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Abstract This article describes a semi-analytical model for two-phase immiscible flow
in porous media. The model incorporates the effect of capillary pressure gradient on fluid
displacement. It also includes a correction to the capillarity-free Buckley–Leverett saturation
profile for the stabilized-zone around the displacement front and the end-effects near the core
outlet. The model is valid for both drainage and imbibition oil–water displacements in porous
media with different wettability conditions. A stepwise procedure is presented to derive rela-
tive permeabilities from coreflood displacements using the proposed semi-analytical model.
The procedure can be utilized for both before and after breakthrough data and hence is capable
to generate a continuous relative permeability curve unlike other analytical/semi-analytical
approaches. The model predictions are compared with numerical simulations and laboratory
experiments. The comparison shows that the model predictions for drainage process agree
well with the numerical simulations for different capillary numbers, whereas there is mis-
match between the relative permeability derived using the Johnson–Bossler–Naumann (JBN)
method and the simulations. The coreflood experiments carried out on a Berea sandstone core
suggest that the proposed model works better than the JBN method for a drainage process in
strongly wet rocks. Both methods give similar results for imbibition processes.

Keywords Two phase flow · Porous medium · Semi-analytical model · Coreflood ·
Relative permeability
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f ′
s Derivative of fractional flow w.r.t. saturation

Fw_wet Fraction of the water-wet rock surface
J Leverett function
k Permeability
kro Oil relative permeability
kro_max Maximum oil relative permeability
krw Water relative permeability
krw_max Maximum water relative permeability
L Core length
n Exponent for Corey-type power law
p Pressure
Pc Capillary pressure
s Water phase saturation
si Initial water saturation
sir Irreducible water saturation
s0 Maximum water saturation, equals to unity minus

residual/critical oil saturation
t Time
T Dimensionless time, p.v. injection
Tp Pore volumes produced
Top Pore volumes of oil produced
Twp Pore volumes of water produced
U Velocity
x Linear coordinate, from injectors towards producers
X Dimensionless linear coordinate
λ Total mobility of the oil-water fluid
� Potential for capillary forces
ε Capillary-viscous ratios
ξ Self-sharpening large scale (slow) coordinate
ω Travelling wave fast coordinate near to the displacement front
ζ Fast coordinate near to the core outlet
φ Porosity
μ Fluid viscosity
σ Interfacial tension
θ Contact angle

Subscripts and Superscripts
W, O Water, oil
i Initial (of water saturation)
0 Boundary value on the injector (saturations, flux)
BL Buckley–Leverett
BT Breakthrough
SZ Stabilized zone
ee End effect
min Minimum
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1 Introduction

Reservoir engineering calculations require input data regarding rock and fluid properties.
Among these, relative permeability is one of the most important and critical properties which
control recovery of fluids from reservoirs. Relative permeability can be measured through
steady-state and unsteady-state laboratory experiments. Steady-state experiments allow di-
rect measurement of relative permeability although they are time consuming compared to
unsteady-state experiments. Moreover, flow conditions in steady-state experiments do not
depict reservoir flow mechanisms which include displacement of one fluid by another. It was
reported that unsteady-state methods had been used more frequently (Christiansen 2001).

A detailed discussion about different analytical/semi-analytical methods for predicting
relative permeabilities from unsteady state tests has been presented by Hussain et al. (2010).
It is known that neglecting capillary pressure in deriving relative permeabilities from exper-
iments leads to erroneous results (Kalbus and Christiansen 1995; Nordtvedt et al. 1999;
Qadeer et al. 2002; Bedrikovetsky 1993). Yet, most of the analytical methods do not include
the effects of capillary pressure (Jones and Roszelle 1978; Welge 1952; Johnson et al. 1959;
Toth et al. 2002). Instead, high injection rate/pressure gradient is used to minimize these
effects, which is significantly higher than the pressure gradients seen at the reservoir scale
(Honarpour et al. 1986). Qadeer (2001) and Alizadeh et al. (2007) reported experimental data
showing that the application of high rates may not result in the desired control of capillary
end effects. Another limitation of analytical methods is that they generate very limited data
scanning only post-breakthrough fluid saturations.

Civan and Donaldson (1989) and Udegbunam (1991) described semi-analytical approaches
for relative permeability determination. Moreover, Hussain et al. (2010) proposed a modifica-
tion in the semi-analytical approach described by Civan and Donaldson (1989). Like analyt-
ical methods, these methods also generate data only for fluid saturations after breakthrough.
However, the semi-analytical approaches include capillary pressure in the modified-Darcy
equation used in the pressure drop calculations. For this reason, these methods are thought
to generate more reliable data compared to analytical methods. However, they still use the
capillarity-free Buckley–Leverett solution to generate saturation profiles in the core (Welge
1952). These models are therefore unable to properly model the capillary discontinuity at the
outlet of the core known as capillary end effects.

