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A Stochastic Model for Particulate Suspension
Flow in Porous Media
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Abstract. A population balance model for a particulate suspension transport with size
exclusion capture of particles by porous rock is derived. The model accounts for particle
flux reduction and pore space accessibility due to restriction for large particles to move
through smaller pores – a particle is captured by a smaller pore and passes through a
larger pore. Analytical solutions are obtained for a uniform pore size medium, and also
for a medium with small pore size variation. For both cases, the equations for averaged
concentrations significantly differ from the classical deep bed filtration model.

Key words: deep bed filtration, pore size exclusion, accessibility, stochastic model, averaging.

Nomenclature
c total suspended particle concentration, L−3.
C concentration distribution for suspended particles, L−4.
f size distribution (probability distribution function), L−1.
fT size distribution of rs-particle population retained in rp-pores, L−2.
h total vacant pore concentration, L−3.
H concentration distribution for vacancies, L−4.
J distribution of an rs-particle population flux per unit of cross-section area,

L−3 T−1.
J distribution of an rs-particle population flux through the rp-pores per unit of

cross-section area, L−4 T−1.
k0 initial permeability, L2.
k(σ ) formation damage function, dimensionless.
L core length, L.
p pressure, M/T2L.
P probability of a particle with radius rs to meet a pore with radius rp.
rp pore radius, L.
rs particle radius, L.
t dimensional time, T.
T dimensionless time.
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U fluid velocity, L/T.
x dimensional linear co-ordinate, L.
X dimensionless linear co-ordinates.
〈x〉 average penetration depth, L.

Greek Symbols
α flux reduction factor.
δ Dirac’s delta function.
φ porosity.
λ′ dimensional filtration coefficient, L−1.
λ dimensionless filtration coefficient.
µ viscosity, ML−1T−1.
�(rs, rp) concentration distribution for particles with radius rs captured by

pores with radius rp, L−5.
�(rs) concentration distribution for retained particles with radius rs, L−4.
σ total deposited particle concentration, L−3.

Subscripts and Superscripts
0 initial value at T =0.
f front.
p pore/vacancy.
s suspended (for particles).
tr transition.
T trapped (for retained particles).
(0) boundary value at X =0.

1. Introduction

Deep bed filtration of water with particles occurs in several industrial and
environmental processes like water filtration and soil contamination. In the
petroleum industry, deep bed filtration of drilling fluid happens during well
drilling; it also takes place near to injection wells during seawater injection
causing injectivity reduction.

The particle capture in porous media can be caused by different physical
mechanisms (Elimelech et al., 1995):

• size exclusion (large particles are captured in small pores and pass
through large pores);

• electrical forces (London – Van der Waals, double electrical layer, etc.);
• gravity segregation;
• multi particle bridging.

In the current paper, a size exclusion mechanism is discussed.
A phenomenological model for the particle-capture and permeability-

damage process was proposed by Iwasaki (1937) and used in filtration
processes (Herzig et al., 1970) and in well injectivity with rock permeabil-
ity decline (Pang and Sharma, 1994; Wennberg and Sharma, 1997). The
model assumes linear kinetics of particle deposition, and exhibits a good



A STOCHASTIC MODEL FOR PARTICULATE SUSPENSION FLOW 25

agreement with laboratory data. So, the model can be used for prediction
purposes, like forecasting well injectivity decline based on laboratory core-
flood tests. Nevertheless, the model does not distinguish between different
mechanisms of formation damage. Therefore, the model cannot be used
for diagnostic purposes, like determination of the dominant capture mech-
anism from well data.

The model predicts that the particle breakthrough happens after injec-
tion of one pore volume. Nevertheless, several cases where the break-
through time significantly differs from one pore volume injected, have been
reported in the literature for particulate and polymer suspensions (Dawson
and Lantz, 1972; Bartelds et al., 1997; Veerapen et al., 2001; Massei et al.,
2002).

In the case of size exclusion mechanism, the larger are the particles, the
smaller are the pores, the more intensive is the capture and the larger is
the formation damage. Nevertheless, several attempts to correlate the for-
mation damage with sizes of particles and pores were unsuccessful (Oort
et al., 1993; Bedrikovetsky et al., 2001, 2003). It could mean that either size
exclusion mechanisms never dominate, or the phenomenological model for
average concentrations is not general/universal enough. One way around this
contradiction is micro scale modelling of each capture mechanism.

Different network micro models have been developed by Payatakes
et al. (1973, 1974), Sahimi and Indakm (1991), Rege and Fogler (1988),
(see Khilar and Fogler, 1998), Siqueira et al. (2003). Different physical
mechanisms of particle retention are included in these models.

Sharma and Yortsos (1987a) derived basic population balance equations
for the transport of particulate suspensions in porous media. The model
accounts for particle and pore size distribution variation due to different
particle capture mechanisms. It is assumed that an overall pore space is acces-
sible for particles and the particle population moves with the average flow
velocity of the carrier water. In the case of a porous medium with the uni-
form pore size distribution, this assumption results in independent deep bed
filtration of different particle size populations. Nevertheless, during deep bed
filtration with a size exclusion mechanism, particles smaller than the pore
radii should pass the rock without being captured and particles larger than
the pore radii should not enter the rock.

The pore size exclusion supposes that the particles can only enter larger
pores, i.e. only a fraction of porosity is accessible for particles. Therefore,
particles are carried by water flowing only via the accessible pore space,
i.e. the water flux carrying particles of a fixed size is just a fraction of the
overall water flux via porous media. The effects of porous space accessi-
bility and flux reduction due to finite size of polymer molecules have been
observed and mathematically described for the flow of polymer solutions in
rocks (Dawson and Lantz, 1972; Bartelds et al., 1997).
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In the current work, the effects of particle flux reduction and porous
space inaccessibility due to selective flow of different size particles are
included in the model for deep bed filtration. The terms of advective flux
reduction and accessibility appear in the population balance equation. An
analytical solution for the uniform pore size medium shows that deep bed
filtration does not occur – large particles do not enter the porous media,
and small particles move without capture.

For a small pore size variation medium, an analytical solution found
shows that only intermediate size particles perform deep bed filtration. In
this case, the population velocity is particle size-dependent. The averaged
equations for deep bed filtration of intermediate size particles significantly
differ from the classical deep bed filtration model.

In Section 2, the classical deep bed filtration equations are presented.
The stochastic generalization accounting for pore and particle size distri-
butions and for flux reduction with pore accessibility is derived in Sec-
tion 3. The initial boundary-value problem for a suspension injection has
a Goursat type; it allows obtaining the exact formulae for captured-parti-
cle and pore populations at the inlet cross-section without solving the ini-
tial boundary-value problem (Section 4). Section 5 contains analytical solu-
tion for a single pore size medium. Exact analytical solution and averaged
equations for deep bed filtration in a media with small pore size variation
are also derived in Section 6.

