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REDUCTION OF NONLINEAR EQUATIONS 
OF CONVECTIVE MASS TRANSFER 

AND FILTRATION TO CANONICAL FORM

Some exact solutions to nonlinear sets of equations
of the first and second orders encountered in the theo-
ries of filtration and mass transfer of reactive media are
described in the literature [1–17].

Consider the simplest nonlinear model of convec-
tive mass transfer in a two-component system with a
bulk chemical reaction, which is described by a nonlin-
ear sets of partial differential equations of the first
order:
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rates of chemical reactions. It is assumed in writing sys-
tem (1) that the diffusion of both components can be
ignored. If the first (second) medium is quiescent, then
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System (1) with 

 

a

 

2

 

 = 0 for the kinetic power-law
functions

is used in the mathematical modeling of a two-phase
bubble reactor [10, 11]. A similar system with 

 

n

 

 = 1 is
encountered in the problems of the theory of filtration
dealing with the desalting of soils by groundwaters [1, 3].
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The set of equations (1) with

 

 

 

is one of the main objects of study in the mathematical
theory of the dynamics of sorption and chromatography
[18–20].

It should be noted that set (1) is used for describing
the stability of a plug-flow chemical tubular reactor
[21] (as the diffusion proceeds at a low rate, the pres-
ence of the terms involving a second derivative can not
cause a noticeable instability) and a continuous stirred
reactor. Similar systems are also encountered in the
simplest models of nonisothermal chemical reactors,
where one of the quantities to be found is the concen-
tration and the other is the temperature [21, 22]. The
transition to characteristic variables

 

 

 

allows us to reduce set (1) to canonical form:

 

 (2)

 

Exact solutions to some systems of the form (2) will
be given below.

The processes in which the deep filtration of a sus-
pension of particles in a porous medium occurs are the
pumping of the seawater accompanying recovered oil
into reservoirs, the penetration of drilling waters into
the reservoirs of a productive zone, the filtration of slur-
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ries from sand particles in gravel-bed filters, industrial
filtration, the transportation of fine particles in oil
fields, the carryover of impurities by groundwaters, the
traveling of bacteria, viruses, and the like. The main
feature of the process consists in the capture of particles
by the porous medium, which causes a decrease in its
permeability. The particles are captured due to size
exclusion (particles are larger than pore sizes), surface
adsorption, sedimentation, diffusion, the action of elec-
tric forces, and so on.

For a suspension with a single suspended compo-
nent, the system describing the process consists of a
material balance equation for the accumulated particles
and suspension and an equation accounting for the
accumulation kinetics [2, 7, 23]:

 

 (3)

 

where one of the components, 

 

u

 

, is the suspension and
the second, 

 

w

 

, is the accumulated substance (deposit);

 

f

 

(

 

w

 

)

 

 is the filtration coefficient.
Substituting the right-hand side of the second equa-

tion in system (3) for 

 

 

 

in the first equation and pass-

ing from the variables 

 

x

 

 and 

 

t

 

 to new characteristic vari-
ables 

 

z

 

 = –

 

x

 

 and 

 

η 

 

= 

 

x

 

 – 

 

t

 

, we obtain set (2) of the special
form:

 

 (4)

 

The solution of the boundary-value problem for the
pumping of a suspension into the particle-free reservoir
described by the set of equations (3) will be considered
below.

TRANSFORMATIONS OF THE SETS 
EQUATIONS OF THE SPECIAL FORM

In solving chemical engineering problem, we usu-
ally consider systems (2) in which the kinetic functions
are proportional to:
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Introduction of an analog of the stream function 
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 =

 

ϕ
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)

 

 using the formulas

 

 

 

reduces system (5) to a nonlinear hyperbolic equation
of the second order:

 

 

 

Some equations of this kind are considered by Polyanin
et al. [24].
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Any the set of equations of equations of the special
form

 (6)

can be reduced using the transform

 (7)

to a particular case of the set of equations (5):

 

Here, we used the notation f( ) � f2[u( )], and g( ) �
g1[w( )]; the functions u( ) and w( ) are found by
the inversion of functions (7).