Odeh and Dotson (1985) and Kalbus and Christiansen (1995) proposed corrections for
capillary end effects on the results derived using the JBN method (Johnson et al. 1959). These
corrections are valid only for drainage tests. Kalbus and Christiansen (1995) found that the
correction proposed by Odeh and Dotson (1985) did not produce reliable results for their
experimental data. Similar observations have recently been made by Hussain et al. (2010) for
the correction proposed by Kalbus and Christiansen (1995). Islam and Bentsen (1986) pro-
posed that experimental measurements of saturation and pressure distribution along the length
of the core should be made in order to account for capillary end effects. Such experiments,
however, require quite sophisticated experimental setups. Huang and Honarpour (1998) pre-
sented an analytical approach for correcting capillary end effects on the JBN results. They
derived the flow model for T = ∞, which corresponds to end point relative permeability
only.

Another approach to determine relative permeabilities from displacement experiments is
history matching, which includes finding a solution of the inverse problem by minimizing
the difference between the measured data and the predictions of a numerical model (Poulsen
et al. 2000; Qadeer 2001; Tsakiroglou et al. 2004; Subbey et al. 2006; Basbug and Karpyn
2008; Krause et al. 2011). Two advantages of history matching over analytical models are
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that capillary pressure is directly included in the flow equations and that data for the whole
saturation interval can be obtained. Qadeer (2001) defined zero capillary pressure at the inlet
and outlet ends of a rock sample to model capillary end effects. He observed that, at low
injection rates, it is difficult to obtain a good match between experimental and simulated
data. He used X-ray CT imaging to observe capillary end effects and stabilized zone along
the core during flooding experiments and used the observed saturation distributions to match
the simulated saturation distribution. Recently, Perrin and Benson (2010) reported high-rate
displacement experiments in which they did not observe any capillary end effects. As a result,
they did not include these effects in their history matching.

History matching is an inverse problem and hence the resultant match is not unique and
also depends on the choice of the functional representation of relative permeability (Tikhonov
et al. 1977; Subbey et al. 2006). Therefore, this approach may give stable results only for
fixed analytical expressions of relative permeability (Batycky et al. 1981; Richmond et al.
1990; Qadeer et al. 1988; Chardaire-Riviere et al. 1992; Sigmund and Mccaffery 1979). Nev-
ertheless, very different shapes of relative permeability have been reported in the literature
(Honarpour et al. 1986; Kerig and Watson 1986), which reduces the stability of the opti-
mization method. Some researchers used spline functions and found that more complicated
shapes of relative permeabilities can be generated using these functions (Kerig and Watson
1986; Hussain et al. 2010; Subbey et al. 2006). Hussain et al. (2010) demonstrated that the
non-uniqueness problem can be tackled to some extent using spline functions.

One way for the solution of the inverse problem is the use of a semi-analytical solution for
the direct problem. Bedrikovetsky et al. (1996) proposed a method for matching the capil-
lary-pressure-free Buckley–Leverett solution with the local asymptotic solutions around the
shock front (stabilized zone solution) and in the neighbourhood of the core outlet after break-
through (end effect solution). Their model produces data for water flooding in a water-wet
core. One of the advantages of their model is that it can generate relative permeabilities for
the whole fluid saturations.

In this article, we extend the work of Bedrikovetsky et al. (1996) for different types of
fluid injection and wettability conditions. First, saturation profiles are generated before and
after breakthrough by matching the capillarity-free Buckley–Leverett solution with the stabi-
lized zone solution and the end effect solution, respectively. Afterwards, the modified-Darcy
equation is used to calculate the pressure drop across the core using the generated satu-
ration profiles. We present a stepwise procedure for generating the saturation profiles and
calculating the pressure drop.

2 Two-Phase Displacement with Capillary Pressure

Two-phase displacement of immiscible incompressible liquids (i.e. oil and water) in porous
media is described by the mass balance equation for water and modified-Darcy’s law for two
phases accounting for capillary pressure (Rapoport and Leas 1953; Barenblatt et al. 1991)

∂s

∂T
+ ∂f (s)

∂X
= ε

∂2� (s)

∂X2 (1)

ε = σ cos θ
√

k�/μoU L (2)

f (s) = (1 + kro μw/krw μo)
−1 (3)

� ′
s (s) = − kro (s) f (s) J ′

s (s) (4)
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1 = −kλ (s)

LU

∂PW

∂X
− εkro (s)

∂ J (s)

∂X
(5a)

1 = −kλ (s)

LU

∂Po

∂X
+ ε

μo

μw
krw (s)

∂ J (s)

∂X
(5b)

where s is the saturation of water phase, f (s) is the fractional flow function that is equal to
the fraction of water in the overall flux under zero capillary pressure and J (s) is the dimen-
sionless capillary pressure (Leverett’s function). Equation 1 is the volume balance equation
for incompressible water phase; water is transported by the advective flux proportional to
fractional flow, and by the capillary flux (expression in the right hand side). Equation 5 is
the modified-Darcy’s equation for the total two-phase flux and shows two components of
two-phase flow, i.e. the advective and capillary fluxes. Equations 1 and 5 determine two
unknowns, i.e. saturation s(X, T ) and pressure P(X, T ). Either of Eqs. 5a or 5b to determine
pressures in water (PW) or in oil (PO) can be used.

Dimensionless parameter ε (Eq. 2) is the capillary-viscous number which represents the
ratio between the average capillary pressure and the pressure drop across the core at the
beginning of the displacement. From Eq. 2 one can see that, for very long cores, ε is small, so
the terms of its order can be neglected. In this article, ε is considered to be a small parameter.

The solution of Eqs. 1–5 is defined by one initial condition and two boundary conditions.