2. Classical Deep Bed Filtration Model

The deep bed filtration system consists of equations for the particle mass
balance, for the particle capture kinetics and of Darcy’s law (Iwasaki, 1937;
Herzig et al., 1970)

∂c(X,T )

∂T
+ ∂c(X,T )

∂X
=− 1

φ

∂σ(X,T )

∂T
,

∂σ (X,T )

∂T
=λ(σ)φc(X,T ), (1)

U =−k0k(σ )

µL

∂p

∂X
,

where λ(σ)=λ′(σ )L is the dimensionless filtration coefficient that is equal
to the probability that a particle will be captured during flow through a
specimen; X and T are dimensionless coordinate and time; c(X,T ) is the
suspended particle concentration that is equal to the number of suspended
particles per unit of pore space volume; σ(X,T ) is the deposited particle
concentration that is equal to the number of retained particles per unit of
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porous rock volume. The formation damage function k(σ ) shows how per-
meability declines due to particle deposition.

The velocity U is independent of X due to suspension incompressibility.
Therefore, the third Equation (1) separates from the first and second equa-
tions that can be solved independently. The first and second equations (1)
form the kinematics model for transport and capture of particles, the third
equation is a dynamical model that predicts a pressure gradient increase
due to permeability decline with the particle retention.

In the case of constant filtration coefficient, the particle penetration
depth equals 1/λ.

In the case of size exclusion capture, the larger the particles, the smaller
are the pores, and the higher is the capture rate. Nevertheless, the phenom-
enological model (1) does not account for particle and pore size distribu-
tions.

In the current work, the emphasis is on the modelling of the size exclu-
sion mechanism of particle capture accounting for particle and pore size
distributions.

It is worth mentioning that particles move with the carrier water veloc-
ity, according to the continuity Equation (1). Analytical solution for a one-
dimensional deep bed filtration contains the suspended concentration shock
that moves with the carrier water velocity, the particles appear at the core
outlet after one pore volume is injected and the suspended and captured
concentrations are equal to zero ahead of this shock (Herzig et al., 1970).

3. Governing Equations

In this section we derive the population balance equations for flow of
water with suspended particles in porous media. In the derivations of the
kinetic equations, we will proceed from an assumption similar to Boltz-
mann’s assumption about ‘molecular chaos’ (Landau and Lifshitz, 1986).
Some particles are captured by the rock from the suspension by the size
exclusion mechanism, i.e. if a large particle arrives at a small pore, rp <rs,
it is captured and plugs the pore; otherwise, a small particle rp >rs passes
the pore without being captured (Figure 1). It is also assumed that each
particle can plug only one pore, and vice versa.

The geometric model structure of the pore space is as follows:

• locally, the porous space is a bundle of parallel capillary;
• the flux through each pore is proportional to the fourth power of its

radius;
• the complete mixing takes place at the length scale l, i.e. there is a non-

zero probability for a particle moving through any pore at the point x

to get into any pore at the point x + l.
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Figure 1. Schema of the large particle entrapment by small pores.

Figure 2. Separation of particle flow and capture by inserting the mixing chambers
(sieves) into a capillary bundle porous media: (a) particle trajectories in capillar-
ies and chambers, (b) frontal cross-section, (c) schema for links between pores in
sequential capillary bundle sections.

The example of the porous medium under consideration is shown in
Figure 2(a)–(c) – it is a bundle of parallel capillary porous media alter-
nated by mixing chambers. The complete mixing of different size particles
occurs in the chambers. The particle transport and capture occurring simul-
taneously in natural rocks, are separated in the proposed model. The par-
ticles move in the sections of a bundle of parallel capillary without being
captured (Figure 2a). The capture occurs at the thin pore inlet, where large
particles arrive. So an inlet cross-section of each parallel capillary section
acts as a sieve, i.e. large particles do not enter thin pores and are captured
at chamber outlets.

It is assumed that the chamber volume is negligible if compared with the
capillary (pore) volume.
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In order to describe the pore size exclusion mechanism, one should
introduce distributions of suspended particles, captured particles and pores
over radius∫ ∞

0
fs (rs, x, t)drs =1,

∫ ∞

0
fT (rs, x, t)drs =1,

∫ ∞

0
fp

(
rp, x, t

)
drp =1.

(2)

The product fs (rs, x, t)drs is the fraction of particles with radii between
rs and rs +drs. The concentration C(rs, x, t)drs of suspended particles with
radii between rs and rs +drs is defined as the number of particles with radii
between rs and rs +drs per unit of pore volume

C(rs, x, t)drs = c(x, t)fs(rs, x, t)drs. (3)

Strictly speaking, C(rs, x, t)drs is a concentration, and C(rs, x, t) is a
‘concentration density’, or ‘concentration distribution’.

The concentration c(x, t) is the total number of particles per unit of
pore volume.

From Equations (2) and (3) it follows that the total particle concentra-
tion is∫ ∞

0
C(rs, x, t)drs = c(x, t). (4)

Let us introduce the fraction of particles with radii between rs and rs +
drs that have been captured by pores with radii between rp and rp + drp:
fT (rs, rp, x, t)drs drp. The particle concentration with radius rs that have
been captured by pores with radius rp is called �(rs, rp, x, t) (Figure 1):

�(rs, rp, x, t)drp drs =σ(x, t)fT (rs, rp, x, t)drpdrs. (5)

The product �(rs, rp, x, t)drsdrp is equal to the number of particles with
radii between rs and rs +drs which have been captured by pores with radii
between rp, and rp +drp per unit of the rock volume.

The total retained concentration σ(x, t) is equal to the number of par-
ticles captured in a unitary volume of a porous medium.

The size exclusion capture mechanism assumes that the ‘rs’ particle is
captured by the ‘rp’ pore if rs >rp. Therefore, �(rs, rp, x, t)= 0 for rs <rp,
and the fraction of captured particles with radii between rs and rs +drs is

fT (rs, x, t)drs =
[∫ rs

0
fT (rs, rp, x, t)drp

]
drs. (6)

Integrating (5) in rp and accounting for (6), we obtain the concentration
of captured particles with radius in the interval [rs, rs +drs]:[∫ rs

0
�(rs, rp, x, t)drp

]
drs =�(rs, x, t)drs. (7)
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From (5)–(7) it follows that

�(rs, x, t)drs =σ(x, t)fT (rs, x, t)drs. (8)

Integration of (7) in rs from zero to infinity results in the total captured
particle concentration:∫ ∞

0
�(rs, x, t)drs =σ(x, t). (9)

The vacant pore concentration H(rp, x, t)drp with radius in the interval
[rp, rp +drp] is defined as

H(rp, x, t)drp =h(x, t)fp(rp, x, t)drp, (10)

where the total vacant pore concentration is∫ ∞

0
H(rp, x, t)drp =h(x, t). (11)

It is assumed that a captured particle plugs one pore only, and vice
versa. Besides, the size exclusion mechanism assumes that an rs-particle can
be captured by an rp-pore if rs >rp, so �(rs, rp, x, t)= 0 for rs <rp. There-
fore, the variation on the total number of pores with radii in the interval
[rp, rp +drp] is equal to the total number of particles captured in pores with
size in the interval [rp, rp +drp]:

H(rp, x, t)drp =H(rp, x,0)drp −
[∫ ∞

rs

�(rs, rp, x, t)drs

]
drp. (12)

Differentiation of (12) with respect to t results in

∂H(rp, x, t)

∂t
=−

∫ ∞

rp

∂�(rs, rp, x, t)

∂t
drs. (13)

Equation (13) means that plugging of a pore is caused by the capture
of whatever larger particle.