Using the transform

 (8)

the set of equations (6) is reduced to canonical form:

 (9)

Here, we used the notation Φ( ) � g1[w( )] and
Ψ( ) � f2[u( )]; the functions u( ) and w( ) are
found by the inversion of functions (8).

Canceling out the variable u in Eq. (9), we come to
a nonlinear hyperbolic equation:

 (10)

where Θ(z) = 

If Ψ( ) = a  + b, then Θ(z) = constant and Eq. (10)
can be completely integrated in four cases: Φ(w) =
k1w + k2 (linear equation), Φ(w) = keλw (Liouville equa-
tion), Φ(w) = ksin(λw + σ) (sine-Gordon equation), and
Φ(w) = k  (hyperbolic sine-Gordon equation)
[24, 25].

EXACT SOLUTIONS TO NONLINEAR SYSTEMS 
OF EQUATIONS OF CONVECTIVE MASS 

TRANSFER

In this section, we will give exact solutions to some
classes of nonlinear sets of first-order equations of the
form (2) to which the equations of convective mass
transfer in two-component systems with a bulk chemi-
cal reaction without diffusion are reduced.

It is obvious that the set of equations (2) generally
admits of exact traveling-wave solutions:
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where k and λ are arbitrary constants and the functions
u(z) and w(z) are described by an autonomous set of
ordinary differential solutions:

 

System 1. Consider a special case of the set of equa-
tions (2) in which the rates of chemical reactions
involve a power-law function of the concentration of
one of the reacting components:

 (11)

When k = 1 and g(w) = –f(w), obvious changes of vari-
ables in the set of equations (11) can transform it into
the set of equations (4), which is encountered in the the-
ory of filtration. When k = 1 and g(w) = const × f(w), the
set of equations (11) is the special form of system (5).

In particular cases where k = 0 and f(w) = const, one
of the equations can be solved independently of the
other and the set of equations (11) can be easily inte-
grated. In the consideration that follows, k ≠ 0 and f(w)
≠ constant.

The transformation of the dependent variables using

 (12)

allows us to come to a simpler set of equations:

 (13)

where the function Φ(W) is defined in parametric form
(w is the parameter):

 (14)

Substituting the left hand side of the second equation in
the set of equations (13) for U in its first equation yields
a second-order equation for the function W:

Integrating the latter equation with respect to t, we
obtain

 (15)

Equation (15) can be considered as an ordinary dif-
ferential equation of the first order with respect to the
variable x. After its general solution is obtained, it is
necessary to replace the integration constant C in it with
an arbitrary time function ψ(t) because w depends on x
and t.

Using formulas (12) and (14) to transfer to the initial
variable w, we obtain

 (16)
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For the particular case of θ(x) = constant in Eq. (16),
the set of equations (11) has special solutions:

where the prime stands for the derivative and the func-
tions w(z) and v(z) are described by an autonomous set
of ordinary differential equations:

 (17)

The general solution to the above system can be written
in the implicit form:

 (18)

Examples of constructing general solutions to some
nonlinear systems of equations of the form (11) using
Eq. (16) are given below.

Example 1. Consider sets of equations with power-
law nonlinearities:

(‡)  (19)

is a particular case of the set of equations (11) with
f(w) = awn, g(w) = bw. Using Eq. (16), this case can be
reduced to the Bernoulli equation:

 

Its general solution is described by the formulas:

As the arbitrary function θ(x) is involved in the solu-
tion, it is convenient to introduce a new variable ϕ(x) =

. As a result, the general solution to the set of

equations (19) is written as

 

Here, the change of variable ψ  bnψ was made.
The common case of a chemical reaction of the sec-

ond order corresponds to the values of n = k = 1. Solu-
tions to some initial- and boundary-value problems in
the theory of filtration and in the theory of chemical
reactors based on the set of equations (19) with n = k =
1 are already obtained [1, 3, 10, 11].
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is a particular case of the set of equations (11) with
f(w) = awn, g(w) = bw1 – n. Substituting these functions
into (16), we obtain

 

The change U = wn reduces this equation to the Riccati
equation:

 (21)

Using the notation bnθ =  – akϕ2, we have the par-

ticular solution U = ϕ(x) to Eq. (21). The general solu-
tion to the Riccati equation can be expressed in terms of
the particular solution. As a result, the general solution
to the set of equations (20) is written as

where ϕ(x) and ψ(t) are arbitrary functions.
Solutions to some initial- and boundary-value prob-

lems in the theory of filtration based on Eqs. (20) with
k = 1 and n = 1/2 are already obtained [1, 11].