2.1 Initial Condition

The initial condition for Eq. 1 describes the initial saturation profiles in the core. For water
injection, the experiment is started at irreducible water saturation:

T = 0: s = si = sir (6)

For oil injection, the experiment is started with the core fully saturated with water:

T = 0: s = si = 1 (7)

2.2 Inlet Boundary Condition

For water injection, the boundary condition at the inlet of the core corresponds to the single-
phase water flow:

X = 0: f − ε
∂� (s)

∂X
= 1 (8)

For oil injection, water influx at the inlet is zero:

X = 0: f − ε
∂� (s)

∂X
= 0 (9)

Similar to the initial condition, the inlet boundary condition only depends on the type of fluid
injection and not on the wettability preference of the core.

2.3 Outlet Boundary Condition

Before breakthrough, the fluid saturation at the outlet boundary is equal to the initial fluid
saturation. Hence, the fractional flow of the displacing phase is zero. Once the displacing
phase reaches the outlet boundary, the flow mechanism is affected by the capillary discon-
tinuity at the outlet. At the outlet, there is a fluid distribution head, whose permeability is
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much higher than the core and hence the capillary pressure in it is close to zero (Barenblatt
et al. 1991; Donnez 2007). For the system to remain at capillary equilibrium, the capillary
pressure at the core outlet must be the same as in the fluid distribution head. For this reason,
the saturation of the wetting phase at the outlet must reach its maximum to meet the capillary
pressure condition in the fluid distribution head.

In an imbibition process (the displacing phase is wetting), as soon as the displacing phase
reaches the outlet, it spreads across the outlet to reach zero capillary pressure which cor-
responds to a maximum saturation of the wetting phase. Until this to happen, there is no
production of the displacing phase. When this happens, then the wetting phase production
starts. On the contrary, in a drainage process (the displacing phase is non-wetting), the satura-
tion of the wetting phase is already at its maximum. As soon as the displacing phase reaches
the outlet, the production of the displacing phase starts while the wetting phase remains at
its maximum.

The discussion above suggests that the outlet boundary condition should be defined before
and after breakthrough separately. Before breakthrough, the outlet saturation condition cor-
responds to the initial conditions (Eqs. 6 and 7) hence the out-flux of the water phase is
constant. After breakthrough, the wetting phase saturation should correspond to zero cap-
illary pressure. Note that, before breakthrough, the outlet boundary condition depends on
initial fluid saturations whereas, after breakthrough, on the core wettability only.

For water injection into a water-wet core (imbibition), before breakthrough (T < TBT),
the outlet water saturation has its irreducible value, sir (Eq. 6), i.e. the flux of water is zero
at the outlet. After breakthrough (T > TBT), water reaches its maximum saturation (the
residual oil saturation) to meet the zero capillary pressure condition. This is formulated as it
follows:

X = 1:
{

f − ε
∂�(s)
∂X = 0 T < TBT

s = s0 T ≥ TBT

}
(10)

For oil injection into a water-wet core (drainage), before breakthrough, the outlet water
saturation is unity which corresponds to the 100% water flux. After breakthrough, water
retains its maximum saturation, representing the zero capillary pressure. Note that the after
breakthrough condition is the same as Eq. 10 because of the same wettability condition. The
mathematical formulation of this boundary is given by:

X = 1:
{

f − ε
∂�(s)
∂X = 1 T < TBT

s = s0 T ≥ TBT

}
(11)

For water injection into an oil-wet core (drainage), the before breakthrough condition is the
same as Eq. 10 because of the same initial condition (the outlet water saturation is irreducible,
sir). After breakthrough, the water saturation remains at its minimum (sir) because the wet-
ting phase (oil) has to attain its maximum saturation for the zero capillary pressure condition.
This is given by

X = 1:
{

f − ε
∂�(s)
∂X = 0 T < TBT

s = sir T ≥ TBT

}
(12)

For oil injection into an oil-wet core (imbibition), the before breakthrough condition is the
same as Eq. 11 because of the same initial condition whereas the after breakthrough condition
is the same as (12) because of the same wettability condition. Hence

X = 1:
{

f − ε
∂�(s)
∂X = 1 T < TBT

s = sir T ≥ TBT

}
(13)
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In the above equations, before breakthrough, the saturation distribution at the outlet de-
pends on the type of the fluid injected or initial fluid saturations and not on the wettability of
the core. However, after breakthrough, it depends on the wettability of the core and not on
the type of the fluid injected. The wetting phase saturation reaches its maximum at the outlet
because of the capillary end effects.

Equations 10–13 can be used for both weak and strong wettability conditions. Equation 2
defines the capillary number which accounts for the wettability (cos θ ). For a neutrally wet
rock (i.e. 60 < θ < 120◦), ε becomes zero which reduces the solution of Eqs. 1–5 to the
Buckley–Leverett solution which will be described in Sect. 3. There is another classification
of wettability in literature known as the fractionally wet (Anderson 1987) which represents a
medium composed of oil- and water-wet sections. Anderson (1987) discussed a special type
of fractionally wet rocks, namely mixed-wet in which the oil-wet surfaces form a continuous
path. They further reported that mixed wettability has been observed in reservoir rocks such
as carbonates that have microporosity. It is therefore worthwhile to discuss the boundary
conditions for the mixed-wet systems as well.