Let us derive the population balance for suspended and captured parti-
cles.

A particle with radius rs passes through the pore with radius rp only if
the particle radius is smaller than the pore radius, rs <rp. Therefore, small
pores (rp < rs) are inaccessible for large particles. Particles flow in larger
pores only, i.e. in an accessible pore volume. Assuming that locally the pore
space is a bundle of parallel capillaries, we introduce the accessibility fac-
tor γ for particles with radius rs as a fraction of pore volume with capillary
radii larger than rs:

γ (rs, x, t)=
∫ ∞
rs

r2
pH(rp, x, t)drp∫ ∞

0 r2
pH(rp, x, t)drp

. (14)
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Consequently, particles with radius rs move in the γ (rs, x, t)th fraction
of pore volume.

Let us define the flux J (rs, rp, x, t)drs
∗drp of particles with specific radius

rs via pores with a specific radius rp and also the total flux J (rs, x, t)drs of
particles with radii in the interval [rs, rs + drs]. From the assumption that
locally the pore space is a bundle of parallel capillary, we obtain

J (rs, x, t)drs =
[∫ ∞

rs

J (rs, rp, x, t)drp

]
drs. (15)

The flux of particles with radius rs via pores with smaller radius (rp <rs)

equals zero. Nevertheless, water flows via pores of all sizes including thin
pores. Therefore, the water flux carrying rs-particles is lower than the over-
all water flux in the porous medium.

We assume that the flux via the pore rp is proportional to the fourth
power of the capillary radius r4

p (Hagen–Poiseuille formula, see Landau and
Lifshitz, 1987). Consequently, the fraction of the flux via pores with radii
varying from rp to rp +drp is

F(rp, x, t)drp = H(rp, x, t)r4
pdrp∫ ∞

0 H(rp, x, t)r4
pdrp

. (16)

The flux of particles with specific radius rs via pores with specific radius
rp equals the total flux of particles with radius rs times fraction of the total
flux via the pores with radius rp only:

J (rs, rp, x, t)drsdrp =UC(rs, x, t)
H(rp, x, t)r4

pdrp∫ ∞
0 H(rp, x, t)r4

pdrp
drs. (17)

The above explanation of (17) would become more rigorous by substi-
tuting the terms ‘specific radius’ rs and rp by the terms ‘in the intervals’
[rs, rs +drs] and [rp, rp +drp], respectively.

The total flux J (rs, x, t)drs of particles with radii in the interval [rs, rs +
drs] accounts for transport via all pores with radius larger than rs. Substi-
tuting (17) into (15), it follows that

J (rs, x, t)drs =UC(rs, x, t)

∫ ∞
rs

H(rp, x, t)r4
pdrp∫ ∞

0 H(rp, x, t)r4
pdr

drs. (18)

Introducing the fraction of the total flux that carries particles with
radius rs

α(rs, x, t)=
∫ ∞
rs

r4
pH(rp, x, t)drp∫ ∞

0 r4
pH(rp, x, t)drp

(19)
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from (18) and (19), we obtain the following formula for the flux of particles
with radii varying from rs to rs +drs:

J (rs, x, t)drs =Uα(rs, x, t)C(rs, x, t)drs. (20)

From now on, α will be called the flux reduction factor.
Formulae for the flux reduction and accessibility factors ((14) and (19))

can be derived for regular pore networks using effective medium or perco-
lation theories (Sharma and Yortsos, 1987b,c; Seljakov and Kadet, 1996).
From either theory will follow two threshold values for the flux reduction
factor corresponding to existence of infinite clusters for small and for large
particles.

In the case of low concentrated suspensions, the pore space fraction
occupied by retained particles is negligibly small if compared with the over-
all pore space. Therefore, the porosity is assumed to be constant.

From now on, we consider concentration densities instead of concentra-
tions, so the multipliers drs and drp in both sides of equations are dropped.
In this case, the equation for particle number balance for rs-population
accounting for retention is

φ
∂[γ (rs, x, t)C(rs, x, t)]

∂t
+ ∂J (rs, x, t)

∂x
=−∂�(rs, x, t)

∂t
. (21)

Substitution of (20) into (21) results in the following form of the
population balance equation:

φ
∂[γ (rs, x, t)C(rs, x, t)]

∂t
+ ∂[Uα(rs, x, t)C(rs, x, t)]

∂x
=−∂�(rs, x, t)

∂t
. (22)

In order to obtain a closed system of governing equations, let us derive
equations for particle capture and pore plugging rates. The probability P

of a particle with radius from the interval [rs, rs +drs] to meet a pore with
radius from the interval [rp, rp +drp] is proportional to the product between
the number of particles with radius from the interval [rs, rs + drs] and the
flux fraction that passes via the pores with radius from the interval [rp, rp +
drp] (Herzig et al., 1970):

P ∝UC(rs, x, t)drs
r4

pH(rp, x, t)drp∫ ∞
0 r4

pH(rp, x, t)drp
. (23)

The number of particles with size in the interval [rs, rs + drs] captured
in pores with radius in the interval [rp, rp + drp] per unit of time is called
the particle-capture rate. This rate is proportional to the probability P ,
(23), and the proportionality coefficient is called the filtration coefficient –
λ′(rs, rp):
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∂�(rs, rp, x, t)

∂t
=λ′(rs, rp)UC(rs, x, t)

r4
pH(rp, x, t)∫ ∞

0 r4
pH(rp, x, t)drp

. (24)

Here, as in the majority of following formulae, we omitted dr∗
s drp in both

sides of (24). It means that we will work with concentration densities (C,�

and H ) instead of concentrations (Cdrs,�drs, and H ∗drp).
The filtration coefficient is equal to zero for the absence of capture:

λ′(rs, rp)=0 : rp >rs. (25)

Integration of both sides of (24) over rp from zero to infinity and
accounting for (25), results in the expression for the total capture rate of
particles with radius rs:

∂�(rs, x, t)

∂t
= UC(rs, x, t)∫ ∞

0 r4
pH(rp, x, t)drp

∫ rs

0
λ′(rs, rp)H(rp, x, t)drp. (26)

Substituting the capture rate (24) into (l3), we obtain the equation for
pore plugging kinetics

∂H(rp, x, t)

∂t
= UH(rp, x, t)r4

p∫ ∞
0 H(rp, x, t)r4

pdrp

∫ ∞

rp

λ′(rs, rp)C(rs, x, t)drs. (27)

It is assumed that the aqueous suspension is incompressible, the total
flux conserves, U = U(t), and term U can be taken out of x-derivative in
Equation (22).