Example 2. Similarly, we can show that the general
solution to the system

 

with b ≠ 0 can be written as

It should be noted that in the first equation of the set
of equations (11) the function f can additionally depend
on the variable x. In this case, f(w) should be substituted
for f(x, w) in integral (16).

It should be noted that the system of equations

 (22)

can be reduced to the set of equations (17) with z = x/a
by using the change of variables from x and t to x and
ξ = x + at. Consequently, the general solution to the set
of equations (22) can be obtained using formulas (18)
with z = x/a, C1 = ϕ(x + at), and C2 = ψ(x + at).
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For a more complicated set of equations

 

in which the first equation additionally involves diffu-
sional and convective terms, canceling u from the first
equation with the help of the second followed by the
integration of the resulting equation with respect to t
yields the following second-order equation for the
function w:

 

System 2. The set of equations

 

with k ≠ 0 and m ≠ 1 admits of the self-similar solution

 

where the functions V(z) and W(z) are described by the
following set of ordinary differential equations

 

It should be noted that when k = m and g(w) = con-
stant × f(w), the system under consideration is the spe-
cial form of the set of equations (5).

System 3. Consider a set of equations that involves
two arbitrary functions depending on linear combina-
tions of the variables to be found:

 

Its solution obtained using the additive separation of
variables when ∆ = a1b2 – a2b1 ≠ 0 can be written as
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When a1 = a2 = a and b1 = b2 = b, the solution takes
the form:

 

where k1, k2, λ1, λ2 are arbitrary constants, the functions
y(ξ) and z(ξ) are described by an autonomous set of
ordinary differential equations:

 

When a1 = a2, b1 = b2, and g(w) = constant × f(w),
the system under consideration is the special form of
the set of equations (5).

System 4. The set of equations

 

has an exact solution

 

where the functions U(z) and W(z) are described by the
set of ordinary differential equations

 

When β = λ and g(z) = constant × f(z), the system
under consideration is the special form of system (5).

System 5. Consider the set of equations

 (23)

which involves an arbitrary function f(z). Using the sec-
ond equation in (23), we obtain

 (24)

Canceling u from the first equation in (23) with the help
of (24) yields the following second-order equation for
the function w:
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Its equation can be solved using the generalized separa-
tion of variables:

 

The function u is found from formula (24).
System 6. The set of equations

 

with n ≠ k and ab ≠ 0 can be solved using the general-
ized separation of variables:

 

where the functions y = y(x) and φ = φ(x) are described
by the set of differential and algebraic equations

 

When k = 1 and g(z) = constant × f(z), the set under con-
sideration is the special form of the set of equations (5).

System 7. Consider a set of equations involving two
arbitrary functions depending on a complex argument:

 

Its self-similar solution for the case of s ≠ 1 and n ≠ 0
can be written as

where the functions y(ξ) and z(ξ) are described by the
set of ordinary differential equations

 

It should be noted that when k = s and g(z) = con-
stant × f(z), the set of equations under consideration is
the special form of system (5).

The limiting self-similar solution with s = 1 takes
the form:

 

where the functions y(ξ) and z(ξ) are described by the
set of ordinary differential equations
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The exact solution for the case of k = 1 and s = 1 is
written as

where p, α, β, and λ are arbitrary constants, the func-
tions y(ξ) and z(ξ) are described by an autonomous set
of ordinary differential equations:

 

System 8. The set of equations with power-law non-
linearity

can be reduced using the transform U = un, W = wm to
the linear set of equations

When f1, 2 = constant and g1, 2 = constant, the general
solution to this set of equations can be obtained by
reducing it to a linear second-order equation with con-
stant coefficients. The solutions to some initial- and
boundary-value problems in the theory of chemical
reactors based on the initial nonlinear set of equations
with f1, 2 = 0, g1, 2 = constant, and n = m = 1/2 are already
obtained [10, 11].