For a core having ‘FW _wet’ fraction of the pores strongly water-wet, we can rewrite
the above outlet boundary conditions. Before breakthrough, boundary conditions remain
unchanged because they are independent of wettability. After breakthrough, the water-wet
surfaces retain a maximum water saturation (s0) and oil-wet surfaces retain a maximum
oil saturation (sir). The boundary condition for water injection into a mixed-wet core then
becomes,

X = 1:
{

f − ε
∂�(s)
∂X = 0 T < TBT

s = FW_wets0 + (1 − FW−wet)sir T ≥ TBT

}
(14)

while the boundary for oil injection into a mixed-wet core is given by,

X = 1:
{

f − ε
∂�(s)
∂X = 1 T < TBT

s = FW_wets0 + (1 − FW−wet)sir T ≥ TBT

}
(15)

The Rapoport–Leas equation (Eq. 5) is a non-linear parabolic equation; it requires a boundary
condition at the core outlet (X = 1). The effluent boundary condition depends on wettability
and the state of the medium on the right to the core, i.e. at X = 1+0. Barenblatt et al. (1991)
proposed to consider a free space to the right of the core as a porous medium with infinite
permeability, where the capillary pressure tends to zero. The condition of continuity of the
phase pressures requires the capillary pressure to be continuous as well. So, the capillary
pressure at X = 1 + 0 must be zero. For water-wet media, it implies that s = 1 − sor. It
means that water completely fills the outlet cross section and displaces oil from there up to
its residual value.

In Sect. 3, we solve the 1-D coreflood problem that honours the capillary pressure by the
method of matched asymptotic expansions.

3 Large Scale Approximation: Buckley–Leverett Equation

Barenblatt et al. (1991) described the applicability of the Buckley–Leverett solution using
the large scale approximation. If the length scales of the porous medium are of the order of
distance between wells, i.e. hundreds of meters, the pressure difference is of the order of tens
or units of MPa and flow velocity is of the order 10−6 to 10−5 m/s. Capillary pressure for the
rocks with permeabilities of the order 0.1− 1.0 μm2 ranges 10−4 to 10−2 MPa, respectively.
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(a) (b) 

Fig. 1 Graphical solution of 1-D Buckley–Leverett problem: (a) water injection (b) oil injection

Consequently, viscous forces are much higher as compared to capillary forces and the cap-
illary number, ε becomes small (10−2 to 10−4). For small ε, one can neglect the right hand
side of Eq. 1 to obtain the Buckley–Leverett equation (Buckley and Leverett 1942):

∂s

∂T
+ ∂ f (s)

∂X
= 0 (16)

where the function f(s) represents the fractional flow and is the ratio between the water flux
and the total flux. The shape of f(s) is shown in Fig. 1. Tending ε to zero corresponds to an
equality of phase pressures Pw and Po. Note that, for smaller scales such as laboratory flow
tests, the value of capillary pressure may be significant as compared to the total pressure drop
across the rock. This limits the use of Eq. 16 for the laboratory flow test analysis.

Since Eq. 16 is of the first order, just one boundary condition is required. This can be the
injected flux which can be regulated during the injection; therefore the boundary condition
at the inlet is used. As ε approaches 0, Eqs. 8 and 9 become:

X = 0: f = 1 (17)

for water injection and

X = 0: f = 0 (18)
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for oil injection. The solution s(X,T) of the 1-D capillary-pressure-free displacement prob-
lem (Eqs. 16–18) is self-similar, depending only on the parameter ξ = X/T . The Riemann
solution of hyperbolic Eq. 16 consists of the rarefaction water and shock front (Barenblatt et
al. 1991; Bedrikovetsky 1993). For water injection,

ξ = f ′
s (s) ; 0 < ξ < D; D = f

(
s f

)
/
(
s f − si

) = f ′
s

(
s f

)
(19)

s = sir; D < ξ < ∞ (20)

and for oil injection

ξ = f ′
s (s) ; 0 < ξ < D; D = f

(
s f

)
/
(
s f − sir

) = f ′
s

(
s f

)
(21)

s = 1; D < ξ < ∞ (22)

The frontal saturation corresponds to the tangent point between the f−f curve and the straight
line drawn from the initial saturation point, the slope of this line is equal to the displacement
front velocity D.

The geometric interpretation of the continuous solutions given in Eqs. 19–22 is the satu-
ration value s, which corresponds to the value of self-similar coordinate and is equal to the
slope of f−f curve at point s (Fig. 1). This allows for a graphical analytical construction of
the saturation profile as shown in Fig. 1.

The solution given in Eqs. 19–22 is valid for any wettability preference and is the outer
asymptotic expansion (Kevorkian et al. 1981; Van Dyke 1975; Nayfeh 1973) for the displace-
ment problem that honours the capillary pressure.

4 Matching the Asymptotic Expansions

The right hand side in Eq. 1 can be neglected when the saturation gradient is of an order
of unity with ε going to zero. This is the case in zones I and IV shown in Fig. 2 where the
solution is continuous and the gradient is limited. In the neighbourhood of the shock front
(X = DT), a continuous change of saturation takes place from the initial to the frontal one.
The size of this zone of continuous change in the saturation is ε and known as the stabilized
zone (zone II in Fig. 2). Asymptotic solution of Eq. 1 with ε > 0 in zone II has to match two
values of saturation in the solution of Eq. 16 in the large scale approximation: the initial and
frontal saturations.