Equations (22), (26) and (27) form a closed system for three unknowns
C(rs, x, t),�(rs, x, t) and H(rp, x, t):

φ
∂[γ (rs, x, t)C(rs, x, t)]

∂t
+U

∂[α(rs, x, t)C(rs, x, t)]
∂x

=−∂�(rs, x, t)

∂t
,

∂�(rs, x, t)

∂t
=UC(rs, x, t)

∫ rs

0 λ′(rs, rp)r
4
pH(rp, x, t)drp∫ ∞

0 r4
pH(rp, x, t)drp

, (28)

∂H(rp, x, t)

∂t
=−U

r4
pH(rp, x, t)∫ ∞

0 r4
pH(rp, x, t)drp

∫ ∞

rp

λ′(rs, rp)C(rs, x, t)drs.

Introduction of dimensionless variables

X = x

L
, T = Ut

Lφ
, λ=λ′L, (29)
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transforms the system (28) to the form

∂[γ (rs,X,T )C(rs,X,T )]
∂T

+U
∂[α(rs,X,T )C(rs,X,T )]

∂X

=− 1
φ

∂�(rs,X,T )

∂T
,

∂�(rs,X,T )

∂T
=φC(rs,X,T )

∫ rs

0 λ(rs, rp)r
4
pH(rp,X,T )drp∫ ∞

0 r4
pH(rp,X,T )drp

,

∂H(rp,X,T )

∂T
=−φ

r4
pH(rp,X,T )∫ ∞

0 r4
pH(rp,X,T )drp

∫ ∞

rp

λ(rs, rp)C(rs,X,T )drs.

(30)

The boundary condition at the core inlet corresponds to the injection
of water with a given particle size distribution C(0)(rs, T ). The injected
rs-particle flux is equal to C(0)(rs, T )U . The inlet core/reservoir cross-sec-
tion acts as a sieve. The injected rs-particles are carried into the porous
medium by a fraction of the water flux via accessible pores – α(0)(rs, T )U

(Figure 2(b)). The injected rs-particles carried by water flux via inaccessi-
ble pores [1−α0(rs, T )]U are deposited at the outer surface of the inlet and
form the external filter cake from the very beginning of injection. For par-
ticles larger than any pore, there are no accessible pores and the flux reduc-
tion factor is zero, α(0)(rs, T )=0. So, all these particles are retained at the
inlet cross-section, contributing to external filter cake growth. On the other
hand, for particles smaller than the smallest pore, α(0)(rs, T ) = 1. So, all
these particles enter the porous medium without being captured.

The density of the rs-particle flux entering the porous medium (in-situ
rs-particle flux) is equal to C(0)(rs, T )α(0)(rs, T )U ; and the fraction captured
at the inlet cross-section is equal to C(0)(rs, T )[1 −α(0)(rs, T )]U . Therefore,
the rs-particle concentration is continuous at X =0.

We also assume that the particles retained at the outer surface of the
inlet large particles do not restrict access of newly arriving particles to
the core inlet before the transition time (Khatib, 1994; Pang and Sharma,
1994). The external cake does not form a solid matrix before the transition
time and cannot capture the particles from the injected suspension.

The initial condition corresponds to the absence of either suspended or
captured particles in porous media before the flow. Finally,

X =0 :C(rs,0, T )=C(0)(rs, T ),

T =0 :C(rs,X,0)=0, �(rs,X,0)=0, H(rp,X,0)=H0(rp,X).
(31)
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Integration of (13) in rp, from zero to infinity, results in a conservation
law for pore number

∂h

∂T
=− ∂σ

∂T
, (32)

which leads to

h(X,T )=h0(X)−σ(X,T ). (33)

Equation (33) shows that one particle can plug only one pore and vice
versa.

4. Particle and Pore Populations at the Inlet Cross-Section

The second and third equations of system (30) do not contain an X-deriv-
ative, so it is not necessary to set the corresponding concentrations of
species at the inlet boundary X = 0. (The so-called Goursat problem; Tik-
honov and Samarskii, 1990.) It means that one does not fix the injected
concentration of an immobile specie, i.e. retained particles and vacancies.
Nevertheless, these values can be calculated using the boundary conditions
for mobile species and the kinetic equations for immobile species (second
and the third equation of system (30)).

Let us fix X = 0 in system (30) and substitute the boundary condition
(31) into the second and third equations of system (30). Finally, we obtain
the system of two ordinary integro-differential equations for captured
particles and vacant pore concentrations at the plug inlet:

d�(0)(rs, T )

dT
=φC(0)(rs, T )

∫ rs

0 λ(rs, rp)r
4
pH(0)(rp, T )drp∫ ∞

0 r4
pH(0)(rp, T )drp

,

dH(0)(rp, T )

dT
=−φ

r4
pH(0)(rp, T )∫ ∞

0 r4
pH(0)(rp, T )drp

∫ ∞

rp

λ(rs, rp)C
(0)(rs, T )drs,

(34)

where

H(0)(rp, T )=H(rp,X =0, T ), �(0)(rs, T )=�(rs,X =0, T ). (35)

The second equation (34) is independent of the first equation and can
be solved separately. Afterwards, the first equation allows us to calculate
the deposition kinetics.

There were no deposited particles and plugged pores at the beginning
of deep bed filtration. It provides the initial conditions for the system of
ordinary integro-differential Equations (34)

�(0)(rp, T =0)=0, H (0)(rp, T =0)=H
(0)

0 (rp). (36)
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The solution of the second ordinary integro-differential Equation (34)
allows us to calculate the transition time (Ttr) from the system of deep bed
filtration in porous media. The filtration at the inlet cross-section stops at
the moment when the concentration of vacancies H(0)(rp, T ) forming an
infinite cluster decreases up to the percolation threshold.

The solution H(0)(rp, T ) results in the calculation of the rs-particle flux
C(0)(rs, T )[1 − α(0)(rs, T )]U forming an external filter cake from the very
beginning of the particle injection. It allows us to describe the external fil-
ter cake formation before the transition time when particles still penetrate
into the porous medium.

5. Filtration in a Single Pore Size Medium

Consider the injection of suspension with any given particle size distribu-
tion in a porous medium with a single pore radius r ′

p:

H(rp,X,T )=h(X,T )δ(rp − r ′
p). (37)

Figure 3(a) shows the pore size distribution (Dirac’s delta function) at
T =0 and the particle size distribution in the injected suspension at X=0.

Let us first consider the propagation of small particles with rs <r ′
p. For

this case, formulae (14) and (19) show that α = γ = 1; i.e. all pores are
accessible for small particles, and there is no flux reduction.

Substitution of the pore size distribution (37) into (30) results in the fol-
lowing system for the deep bed filtration of small particles:

∂C(rs,X,T )

∂T
+ ∂C(rs,X,T )

∂X
=0,

∂�(rs,X,T )

∂T
=0.

(38)

Figure 3. Distributions of suspended particles and pores in a single pore size
medium: (a) initial and boundary concentration distributions for pores and sus-
pended particles, respectively; (b) particle distribution for any X and T (continuous
curve) and at X = 0 (dashed curve); pore distribution at the inlet cross-section for
T >0.
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The solution of a linear hyperbolic equation (first Equation (38)) subject
to initial-boundary conditions (31) is a travelling wave:

C(rs,X,T )=
{

C(0)(rs, T −X), X <T,

0, X >T .
(39)

Therefore, small particles are transported with the velocity of carrier
water without being trapped. There are no suspended particles ahead of
the injected water front. The particle distribution profile behind the front
moves with unitary velocity along the porous medium. It repeats the shape
of the injected concentration C(0)(rs, T ) with a delay that equals X.