SOME NONLINEAR INITIAL- AND BOUNDARY-
VALUE PROBLEMS FOR THE TRANSPORT 
OF SUSPENSIONS IN A POROUS MEDIUM

The problem for the pumping of a suspension into a
particle-free reservoir is described by the set of equa-
tions (3) with the following initial and boundary condi-
tions:

 when t = 0, u = 1 when x = 0. (25)

As indicated above, the set of equations (3) can be
reduced to the set of equations (4), which is a particular
case of the set of equations (11), and its solution can be
reduced to the integration of an ordinary differential
equation. Below, problem (3) with conditions (25) will
be solved using another method.

Following the method [7], we introduce a potential
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which makes it possible to reduce the second equation
in the set of equations (3) to the form:

 (27)

The substitution of (27) into the first equation in sys-
tem (3) and integration from 0 to t according to initial
conditions (25) leads to the following quasi-linear par-
tial differential equation of the first order:

 (28)

Assuming that u = 1 in the second equation of (3) at the
inlet (x = 0), we provide the satisfaction of the boundary
condition for Eq. (28):

when x = 0. (29)

Problem (28), (29) can be solved by the method of
characteristics and written in implicit form:

 (30)

where Φ–1(w) is the function inverse to (26).
To obtain an expression for the suspension concen-

tration u(x, t), it is necessary to differentiate both sides
of expression (30) with respect to time:

 

Replacing the partial derivative with the left-hand
side of the second equation in the set of equations (3),
we obtain

 (31)

This implies that the ratio u/w remains unchanged
along the characteristic lines. Using boundary condi-
tions (25) and (29) together with (31), we obtain an
expression for the suspension concentration:

 (32)

Consequently, formulas (30), (32), and (26)
describe the exact solution in implicit form to problem
(3), (25) for x < t. For x > t, the functions u and w are
equal to zero.

Example 1. Consider the set of equations (3) with a
constant filtration coefficient f(w) = λ. In this case, its
solution can be written as

 

Example 2. Consider the nonlinear set of equations
(3) with a linear filtration coefficient:

 

u
∂Φ w( )

∂t
-----------------.=

∂w
∂t
------- ∂w

∂x
-------+ – f w( )w.=

Φ w( ) t=

zd
zf z( )
------------

w

Φ–1
t x–( )

∫ x,=

1
wf w( )
----------------∂w

∂t
-------⎝ ⎠

⎛ ⎞
x t,

1
wf w( )
----------------∂w

∂t
-------⎝ ⎠

⎛ ⎞
0 t x–,

– 0.=

u x t,( )
w x t,( )
----------------

u 0 t x–,( )
w 0 t x–,( )
-------------------------.=

u x t,( ) w x t,( )
Φ–1 t x–( )
------------------------.=

u e–λx, w λ t x–( )e–λx.= =

f w( ) 1 w.–=
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Using (26), we can find the potential:

 

Using (29), we can determine the boundary value:

 

The left-hand side of (30) can be evaluated in implicit
form:

 

The latter can be used to obtain the solution:

It should be noted that a list of functions f(w) with
which integrals (26), (30) or transcendental equation
(29) are evaluated in explicit form is given by Herzig
et al. (2).

Consider a set of equations more general than (3):

 

Writing the expression for u from the second equation,
substituting it into the first equation and integrating the
resulting equation with respect to t, we obtain a partial
differential equation of the first order for the function
w(x, t):

 (33)

If θ = constant, then the complete integral of Eq. (33)
has the form w = w(C1x + C2t + C3). In this case, we can
obtain a general integral (containing an arbitrary func-
tion) of Eq. (33) in parametric form.