There also appears a zone of the sharp variation of saturation in the neighbourhood of the
core outlet. The reason for this is the disappearance of the boundary conditions (Eqs. 10–15)
in the capillarity-free Buckley–Leverett solution (Eqs. 19–22). Therefore, the boundary con-
dition (Eqs. 10–15) determines the saturation at the outlet boundary after the breakthrough
for every small value of ε. Nevertheless, for the case where ε = 0, the saturation at the outlet
is determined by the solution given in Eqs. 19 and 21. The size of the zone of the continuous
change is ε as well.

Zone III of the continuous sharp change of saturation near the core outlet is shown in
Fig. 2. The asymptotic solution of Eq. 1 with ε tending to zero in zone III matches the solu-
tion given in Eqs. 19 and 21 with the saturation at the core outlet given by the boundary
condition (Eqs. 10–15).
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Fig. 2 Capillary pressure
boundary layers with matching
asymptotic expansions

5 Stabilized Zone in the Neighbourhood of the Displacement Front

In this section, we discuss the saturation distribution in the neighbourhood of the displace-
ment front X = DT (Barenblatt et al. 1991; Gel’fand 1959). Let us introduce a travelling
wave coordinate in the reference system linked with the displacement front as below:

ω = X − DT

ε
(23)

For the conventional linear coordinate X , the value of the core length is unity and the size of
the stabilized zone is of an order of ε. The new coordinate is equal to zero on the trajectory of
the displacement front. The scaling of ω in 1/ε times expands the stabilized zone to the size
of unity and shifts the boundaries of the reservoir to the plus and minus infinity as ε tends to
zero.

The stabilized zone is basically the transition zone where the saturation distribution has
the form of a travelling wave (Fig. 3). The detailed physics of the stabilized zone has been
described by Rapoport and Leas (1953) and Barenblatt et al. (1991). The Buckley–Leverett
solution neglects capillary pressure which results in a shock front, with an abrupt change of
saturation from Si to S f at the front. However, in reality capillary pressure causes physical
dispersion which creates a transition zone (stabilized zone) instead of a shock front. The
width of the stabilized zone is determined as the distance between the points where the satu-
rations differ from the limiting values Si and S f . Bacri et al. (1985) experimentally showed
that the width of the stabilized zone increases with time. As the stabilized zone propagates,
the breakthrough recovery decreases.

The average displacing phase saturation in the stabilized zone is less than the shock front
saturation S f (Fig. 3). As a result, the breakthrough recovery becomes less compared to the
Buckley–Leverett solution. For this reason, the stabilized zone can play a significant role
in immiscible fluid displacement before breakthrough and therefore must be incorporated in
the flow model.
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(a) (b)

sf
s

ω 0ω
si

ω 0

si

sf

s

ω

Fig. 3 Profile of saturation distribution in the stabilized zone; (a) water injection and (b) oil injection

Appendix A shows that neglecting the term of the order of ε in the governing Eq. A-3 in
this reference system results in a steady-state solution (A-7). The solution is given by Eqs.
A-10 and A-11 for the co-ordinates (X,T). The plot of the solution is given in Fig. 3.

The saturation decreases continuously in the stabilized zone from the frontal value s f on
the minus infinity to the initial one si when ω = ω0. For ω approaching ω0 the saturation is
equal to si . Solution of Eqs. A-10 and A-11 is not unique because of the unknown term ω0.
It can be calculated using material balance which is discussed in Appendix B.

6 Global Asymptotic Solution Before the Breakthrough

For matching the asymptotic solution in the stabilized zone Eqs. A-10 and A-11 with the outer
solution (Eqs. 19–22), we use the method proposed by Erdélyi (1956). Introduce a shock-
function which is the shock on the displacement front in the Buckley–Leverett solution (Eqs.
19–22):

ssh (X, T ) =
{

si, if X > DT
sf , if X < DT

(24)

The formula for the continuous solution is given by:

s (X, T ) = sBL (X/T )+ ssz (X − DT /ε, T ) − ssh (X − DT ) (25)

Here the first term is the outer (Buckley–Leverett) solution given by Eqs. 19–22, the second
term is the stabilized zone solution (Eqs. A-10 and A-11) and the third term is the shock wave
(Eq. 24). It can be noted that, in the neighbourhood of the shock front (zone II in Fig. 2), the
Buckley–Leverett solution approaches to the shock function. Hence, the first and third terms
of Eq. 25 cancel each other and the saturation becomes equal to ssz. Otherwise ssz ≈ ssh

and the saturations in the core are equal to the Buckley–Leverett saturations. The plot of the
solution given by Eq. 25 is shown in Fig. 4 (curve 2).

The proposed solution (Eq. 25) contains a free parameter which is the function ω0(T ).
This function can be found from the condition of material balance at each moment T . In
Appendix B, the expression for the global asymptotic solution (Eq. 25) is substituted in the
material balance equation (Eq. B-1), which is obtained from the continuity equation (Eq. 1).
The final expressions (Eqs. B-5 and B-6 or B-12 and B-13) are the equations which determine
the function ω0(T ) for each moment T . Equations 15, A-8, B-5 and B-6 present the solution
of the 1-D coreflood problem that honours the capillary pressure before breakthrough.