We consider the case where there were no trapped particles in the
porous medium before the injection (initial condition (31)). As follows from
the second Equation (38), the capture of small particles does not happen.
Consequently, for any T �0

�(rs,X,T )=0. (40)

Therefore, no pores will be plugged by small particles.
Now consider the propagation of large particles (rs > r ′

p). In this case,
from (14) and (19) it follows that α =γ =0.

Therefore, none of the pores is accessible for large particles, and there is
no large particle flux.

Substitution of (37) into (30) results in the following system:

0= ∂�(rs,X,T )

∂T
,

∂�(rs,X,T )

∂T
=φC(rs,X,T )λ(rs, r

′
p), (41)

∂h(X,T )

∂T
=−φ

∫ ∞

r ′
p

λ(rs, r
′
p)C(rs,X,T )drs.

From initial condition (31) and the first equation of (41) it follows that

�(rs,X,T )=0, (42)

i.e. no large particles are deposited in the reservoir.
From the first equation of (34) we obtain the captured particle concen-

tration at the core inlet:

�(0)(rs, T )=λ(rs, r
′
p)φ

∫ T

0
C(0)(rs, T )dT . (43)

Therefore, all large particles are captured at the inlet cross-section.
It is assumed that there were no suspended particles before the injection

(initial condition (31)). In this case, from the first and second Equations of



38 A. SANTOS AND P. BEDRIKOVETSKY

(41) it follows that

C(rs,X,T )=0 :X >0, (44)

i.e. no large particles (rs >r ′
p) enter the reservoir.

Substituting (44) into the third Equation of (41) and solving the result-
ing ordinary differential equation, accounting for initial and boundary con-
ditions (31), we obtain

h(X,T )=h0(X) :X >0, (45)

i.e. the number of vacant pores does not change during the injection.
Line 2 in Figure 4 shows that large particles never arrive at the core out-

let. It was also observed in a laboratory study (Massei et al., 2002), where
size exclusion was the dominant capture mechanism.

Now let us study the accumulation of large particles at the core inlet.
Substituting (43) into (9), accounting for (44), results in

σ (0)(T )=φ

∫ ∞

r ′
p

λ(rs, r
′
p)

∫ T

0
C(0)(rs, τ )dτ drs. (46)

The equation for vacant pore concentration at the inlet cross-section is
obtained substituting (46) into (33):

h(0)(T )=h
(0)

0 −σ (0)(T ). (47)

The relationship (47) reflects the fact that each particle can plug only
one pore and vice versa.

For the case of a single pore size medium (37), the solution of the sys-
tem (30), subject to the initial and boundary conditions (31), is given by
formulae (39), (40), (42)–(47).

Figure 4. Breakthrough curves for different size particles (at X=1): l – for particles
smaller than r ′

p by the proposed model 2 – for particles larger than r ′
p by the pro-

posed model 3 – for particles larger than r ′
p by the model without considering the

flux reduction and accessibility.
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The plot of the solution is given in Figure 3. Initial concentration den-
sity for pores and concentration density for suspended particles at the inlet
cross-section are shown in Figure 3(a).

The dynamics of particle size distributions (PDF) for small and large
particles is shown in Figure 3(b). Comparison between continuous and dot-
ted lines shows that the shape of the small particle concentration density
is repeated with a delay that is equal to X, which corresponds to travel-
ling wave behaviour, (39). The continuous line in Figure 3b shows that the
large particle (rs >r ′

p) concentration density is equal to zero for any X>0.
Figures 3a and b show that the total vacancy concentration at the inlet
cross-section decreases with time, as suggested by formula (47); the pore
size distribution at T >0 remains delta function.

Figure 4 (line 1) shows the concentration density of small particles at
the core outlet for the case of constant injected concentration. The concen-
tration equals zero until the injection of one pore volume. After particle
arrival at the outlet, at the moment T = 1, the concentration at the outlet
is equal to the injected concentration. Line 2 in Figure 4 shows that large
particles never arrive at the core outlet.

It is important to highlight that, depending on the size, the particles in
uniform pore size medium either pass or are trapped (see Equations (39)
and (44)). Therefore, the deep bed filtration, where there exists an average
penetration length for each size particle, does not happen in the case of
particulate flow in a single-size porous medium. The penetration length is
zero for large particles, and is infinite for small particles.

Let us obtain equations for average concentrations for the case of
particulate suspension flow in a single pore size medium.

Integration of both sides of system (38) in rs from zero to r ′
p results in

the system for average concentration of small particles

∂c1(X,T )

∂T
+ ∂c1(X,T )

∂X
=0,

∂σ1(X,T )

∂T
=0,

(48)

where

c1(X,T )=
∫ r ′

p

0
C(rs,X,T )drs, σ1(X,T )=

∫ r ′
p

0
�(rs,X,T )drs.

The solution of (48), accounting for initial and boundary conditions
(31), is

c1(X,T )=
{

c
(0)

1 (T −X), X <T,

0, X >T .
(49)
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The solution (49) shows that free advection (without particle capture) of
small particles occurs. Thus, deep bed filtration of small particles does not
happen.

Integration of both sides of the first and second Equations of (41) in rs

from r ′
p to infinity, results in the system for average concentration of large

particles rs >r ′
p:

0=− 1
φ

∂σ2(X,T )

∂T
,

∂σ2(X,T )

∂T
=φ

∫ ∞

r ′
p

λ(rs, r
′
p)C(rs,X,T )drs,

(50)

where σ2 is the average deposited concentration of large particles.
From the first Equation of (50) and initial condition (31) we obtain the

solution for average deposited concentration of large particles:

σ2(X,T )=0. (51)

Substituting the first Equation of (50) into the second one, we obtain

∫ ∞

r ′
p

λ(rs, r
′
p)C(rs,X,T )drs =0. (52)

Consequently, the average suspended particle concentration is also zero
in the reservoir:

∫ ∞

r ′
p

C(rs,X,T )drs = c2(X,T )=0. (53)

The solutions of (51) and (53) show that all large particles are captured
at the inlet cross-section; there is no transport of large particles through
porous media.

In order to evaluate the effect of flux reduction and accessibility on
particulate suspension flow in porous media, let us ignore the flux reduc-
tion and accessibility factors in the system of governing Equations (30), i.e.
α = γ = 1. In this case, we obtain the population balance model as pre-
sented by Sharma and Yortsos (1987). Substituting α = γ = 1 in the first
equation of (30), results in

∂C(rs,X,T )

∂T
+ ∂C(rs,X,T )

∂X
=− 1

φ

∂�(rs,X,T )

∂T
. (54)
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The second and the third equations of system (30) remain the same. So,
the system of equations (30) takes the following form:

∂C(rs,X,T )

∂T
+ ∂C(rs,X,T )

∂X
=− 1

φ

∂�(rs,X,T )

∂T
,

∂�(rs,X,T )

∂T
=φC(rs,X,T )

∫ rs

0 λ(rs, rp)r
4
pH(rp,X,T )drp∫ ∞

0 r4
pH(rp,X,T )drp

, (55)

∂H(rp,X,T )

∂T
=−φ

r4
pH(rp,X,T )∫ ∞

0 r4
pH(rp,X,T )drp

∫ ∞

rp

λ(rs, rp)C(rs,X,T )drs.