It should be noted that when the right-hand side of
the material balance equation contains an additional
diffusion term; that is, for the set of equations

 

the elimination of u from the first equation with the help
of the second followed by the integration of the result-

Φ w( ) – 1 w–( ).ln=

w 0 t,( ) Φ–1 t( ) 1 e–t,–= =

w
1 w–
------------ln 1 e–t x+–( ) t– x+ln– –x,=

u x t,( ) et x–

ex et x– 1–+
-----------------------------,=

w x t,( ) et x– 1–

ex et x– 1–+
-----------------------------.=

∂
∂t
-----g u w,( ) a

∂u
∂x
------+ f 1 w( )u,

∂w
∂t
------- f 2 w( )u.= =

g
1

f 2 w( )
-------------∂w

∂t
------- w,⎝ ⎠

⎛ ⎞ a
f 2 w( )
-------------∂w

∂x
-------+

f 1 w( )
f 2 w( )
-------------- w θ x( ).+d∫=

∂
∂t
-----g u w,( ) a

∂u
∂x
------+ b

∂2u

∂x2
-------- f 1 w( )u,+=

∂w
∂t
------- f 2 w( )u,=

ing equation with respect to the time t gives the follow-
ing equation for the function w:

 

Consider the generalization of Eq. (3) for the case of a
multicomponent system:

(34)

(35)

This case is characterized by the accumulation of parti-
cles of different components with corresponding con-
centrations w1, …, wn.

It follows from the equations of the set of equations
(35) that

 (36)

To find the exact solution to the set of equations
(34)–(35), we assume that it can be written in the spe-
cial form:

 (37)

which implies that the functions w1, …, wn – 1 can be
expressed in terms of wn. Using (37) and expressions
(36), we obtain a set of (n – 1) ordinary differential
equations

 (38)

Then, assuming that the solution to the set of equa-
tions (38) is found and functions (37) are known, their
substitution into (34) and (35) gives a set of two equa-
tions

 (39)

where g(wn) = G[w1(wn), …, wn – 1(wn), wn] and fn(wn) =
Fn[w1(wn), …, wn – 1(wn), wn].

We introduce a new dependent variable into (39):

 (40)

This results in the set of equations (3) in which the
function f = f(w) is defined parametrically:

 (41)

where wn is the parameter.

g
1

f 2 w( )
-------------∂w

∂l
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⎛ ⎞ a
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-------------∂w

∂x
-------+

=  b
∂

∂x
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-------------∂w

∂x
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f 1 w( )
f 2 w( )
-------------- w θ x( ).+d∫+

∂
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------+ 0,=

∂wk

∂t
--------- Fk w1 … wn, ,( )u, k 1 … n., ,= =

1
F1 w1 … wn, ,( )
-----------------------------------

∂w1

∂t
--------- …=

=  
1

Fn w1 … wn, ,( )
-----------------------------------

∂wn

∂t
--------- u.=

w1 w1 wn( ),… wn 1–, wn 1– wn( ),= =

dwk

dwn
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-----------------------------------, k 1 … n 1.–, ,= =

∂
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----- u g wn( )+[ ] ∂u

∂x
------+ 0,
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This solution of the above initial- and boundary-
value problem can be applied to problems with initial
and boundary conditions of the form:

when t = 0, 

u = 1  when x = 0. 

Here, the initial conditions correspond to the absence of
particles in the reservoir at the initial moment of time,
and the boundary condition corresponds to the suspen-
sion concentration in the injected liquid. In this case, set
(38) of ordinary differential equations is solved with the
following initial conditions:

w1 = … = wn – 1 = 0  when wn = 0.

It should be noted that in the problem for the flow of
an n-component liquid through a porous medium, the
material balance equation for accumulated and sus-
pended particles involves a function G defined as the
sum of individual suspension components:

 

If all filtration coefficients in (38) are constant quan-
tities, the total filtration coefficient, which is equal to
the sum of filtration coefficients for every component,
will be constant.

Example 3. Let the first filtration coefficient be a lin-
ear function of the concentration of the accumulated
component and the second filtration coefficient be con-
stant:

 

In this case, Eq. (38) has the first integral:

 

This allows us to calculate the total concentration of the
accumulated substance:

 

Consequently, the expression for the total filtration
coefficient takes the form:

 

Example 4. The first filtration coefficient is a qua-
dratic function of the concentration of the accumulated
substance and the second coefficient is constant:

 

In this case, the set of equations (38) likewise has the
first integral:

 

w1 … wn u 0= = = =

G w1 … wn, ,( ) wk.
k 1=

n

∑=

f 1 λ 1 w1–( ), f 2 const.= =

w2

f 2
------

w1d
λ 1 w1–( )
-----------------------∫

1 w1–( )ln
λ

-------------------------,= =

w w1( ) w1 w2+ w1 1 w1–( )
f 2/λ

ln .+= =

f w( ) λ 2
λ
f 2
-----w⎝ ⎠

⎛ ⎞exp– f 2.+=

f 1 a w1 b+( )2, f 2 constant.= =

w2

f 2
------

w1d

a w1 b+( )2
-------------------------∫

w1

ab w1 b+( )
--------------------------.= =

The total concentration of the accumulated substance w
can be written in terms of the concentration of the first
component w1:

 

The inverse function w1(w) makes it possible to write
the concentration of the first component of the accumu-
lated substance in terms of the total concentration:

 

Consequently, the total filtration coefficient can be
written as

 

The reduction of the set of equations (34)–(35)
describing the filtration of a suspension with n mecha-
nisms of particle collection to the set of equations (3)
with one particle-collection mechanism by applying
transforms (39)–(41) makes it possible to use exact
solution (30)–(32) for interpreting laboratory data and
determining the sizes of particles in the system with n
collection mechanisms. This also gives a chance to use
the three-dimensional model of the filtration of a sus-
pension with one mechanism of particle collection for
simulating the three-dimensional filtration of a suspen-
sion with concurrent diffusion, gravitation, sorption,
and electrical particle-collection mechanisms.

The explicit solutions can be used in engineering
calculations for estimating the process of solution pen-
etration into the soil during drilling, determining the
profile of collected particles, decreasing the intake
capacity of boreholes during the pumping of waste
water into oil fields, and the like. The explicit solution
can also be used to derive formulas for estimating the
distribution of concentration fields of viruses, bacteria,
and Coli particles in underground waters.

NOTATION

C, C1, C2—arbitrary constants;

f, f1, f2, g, g1, g2—some nonlinear functions of their
arguments;

u, w, w1, …, wn—concentrations of components;

ϕ, ψ, θ—arbitrary functions of their arguments.

REFERENCES

1. Pen’kovskii, V.I., One-Dimensional Problem of Dissolu-
tion at High Peclet Numbers, Prikl. Mekh. Tekh. Fiz.,
1969, no. 2.

2. Herzig, J.P., Leclerc, D.M., and Le Goff P., Flow of Sus-
pensions Through Porous Media—Applications To

w w1( ) w1 w2+ w1

w1 f 2

ab w1 b+( )
--------------------------.+= =

w1
1
2
--- w

f 2

ab
------ b– w

f 2

ab
------ b––⎝ ⎠

⎛ ⎞
2

4wb+±–⎝ ⎠
⎛ ⎞ .=

f w( ) a
4
--- w

f 2

ab
------ b– w

f 2

ab
------ b––⎝ ⎠

⎛ ⎞
2

4wb+±–⎝ ⎠
⎛ ⎞ .=



564

THEORETICAL FOUNDATIONS OF CHEMICAL ENGINEERING      Vol. 41      No. 5      2007

VYAZMINA et al.

Deep Filtrations, Ind. Eng. Chem., 1970, vol. 62, no. 5,
p. 8.

3. Polubarinova-Kochina, P.Ya., Teoriya dvizheniya grun-
tovykh vod (Theory of Groundwater Flows), Moscow:
Nauka, 1977.

4. Entov, V.M. and Zazovskii, A.F., Gidrodinamika prot-
sessov povysheniya nefteotdachi (Hydrodynamics of
Improved Oil Recovery Processes), Moscow: Nauka,
1989.

5. Bedrikovetskii, P.G. and Chumak, M.L., Exact Solutions
for Two-Phase Multicomponent Filtration, Dokl. Akad.
Nauk SSSR, 1992, vol. 322.

6. Bedrikovetsky, P.G., Mathematical Theory of Oil and
Gas Recovery, Dordrecht: Kluwer, 1993.

7. Alvarez, A.C., Bedrikovetsky, P., Hime, G., Marchesin,
D., and Rodriguez, J.R., A Fast Inverse Solver for the
Filtration Function for Flow of Water with Particles in
Porous Media, J. of Inverse Problems, 2006, vol. 22,
p. 69.

8. Bischoff, K.B., General Solution of Equations Repre-
senting Effects of Catalyst Deactivation in Fixed-Bed
Reactors, Ind. and Eng. Chem. Fundament., 1969, vol. 9,
no. 4.