The saturation profiles are shown in Fig. 4 before the breakthrough for the Buckley–
Leverett solution (curve 1) and for the global asymptotic solution (curve 2). In the vicinity
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     (a) (b) 

sir

sf

DT+εω 0

DT

s

X1

s

X DT+εω 0

DT

sf

sir

s0

Curve-1 

Curve-2 
Curve-2

Curve-1 

Fig. 4 Buckley Leverett (curve-1) and global asymptotic solution (curve-2) profiles of saturation distribution
before breakthrough; (a) water injection and (b) oil injection

of the displacement front, the saturation changes gradually due to the capillary pressure, so
the asymptotic solution smoothens the shock in the Buckley–Leverett solution. The asymp-
totic solution exhibits the constant velocity of the saturation wave propagation, where the
trajectory of the saturation front (this is not a shock front but a weak discontinuity) is given
by

X = DT + εω0 (T ) (26)

The condition of the material balance (Eqs. B-1 and B-8), which allows us to determine the
position of the stabilized zone (Eqs. B-6 and B-13), means that the two shaded areas shown
in Fig. 4 are equal.

7 Solution for the End-Effect Zone

In this section, we discuss the solution of Eq. 1 in the neighbourhood of the core outlet X = 1
(Barenblatt et al. 1991). Let us introduce the inner coordinate

ς = (1 − X)/ε (27)

In Appendix C, it is shown that neglecting the term of an order of ε in the governing equation
(Eq. C-1) in this reference system results in a steady-state solution given by Eqs. C-7, C-8
and C-9. Further, we call Eqs. C-7, C-8 and C-9 the ‘end effect solution’. The plot of the
solution is shown in Fig. 5.

8 Global Asymptotic Solution After the Breakthrough

The method of the matched asymptotic expansions (Erdélyi 1956) results in the continuous
solution after breakthrough:

s (X, T ) = sBL (X/T ) + see ((1 − X)/ε, T )− sBL (1/T ) (28)

The saturation profile in Eq. 28 is shown in Fig. 6. The third term in Eq. 28 is the limit of the
second term. The term (sBL(1/T )) can be calculated from Eqs. 19 and 21 for X = 1. In
the region away from the core outlet, the difference between the second and the third terms
tends to zero and Eq. 28 becomes the Buckley–Leverett solution (Eqs. 19 and 21). In the
same way, the first term tends to the third term when approaching to the core outlet, so the
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s0

s

ς

sbl(1/T)
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Fig. 5 Distribution of saturation in the end-effect zone

   Water injection, water-wet Water injection, oil-wet

   Oil injection, water-wet

(a) (b)

(c) (d) Oil injection, oil-wet

Buckley-Leverett solution

Asymptotic Global Solution

s0 s0

s

X0 1

s0

s

X0 1

sir sir sir

s

X0 1

sir

s

X

s0

0 1

Fig. 6 Buckley–Leverett and global asymptotic solution profiles of saturation distribution after breakthrough

difference between the first and the third terms tends to zero around the outlet. Therefore, in
the neighbourhood of the outlet, Eq. 28 becomes the end-effect solution (Eqs. C-7, C-8 and
C-9).

9 Solution Procedure

In this section, we describe a semi-analytical procedure which requires an initial guess of
relative permeabilities. The JBN derived relative permeabilities may be used for this purpose.
In order to update relative permeabilities during the iterative process, relative permeabilities
are defined by parametric mathematical functions. Corey-type power law or a cubic spline
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function can be used for this purpose (Hussain et al. 2010). For the data analysis of the
experiments discussed in Sect. 10.2, we used Corey-type power law:

krw = krw_ max

(
s − sir

s0 − sir

)nw

(29)

kro = kro_ max

(
1 − s − sir

s0 − sir

)no

(30)

Moreover, the model requires the prior information about experimental injection rates,
fluid and core properties, i.e. fluid viscosities, core dimensions, porosity, permeability, wetta-
bility and capillary pressure. Amongst these properties the measurement of capillary pressure
is quite complicated. The capillary pressure can be measured using different methods (Amyx
et al. 1960). If these measurements are not available, rock permeability can be used to derive
capillary pressure data. A number of researchers have described the relationship between
capillary pressure and permeability based on the fact that both properties depend upon pore
size distribution of the rock (Purcell 1949; Burdine et al. 1950). Purcell (1949) presented the
following equation:

k = (σ cos θ)2

2
φ

n∑
j=1

s j

(Pc)
2
j

(31)

Detailed derivation of the above equation is given in Amyx et al. (1960).
The steps for determining relative permeability from the coreflood data using the described

model are given below:

Step 1: Calculate the f − f curve using the available estimate of relative permeabilities.
Calculate the frontal saturation (sf) and frontal velocity (D); as shown in Fig. 1.

Step 2: At a particular moment T , calculate the Buckley–Leverett saturation profile (sbl vs.
X) using Eqs. 19–22.