Let us discuss the case of a single pore size medium. In this case,
H(rp,X,T ) is defined by Equation (37). The system (55) is reduced to the
system (38) for small particles with rs <r ′

p. The solution for this system is
given in Equations (39) and (40). The accessibility and flux reduction fac-
tors are equal to unity for small particles, i.e. all pores are accessible, and
systems (30) and (55) coincide.

For large particles with rs >r ′
p, system (55) takes the following form:

∂C(rs,X,T )

∂T
+ ∂C(rs,X,T )

∂X
=− 1

φ

∂�(rs,X,T )

∂T
,

∂�(rs,X,T )

∂T
=λ(rs, r

′
p)φC(rs,X,T ), (56)

∂h(X,T )

∂T
=−φ

∫ ∞

r ′
p

λ(rs, r
′
p)C(rs,X,T )drs.

Substitution of the second Equation of (56) into the first one results in
one equation for suspended particle population:

∂C(rs,X,T )

∂T
+ ∂C(rs,X,T )

∂X
=−λ(rs, r

′
p)C(rs,X,T ). (57)

The solution of the linear hyperbolic Equation (57) with initial and
boundary conditions (31) for each particle population with particle size
rs is

C(rs,X,T )=
{

C(0)(rs, T −X) exp
[
−λ(rs, r

′
p)X

]
, X <T,

0, X >T .
(58)

The solution (58) shows separate deep bed filtration of each popula-
tion of large particles with the particle-size-dependent filtration coefficient
λ(rs, r

′
p).

The concentration history at the core outlet according to (58) is shown
by line 3 in Figure 4. Concentration equals zero until the injection of
one pore volume. At the moment T = 1, the concentration front arrives
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at the core outlet, and the concentration is constant after the break-
through. The ratio between the injected and effluent concentrations equals
exp[−λ(rs, r

′
p)], so it is always less than unity, i.e. the produced concentra-

tion density is lower than the injected concentration density.
The expression for vacancy concentration is

h(X,T )=

⎧⎪⎨
⎪⎩

h0(X)−φ
∫ ∞
r ′

p
λ(rs, r

′
p) exp

[
−λ(rs, r

′
p)X

]
×

× ∫ T

X
C(0)(rs, T )dT drs, X <T,

h0(X), X >T .

(59)

Therefore, ignoring the fact that particles move only via larger pores,
results in a separate deep bed filtration of large particle populations with
different radii in a single pore size medium, while accounting for this effect
results in the absence of deep bed filtration in this porous medium.

6. Filtration in a Medium with Small Pore Size Variation

Let us discuss a porous medium with small pore size variation, i.e.
pore radius varies inside the interval [rp min, rp max], and rp max − rp min �
rp min (Figure 5(a)). Pore radius is uniformly distributed inside the inter-
val [rp min, rp max]. Injected particle radius is distributed according to any
arbitrary probability distribution function, which is independent of time
f

(0)
s (rs).

6.1. analytical solution

Assuming a uniform pore size distribution, from (10) we obtain

H(rp, x, t)=
⎧⎨
⎩

0, rp >rp max or rp <rp min,
h(x, t)

rp max − rp min
, rp min <rp <rp max.

(60)

Substitution of (60) into (14) and (19) allows us to obtain expressions
for flux reduction and accessibility factors for intermediate size particles
(rp min <rs <rp max):

α(rs)= r5
p max − r5

s

r5
p max − r5

p min

, (61)

γ (rs)= r3
p max − r3

s

r3
p max − r3

p min

, (62)
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Figure 5. Distributions for suspended particles and pores in a medium with small
pore size variation: (a) initial and boundary distributions for pores and suspended
particles, respectively; (b) suspended particle distributions behind the concentration
front for T > 0 (solid curve) and in the injected suspension (dashed curve), and
vacancy distribution.

i.e. the fractions α and γ become just rs-dependent. Consequently, system
(30) takes the form

γ (rs)
∂C(rs,X,T )

∂T
+α(rs)

∂C(rs,X,T )

∂X
=− 1

φ

∂�(rs,X,T )

∂T
,

∂�(rs,X,T )

∂T
=φη(rs)C(rs,X,T ), (63)

∂H(rp,X,T )

∂T
=−φ

r4
pH(rp,X,T )∫ ∞

0 r4
pH(rp,X,T )drp

∫ ∞

rp

λ(rs, rp)C(rs,X,T )drs,

where

η(rs)=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, rs <rp min,∫ rs

rp min
λ(rs, rp)r

4
pdrp∫ rp max

rp min
r4

pdrp
, rp min <rs <rp max,

∫ rp max

rp min
λ(rs, rp)r

4
pdrp∫ rp max

rp min
r4

pdrp
, rs � rp max.

(64)

For small (rs <rp min) and large (rs <rp max) particles, system (63) coincides
with systems (38) and (41), respectively. Therefore, the solution for small parti-
cles is given by formulae (39), (40) and the solution for large particles is given
by (42)–(47). Small particles are transported through porous medium without
being captured and all large particles are captured at the inlet cross-section.
Consequently, small and large particles do not perform deep bed filtration.

Figure 5(b) shows the injected particle concentration (dotted line) and
the concentration density of suspended particles behind the front for T >0.
Both concentrations coincide for small particles (rs <rp min).

On the other hand, intermediate size particles (rp min < rs < rp max) per-
form deep bed filtration, i.e., a fraction of each particle population is cap-
tured during the transport of particles through porous media.
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Let us discuss deep bed filtration of intermediate size particles.
Substitution of the second equation in (63) into the first one results in

γ (rs)
∂C(rs,X,T )

∂T
+α(rs)

∂C(rs,X,T )

∂X
=−η(rs)C(rs,X,T ). (65)

The solution of linear hyperbolic Equation (65) is obtained by the
method of characteristics:

C(rs,X,T )=

⎧⎪⎪⎨
⎪⎪⎩

C(0)(rs) exp
[
−η(rs)

α(rs)
X

]
, X <

α(rs)

γ (rs)
T

0, X >
α(rs)

γ (rs)
T

. (66)

The concentration distribution of particles with a specific size is steady
state behind the concentration front, and is zero ahead of the front.

The total suspended concentration c(X,T ) can be calculated from (66)
using formula (4).