9. Ozawa, Y., Application of Legendre Transformation To
One-Dimensional Packed Bed Model, Chem. Eng. Sci.,
1970, vol. 25, no. 3.

10. Berman, V.S., Galin, L.A., and Churmaev, O.M., Analy-
sis of the Simple Model of a Bubble Reactor, Izv. AN
SSSR. Mekhanika Zhidkosti Gaza, 1979, no. 4.

11. Berman, V.S., Study of Transient Processes in Reacting
Media, Doctoral (Phys.-Math.) Dissertation, Moscow:
In-t problem mekhaniki, 1981.

12. Nikitin, A.G. and Wiltshire, R.J., Systems of Reaction-
Diffusion Equations and Their Symmetry Properties,
J. Math. Phys., 2001, vol. 42, no. 4, p. 1667.

13. Barannyk, T., Symmetry and Exact Solutions for Sys-
tems of Nonlinear Reaction-Diffusion Equations, Pro-
ceedings of Institute of Mathematics of NAS of Ukraine,
2002, vol. 43, p. 80.

14. Cherniha, R. and King, J.R., Lie Symmetries of Nonlin-
ear Multidimensional Reaction-Diffusion Systems: I,
J. Phys. A: Math. Gen., 2000, vol. 33, p. 267.

15. Cherniha, R. and King, J.R., Lie Symmetries of Nonlin-
ear Multidimensional Reaction-Diffusion Systems: II,
J. Phys. A: Math. Gen., 2003, vol. 36, p. 405.

16. Polyanin, A.D., Exact Solutions of Nonlinear Sets of
Equations of the Theory of Heat and Mass Transfer in
Reactive Media and Mathematical Biology, Teor. Osn.
Khim. Tekhnol., 2004, vol. 38, no. 6, p. 661–674 [Theor.
Found. Chem. Eng. (Engl. Transl.), vol. 38, no. 6,
pp. 622–635].

17. Polyanin, A.D. and Vyaz’mina, E.A., New Classes of
Exact Solutions to General Nonlinear Diffusion-Kinetic
Equations, Teor. Osn. Khim. Tekhnol., 2006, vol. 40,
no. 6, p. 595–603 [Theor. Found. Chem. Eng. (Engl.
Transl.), vol. 40, no. 6, p. 555–563].

18. Rachinskii, V.V., Vvedenie v obshchuyu teoriyu dinamiki
sorbtsii i khromatografii (Introduction to the General
Theory of the Dynamics of Sorption and Chromatogra-
phy), Moscow: Nauka, 1964.

19. Monin, A.S. and Krasitskii, V.P., Yavleniya na poverkh-
nosti okeana (Phenomena on the Ocean Surface), Lenin-
grad: Gidrometeoizdat, 1985.

20. Tsabek, L.K., Invariant Solutions to the Equations of
Equilibrium Sorption Dynamics and Kinetics, Inzh.-Fiz.
Zh., 1972, vol. 22, no. 2.

21. Perlmutter, D.D., Stability of Chemical Reactors, Engle-
wood Cliffs (N.J.), 1972. Translated under the title Usto-
ichivost’ khimicheskikh reaktorov, Leningrad: Khimiya,
1976.

22. Aris, R., Introduction to the Analysis of Chemical Reac-
tors, Englewood Cliffs: Prentice-Hall, 1965. Translated
under the title Analiz protsessov v khimicheskikh reak-
torakh, Leningrad: Khimiya, 1967.

23. Logan, D.J., Transport Modeling in Hydrogeochemical
Systems, New York: Springer, 2001.

24. Polyanin, A.D. and Zaitsev, V.F., Spravochnik po neli-
neinym uravneniyam matematicheskoi fiziki: Tochnye
resheniya (Handbook on Nonlinear Equations in Mathe-
matical Physics: Exact Solutions), Moscow: Fizmatlit,
2002.

25. Zakharov, V.E., Manakov, S.V., Novikov, S.P., and Pitae-
vskii, L.P., Teoriya solitonov: Metod obratnoi zadachi
(Theory of Solitons: Inverse Problem Method), Mos-
cow: Nauka, 1980. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