Step 3: If T (in step 2) < TBT

a. Calculate ω0 using Eq. B-7 or B-14.
b. Calculate s(-DT/ε) using Eqs. B-6 or B-13.
c. Calculate the stabilized zone saturation profile (ssz vs. X) using Eq. A-10 or

A-11.
d. Determine the saturation profile in the core using Eq. 25.

If T (in step 2) ≥ TBT

a. Use Eq. C-7, C-8 or C-9 to determine the end-effect saturation profile (seevs. X).
b. Determine the saturation profile in the core using Eq. 28.

Step 4: Using the saturation profile from step-3, calculate pore volumes of displaced fluid
production using the following equations

a. For water injection

Top =
1∫

0

s (X, T )dX − sir (32)
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b. For oil injection

Twp = 1 −
1∫

0

s (X, T )dX (33)

Step 5: Using the saturation profile from step-3, calculate the pressure drop in the core
using Eq. D-3 or D-4.

Step 6: Repeat steps (2–5) for different moments T .
Step 7: Plot pore volumes produced (calculated in step-4) and pressure drop (calculated in

step-5) versus T .
Step 8: Compare the results in step-7 with the measured pressure and production data. If

the mismatch is acceptable, the initial guess of the relative permeabilities is correct.
Otherwise update the relative permeabilities and repeat steps-1 through -8 until
an acceptable match is obtained between the predictions and experimental obser-
vations. In order to update relative permeabilities, the parameters of the selected
mathematical function defining relative permeabilities are changed (for example
sir, s0, kro_max , krw_max , nw and no in Eqs. 29 and 30) in the following way:

• The value of sir is set to the minimum wetting-phase saturation obtained from
the porous plate capillary pressure test (Kalbus and Christiansen 1995; Hussain
et al. 2010).

• For an imbibition experiment, the experimentally determined end-point satura-
tion is used for s0 for the matching purpose. For drainage experiments, s0 is
taken unity.

• As a result, the number of the matching parameters is reduced to four, namely
kro_ max, krw_ max, nw and no.

• To update the relative permeability values after the first iteration, the matching
parameters are changed by 10% and the second iteration is run. For the third
iteration the percent change in the matching parameters is proportional to the
difference in the results of the first and second iterations. This process continues
until a match is obtained.

It can be observed that the proposed procedure requires determining various integrals. For
this, any appropriate numerical algorithm can be used (Hamming 1986).

10 Validation and Results

The validation of the proposed model was carried out by comparing the model predictions
with numerical simulations as well as experiments conducted on a Berea sandstone core.

10.1 Numerical Simulation

We ran finite-difference numerical simulations with assumed relative permeabilities to pro-
duce production and pressure drop data for different values of capillary number, ε. This
simulated production and pressure drop data was then used to calculate relative permeabili-
ties using the procedure described above. Use of numerical simulation instead of experimental
data has the advantage that true relative permeabilities (input relative permeabilities in simu-
lations) are already known which can be compared with the model predictions. We also used
the simulated data to produce JBN results.
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Fig. 7 Input data for simulations (a) capillary pressure and (b) relative permeabilities

Fig. 8 Comparison of JBN
predicted relative permeabilities
with input relative permeabilities
in simulations
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Oil flooding in a strongly water-wet core was studied (cos θ = 1) for four different capil-
lary numbers (ε = 0.01, 0.1, 1.0 and 10.0). Figure 7 shows the input capillary pressure and
relative permeability data. Figure 8 compares the JBN predicted relative permeabilities and
true relative permeabilities.

We followed the semi-analytical procedure described in Sect. 9. It was found that, for low
to moderately high values of capillary numbers (ε= 0.01, 0.1 and 1), the model produces
an optimum match with the simulated production and pressure drop data for true relative
permeabilities. While for ε= 10.0 the match is poor. The quality of match is shown in Fig. 9.
From these results we can conclude that the proposed model gives reliable predictions for
the following condition

ε < 1.0 or σ cos θ
√

k�/μoU L ≤ 1 (34)

This condition should be used to design the displacement tests. There are a few parameters to
vary in order to achieve the required capillary number. Usually the injection rate is increased
to decrease the capillary number. But, very high injection rates may not be suitable because
this restricts to record enough data points to capture important features of the relative perme-
ability curves. Also, it is possible with high rates to deviate from the laminar flow which is a
prerequisite for applying Darcy’s law. Assuming that one pore volume per minute injection
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Fig. 9 Comparison of model predictions and simulated data—match quality

can furnish enough data points for the analysis; Eq. 34 can be used to derive a minimum
length of the core in the experiments

L2
min = 60σ cos θ

μo

√
k

φ
(35)

or for strong wetting conditions (cos θ = 1)

L2
min = 60σ

μo

√
k

φ
(36)

For a data set of rock permeability (k) = 250 mD, porosity (φ) = 0.2, oil viscosity (μo) =
0.0015 Pa s and interfacial tension (σ ) = 0.038 N/m, we obtain an estimate for the minimum
core length of 4 cm.

From the production data (Fig. 9), it can be observed that the wetting phase recovery
decreases as the capillary number increases. Fig. 10 shows the wetting phase recovery at
different capillary numbers. The reason for this is that, at higher capillary numbers, a large
amount of the wetting phase is trapped at the core outlet due to capillary end effects, resulting
in a lower recovery.