Substituting (66) into the second equation of (63) and solving the result-
ing equation, we obtain expression for the deposited particles population:

�(rs,X,T )=
{

η(rs)φ
[
T − γ (rs)

α(rs)
X

]
C(0)(rs) exp

[
− η(rs)

α(rs)
X

]
, X < α(rs)

γ (rs)
T ,

0, X > α(rs)

γ (rs)
T ,

(67)

where α(rs) and γ (rs) are given by (61) and (62), respectively.
The characteristic velocity in (65) is particle-size dependent:

dX

dT
= α(rs)

γ (rs)
. (68)

In the case where the filtration coefficient is independent of the pore radius,
λ=λ(rs), from (64) we obtain

η(rs)=λ(rs)[1−α(rs)]. (69)

In the case of a bundle of parallel capillaries, the dependency of the par-
ticle velocity on rs is obtained by substitution of (61) and (62) into (68).
Figure 6 shows that the larger is the particle, the larger is its velocity. The
large particles are the first to appear at the core outlet. This phenomenon
was observed for deep bed filtration with size exclusion of particles (Mas-
sei et al., 2002) and for the flow of a polymer solution in a porous media
(Bartelds et al., 1997).

As follows from (61), (62) and (66), for particles with rs = rp min (α = 1
and γ = 1), there is no velocity enhancement and particles move with the
velocity of carrier water.
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Figure 6. Particle velocity versus its radius.

The larger is the particle the higher is the decrement in the exponent of
the solution (66). Consequently, the larger is the particle the more intensive
is the particle capture rate.

When rs tends to rp max, the denominator in the exponent in (66) tends
to zero, and the concentration tends to zero. The concentration density of
intermediate size particles C(rs,X,T ) in Figure 5(b) decreases from the ini-
tial value C(0)(rs = rp min) at rs = rp min to zero for rs = rp max.

Substituting (60) into the first equation of (34), we obtain deposited
concentrations at the core inlet:

�(0)(rs, T )=η(rs)φC(0)(rs)T . (70)

Here η=0 for particles with radii smaller than rp min (see (64)), i.e., small
particles (rs < rp min) pass the core inlet without being captured. Particles
with radii larger than rp max do not enter the rock and are deposited at
the inlet cross-section. From (9) follows the formula for the total deposited
concentration at the core inlet:

σ (0)(T )=
∫ ∞

rp min

�(0)(rs, T )drs. (71)

Formula (33), accounting for (70) and (71), allows the calculation of the
total vacancy concentration at the rock inlet.

Figure 7 shows concentration profiles for different intermediate size
particles. The suspended concentration wave front moves with velocity
α(rs)/γ (rs).

The steady state profile behind the front for each particle population
C(rs,X) is given by the first formula of (66). Figure 7 shows that for each
size particles, the profile at the moment T1 and the section of the profile at
the moment T2 from zero to α(rs)/γ (rs)T2 coincide.

The larger are the particles the higher is the decrement η(rs)/α(rs) of
exponents in (66), so small particles have a higher relative concentration
(C(rs,X,T )/C(0)(rs)) and their concentration profile moves slowly.
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Figure 7. Concentration distribution profiles for intermediate size particles during fil-
tration in a small pore size variation medium. Lines 1, 2 and 3 correspond to
different particle populations (rs1 <rs2 <rs3).

Figure 8. Particle concentration distribution histories at the core outlet, Line (1)
corresponds to a concentration of particles smaller than rp min; line (2) is related to
a concentration of intermediate size particles (rp min <rs <rp max); line (3) corresponds
to a concentration of particles larger than rp max.

Figure 8 shows different particle size concentration histories at the core
outlet (X = 1). The larger is the particle the earlier it arrives at the outlet
and the lower is its concentration afterwards.

The evolution of a suspended particle concentration wave is shown in
Figure 9. Small particles (line 1) are not captured, porous media traps
intermediate size particles by a pore size exclusion mechanism (lines 2 and
3), and large particles do not penetrate into porous medium (line 4).

In the case where the filtration coefficient is independent of pore radius,
λ= λ(rs), the explicit formulae (66) and (69) allow us to solve the inverse
problem for determination of the filtration coefficient λ(rs) from the outlet
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Figure 9. Concentration density profiles for different size particles. Each front moves
with the velocity α(rs)/γ (rs). Line 1 corresponds to small particles (rs1 < rp min).
Lines 2 and 3 are related to intermediate size particles, rs2 <rs3. Line 4 corresponds
to large particles (rs4 >rp max).

concentration data of any intermediate size particles:

λ(rs)= α(rs)

1−α(rs)
ln

(
C(0)(rs)

C(rs,X =1)

)
. (72)

6.2. penetration depth

The explicit formula (66) allows the calculation of an average penetration
depth for intermediate size particles into porous media 〈X(rs, T )〉:

〈X(rs, T )〉=
∫ α

γ
T

0 X′C(rs,X
′, T )dX′

∫ α
γ
T

0 C(rs,X′, T )dX′
. (73)

Particle concentration density C(rs,X,T ) is zero ahead of the propagation
front Xf (rs, T ) = α(rs)/γ (rs)T , consequently integration in (73) is performed
from zero to [α(rs)/γ (rs)]T . Substituting (66) into (73) and performing the inte-
gration, we obtain the formula for depth penetration dynamics:

〈X(rs, T )〉= α(rs)

η(rs)

⎡
⎢⎢⎣

1− exp
(

− η(rs)

γ (rs)
T

)(
1+ η(rs)

γ (rs)
T

)

1− exp
(

− η(rs)

γ (rs)
T

)
⎤
⎥⎥⎦ . (74)

Tending T to infinity in (74), we obtain the maximum penetration depth
for each size particle 〈X(rs)〉max

〈X(rs)〉max = α(rs)

η(rs)
. (75)
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Figure 10. Effect of particle size on penetration depth 〈x(rs)〉max for intermediate
size particles during filtration in a small pore size variation medium.

The penetration depth does not depend on accessibility γ (rs). When
time tends to infinity, the suspended concentration profile given by the first
equation of (66) is steady state and is independent of the accessibility fac-
tor. Therefore, the maximum penetration depth is also accessibility-inde-
pendent.

For the case where the filtration coefficient is independent of pore
radius, λ=λ(rs), substituting (69) into (75), we obtain the following maxi-
mum penetration depth:

〈X(rs)〉= αs

λ(rs)(1−αs)
. (76)

Figure 10 shows the maximum penetration depth as a function of par-
ticle radius. Particles with radii rs = rp max do not penetrate into porous
media, α equals zero for this case, and 〈X(rp max)〉max = 0. Particles with
radii rs =rp min flow without being captured. In this case, α equals unity and
η(rs) tends to zero; from (75) follows that 〈X(rp min)〉max tends to infinity.

Curves 1 and 2 in Figure 10 correspond to different filtration coeffi-
cients, λ1 <λ2. Particles captured less intensively penetrate deeply.

Let us analyse the effect of particle size on penetration depth. The larger
is the particle, the lower is the flux reduction factor, and the smaller is the
penetration depth. So, small particles penetrate deeply.

6.3. averaged concentration model

In this section we derive an average concentration model and compare it
with the classical model for deep bed filtration (Iwasaki, 1937).

