspired
Cognitive Architectures 8 (2014), 33–45.

C. Koch. 1999. Biophysics of Computation: Information Processing in Single Neurons. Oxford University Press.
S.B. Laughlin and T.J. Sejnowski. 2003. Communication in Neuronal Networks. Science 301, 5641 (2003), 1870–1874.
S.-C. Liu and T. Delbruck. 2010. Neuromorphic sensory systems. Current Opinion in Neurobiology 20, 3 (2010), 288–295.
C.G. Mayr and J. Partzsch. 2010. Rate and pulse based plasticity governed by local synaptic state variables. Frontiers in

Synaptic Neuroscience 2, 33 (2010).
C. Mead. 1990. Neuromorphic Electronic Systems. Proc. IEEE 78, 10 (1990), 1629–36.
S. Mitra, S. Fusi, and G. Indiveri. 2009. Real-time classification of complex patterns using spike-based learning in neuro-

morphic VLSI. IEEE Transactions on Biomedical Circuits and Systems 3, 1 (2009), 32–42.
S. Moradi and G. Indiveri. 2011. A VLSI network of spiking neurons with an asynchronous static random access memory.

In Biomedical Circuits and Systems Conference, BioCAS 2011. 277–280.
S. Moradi and G. Indiveri. 2014. An Event-Based Neural Network Architecture With an Asynchronous Programmable

Synaptic Memory. IEEE Transactions on Biomedical Circuits and Systems 8, 1 (2014), 98–107.
J.M. Nageswaran, N. Dutt, J.L. Krichmar, A. Nicolau, and A.V. Veidenbaum. 2009. A configurable simulation environment

for the efficient simulation of large-scale spiking neural networks on graphics processors. Neural Networks 22, 5-6
(2009), 791–800.

Accepted Version - ACM Journal on Emerging Technologies in Computing Systems, Vol. 0, No. 0, Article 0, Pub. date: 2013.

Programmable Spike-Timing Dependent Plasticity circuits in neuromorphic VLSI 0:17

A. Nere, U. Olcese, D. Balduzzi, and G. Tononi. 2012. A neuromorphic architecture for object recognition and motion
anticipation using burst-STDP. PloS ONE 7, 5 (2012), art. no. e36958.

J.P. Pfister and W. Gerstner. 2006. Triplets of spikes in a model of spike timing-dependent plasticity. The Journal of Neuro-
science 26, 38 (2006), 9673–9682.

P. Rowcliffe and J. Feng. 2008. Training Spiking Neuronal Networks With Applications in Engineering Tasks. IEEE Trans-
actions on Neural Networks 19, 9 (2008), 1626–1640.

J. Schemmel, D. Bruderle, A. Grubl, M. Hock, K. Meier, and S. Millner. 2010. A wafer-scale neuromorphic hardware system
for large-scale neural modeling. In IEEE International Symposium on Circuits and Systems, ISCAS 2010. 1947–1950.

M. Schmuker, T. Pfeil, and M.P. Nawrot. 2014. A neuromorphic network for generic multivariate data classification. Pro-
ceedings of the National Academy of Sciences 111, 6 (2014), 2081–2086.

P.J. Sjöström, E.A. Rancz, A. Roth, and M. Häusser. 2008. Dendritic excitability and synaptic plasticity. Physiological
Reviews 88, 2 (2008), 769–840.

S. Song, K.D. Miller, and L.F. Abbot. 2000. Competitive Hebbian learning through spike-timing-dependent plasticity. Nature
Neuroscience 3, 9 (2000), 919–926.

R.J. Vogelstein, U. Mallik, J.T. Vogelstein, and G. Cauwenberghs. 2007. Dynamically reconfigurable silicon array of spiking
neurons with conductance-based synapses. IEEE Transactions on Neural Networks 18, 1 (2007), 253–265.

H.X. Wang, R.C. Gerkin, D.W. Nauen, and G.Q. Bi. 2005. Coactivation and timing-dependent integration of synaptic poten-
tiation and depression. Nature Neuroscience 8, 2 (2005), 187–193.

Received December 2013; revised X; accepted X

Accepted Version - ACM Journal on Emerging Technologies in Computing Systems, Vol. 0, No. 0, Article 0, Pub. date: 2013.

Online Appendix to:
Programmable Spike-Timing Dependent Plasticity learning circuits in
neuromorphic VLSI architectures

Mostafa Rahimi Azghadi∗, University of Zurich and ETH Zurich and the University of Adelaide
Saber Moradi∗, University of Zurich and ETH Zurich
Daniel B. Fasnacht, University of Zurich and ETH Zurich
Mehmet Sirin Ozdas, University of Zurich and ETH Zurich
Giacomo Indiveri, University of Zurich and ETH Zurich

c© 2013 ACM 1550-4832/2013/-ART0 $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

Accepted Version - ACM Journal on Emerging Technologies in Computing Systems, Vol. 0, No. 0, Article 0, Pub. date: 2013.