Let us introduce average concentrations for small, intermediate, and
large particles:
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c1 =
∫ rp min

0
C(rs,X,T )drs, c2 =

∫ rp max

rp min

C(rs,X,T )drs,

c3 =
∫ ∞

rp max

C(rs,X,T )drs. (77)

The averaged small particle concentration is obtained by integration of
the first equation in (38) over rs from zero to rp min:

∂c1

∂T
+ ∂c1

∂X
=0. (78)

Small particles move with the carrier water velocity without entrapment.
The equations for the total concentration of intermediate size particles

are obtained by integration of the first and second equations of (63) in rs

from rp min to rp max:

∂(〈γ 〉c2(X,T ))

∂T
+ ∂(〈α〉c2(X,T ))

∂X
=− 1

φ

∂σ2(X,T )

∂T
,

∂σ2(X,T )

∂T
=λφ(1−〈α〉)c2(X,T ),

(79)

where the averaged flux reduction and accessibility factors are

〈α〉=
∫ rp max

rp min
α(rs)fs(rs,X,T )drs∫ rp max

rp min
fs(rs,X,T )drs

, (80)

〈γ 〉=
∫ rp max

rp min
γ (rs)fs(rs,X,T )drs∫ rp max

rp min
fs(rs,X,T )drs

. (81)

The averaged flux reduction and accessibility factors change during
particle retention. The particle retention is described by the deposited con-
centration σ2. Thus, we close the system (79) by introducing constitutive
relations

〈α〉=〈α〉(σ2) and 〈γ 〉=〈γ 〉(σ2). (82)

If compared with the classical deep bed filtration model (1), the model
(79) for intermediate size particles contains flux reduction term (80) and
accessibility factor (81) in the population balance equation. The capture
rate expression in (79) contains the factor (1 − 〈α〉) showing that the
capture rate should be proportional, not to the overall flow velocity U as
is assumed in (1), but to the fraction of the flow velocity via small pores
(1−〈α〉)U .

The equations for large particle concentrations c3 and σ3 are obtained
by integration of Equations (41) in rs from rp max to infinity. The averaged
equations are the same as Equations (50) for large particles.
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7. Deep Bed Filtration in a Simple Geometry Medium

Let us derive the population balance model for deep bed filtration in a sim-
plified geometry porous medium, which is a bundle of parallel capillaries
alternated by mixing chambers (Figure 2).

Particles are assumed to be deposited on sieves; σ ′(x, t) is deposited
particle concentration per unit of a sieve area, the vacancy concentration
h′(x, t) is also determined per unit of a sieve area:

σ ′ =σ l, h′ =hl. (83)

The number of particles with radius from the interval [rs, rs + drs] cap-
tured in pores with radius from the interval [rp, rp +drp] per unit of time is
equal to the number of particles with radius from the interval [rs, rs +drs]
arriving at the sieve multiplied by water flux via pores with radius from the
interval [rp, rp +drp]:

∂σ ′(x, t)fT (rs, rp, x, t)

∂t
drs drp

= c(x, t)fs(rs, x, t)U
r4

pfp(rp, x, t)∫ ∞
0 r4

pfp(rp, x, t)drp
drs drp. (84)

Integrating both parts of (84) in rp from zero to rs and accounting for
(6) results in the expression for the total capture rate of particles with
radius rs in a single sieve:

∂

∂t
(σ ′(x, t)fT (rs, x, t))= c(x, t)fs(rs, x, t)

U
∫ rs

0 r4
pfp(rp, x, t)drp∫ ∞

0 r4
pfp(rp, x, t)drp

. (85)

Changing the areal deposited concentration in a sieve per volumetric
deposited concentration (see (83)) and substituting formulae (3), (8) and
(10) in (85), we obtain

∂�(rs, x, t)

∂t
= 1

l
C(rs, x, t)

U
∫ rs

0 r4
pH(rp, x, t)drp∫ ∞

0 r4
pH(rp, x, t)drp

. (86)

Comparing formulae (86) and (26), one concludes that the dimensional
filtration coefficient (λ′) equals the inverse to the distance between the
sieves.

It is assumed that in each sieve one particle can plug only one pore, and
vice versa. So, formula (12) can be applied to concentrations in each sieve:

h′(x, t)fp(rp, x, t)=h′
0(x)fp0(rp, x)−

∫ ∞

rp

σ ′(x, t)fT (rs, rp, x, t)drs. (87)
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Differentiating (87) with respect to t and substituting (84) in the result-
ing equation, we obtain the pore plugging kinetics:

∂

∂t
(h′(x, t)fp(rp, x, t))

=− fp(rp, x, t)r4
p∫ ∞

0 fp(rp, x, t)r4
pdrp

Uc(x, t)

∫ ∞

rp

fs(rs, x, t)drs. (88)

Changing the areal vacancy concentration in a sieve per volumetric
vacancy concentration (see (83)) and substituting formulae (3), (8) and (10)
in the resulting equation, we obtain:

∂H(rp, x, t)

∂t
=−1

l

H(rp, x, t)r4
p∫ ∞

0 H(rp, x, t)r4
pdrp

U

∫ ∞

rp

C(rs, x, t)drs. (89)

The system of governing equations for deep bed filtration ((89) and (86))
in a bundle of parallel capillary alternated by mixing chambers coincide
with the system (28) proposed for a general case of pore space geometry.

The dimensional filtration coefficient for deep bed filtration in a bun-
dle of parallel capillary alternated by mixing chambers equals the inverse to
the distance between the sieves, i.e. is constant. It coincides with the pore
plugging kinetics suggested by Sharma and Yortsos (1987a) where l is con-
sidered to be equal to the pore length.

8. Conclusions

Derivation of the stochastic deep bed filtration model for size exclu-
sion mechanism accounting for particle flux reduction and pore acces-
sibility effects, and analytical solutions obtained allow for the following
conclusions:

(1) Absence of particles in the pores that are smaller than the particles,
results in reduction of the particle carrying water flux if compared with
the overall water flux. It also means that only a fraction of the pore
space is accessible for particles. The flux reduction term appears in the
advection flux in the population balance equation; the accessibility fac-
tor appears in the accumulation term.

(2) The analytical solution for flow in a single pore size r ′
p medium shows

that capture-free advection of small particles (rs <r ′
p) takes place, and

large particles (rs > r ′
p) do not penetrate into the porous medium.

Consequently, there is no deep bed filtration in a uniform pore size
medium.
Ignoring flux reduction and accessibility effects results in a separate
deep bed filtration of large different size particles.
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(3) The analytical solution for flow in a porous media with small pore size
variation shows that the particles larger than all pores do not move
and that the particles smaller than pores move through the media with-
out capture.
The intermediate size particles perform deep bed filtration. Populations
with different size particles filtrate independently; the filtration coeffi-
cient and the flux reduction and accessibility factors for each popula-
tion are particle-size-dependent.

(4) The larger is the intermediate size particle, the lower is its penetration
depth during deep bed filtration in the rock with small pore size vari-
ation.

(5) The average concentration models can be derived for flow in porous
media with small pore size variation for small particles, for intermedi-
ate size particles and for large particles separately.
The averaged model for intermediate size particles differs from the
traditional deep bed filtration model by the flux reduction and acces-
sibility factors (〈α〉 and 〈γ 〉, respectively), that appear in the particle
balance equation. Also, the capture rate in the averaged model is pro-
portional to the water flux via inaccessible pores, while in the tradi-
tional model it is proportional to the overall water flux.
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