10.2 Experiments

A drainage and an imbibition test were conducted on a strongly water-wet Berea sandstone
core. Table 1 summarizes the properties of the rock and fluids used. Experimental production
and pressure drop data are shown in Fig. 11. The core was first saturated with 2% NaCl brine
(the wetting phase). The temperature was kept at 25◦C in an oven while the outlet pressure
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Fig. 10 Wetting phase recovery
as a function of capillary number

Table 1 Rock and fluid properties

L(cm) Lmin(cm) φ k (mD) Fluids ρ (g/cc) μ(cP) σ (mN/m)

Berea 7.8 3.72 0.21 200 Brine 1.007 0.95 38

Soltrol 0.748 1.46

(a)

(b)

Fig. 11 Experimental pressure drop and production data

was open to the atmosphere for both tests. A constant injection rate of 5 cc/min was main-
tained during both drainage and imbibition cycles, which corresponds to a capillary number
(ε) of 0.45. Figure 12 shows the comparison of the model predicted drainage and imbibition
relative permeabilities with the JBN results.

11 Discussion

The proposed model accounts for capillary pressure effects in coreflood experiments. The
global asymptotic solution ( Fig. 6) shows that, for imbibition experiments, the wetting phase
saturation reaches its maximum as T → ∞. Thus, the ultimate recovery from an imbibition
displacement is independent of the capillary number. On the contrary, for drainage experi-
ments, there is always a finite volume of the wetting phase trapped at the outlet due to capillary
end effects. Hence, in drainage displacements, the wetting phase saturation is higher than
its irreducible saturation. Therefore, the ultimate recovery from a drainage displacement
depends on the capillary number. This observation can be deduced from the model results
(Fig. 10). Similar observations have been made from the experimental data reported (Hussain
et al. 2010; Kalbus and Christiansen 1995).
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Fig. 12 Comparison of model predictions and JBN results

It was expected that the JBN relative permeabilities strongly depend on the injection rate.
But Fig. 8 does not show this effect. It may be due to the fact that numerical simulations used
in this study do not model capillary end-effects.

Figure 12 shows a significant difference for the end-point values between the proposed
model and the JBN results, although this difference is negligible for the imbibitions process.
This is because Berea sandstone is strongly water-wet. For a drainage process in a strong
water-wet rock, the residual water saturation is high because of the capillary end effects. The
post-breakthrough data corresponds to low wetting phase saturations where capillary pressure
is higher. On the other hand, for an imbibition process in a strong water-wet rock, the frontal
saturation (s f ) is very close to the maximum water saturation (s0). That is why capillary
end effects are insignificant. There is also not much oil production after the breakthrough
because of the high recovery at the breakthrough.

From numerical simulations and coreflood experiments, we can conclude that, for strong
wetting conditions, capillary end effects control the drainage process and as a result the
JBN predictions are erroneous. However, for the imbibitions process, the JBN predictions
agree well with the proposed model because of negligible capillary end effects. In the cases
where weak wetting conditions prevail, capillary end effects become significant in imbibition
processes as well and the proposed model offers better estimates for relative permeability.

12 Conclusions

Matching the asymptotic expansions around the shock wave and upstream the core outlet with
the large scale hyperbolic Riemann solution and its application to determining the relative
phase permeabilities from laboratory coreflooding allows drawing the following conclusions:

• A semi-analytical model has been proposed which accounts for capillary pressure gradi-
ent in the flow equations. The proposed model involves the corrections for the stabilized
zone in the neighbourhood of the displacement front and for the end effects at the outlet.
The proposed model is applicable for a wide range of capillary pressures, displacement
rates and core lengths at different wettability conditions.

• Numerical simulations and experimental results have validated the proposed model
predictions.

• The proposed model generates reliable estimates of relative permeabilities for a capillary
number equal to or less than unity (ε ≤ 1). From this condition, a generic criterion has been
derived to calculate the minimum core length required to obtain reliable experimental data
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for determining relative permeability. This data is then used to capture important features
of relative permeability curves.

• Under strong wetting conditions, capillary end effects have strong effect on drainage
displacements, whereas it is insignificant in an imbibition process.
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Appendix A: Asymptotic Solution for the Stabilized Zone

Following Buckley and Leverett (1942) and Rapoport and Leas (1953), we derive the satura-
tion distribution in the stabilized zone in the neighbourhood of the front X = DT . Equation
1 can be transformed into a new coordinate system as defined by Eq. 23:

ε
∂s

∂T
+ ∂ f

∂ω
− D

∂s

∂ω
= ∂2�

∂ω2 (A-1)

Neglecting the ε-order term on the left hand side of Eq. A-1, we obtain an ordinary dif-
ferential equation. Now, this second order equation can be reduced to a first order equation:

d�

dω
= f − Ds + const. (A-2)

Analyzing Eq. 23 shows that the new coordinate (ω) is equal to zero on the trajectory of
the displacement front.

ω → 0: X = DT (A-3)

Moreover, if ω approaches + infinity or −infinity, ε tends to zero and the solution of Eq. 1
approaches the capillarity-free Buckley–Leverett solution. Hence, for any point (X, T ), if the
point is located ahead of the front, the s(X,T) tends to approach the initial water saturation; if
the point is located behind the front, the s(X,T) tends to approach the frontal water saturation.

ω → ∞: s = si (A-4)

ω → −∞: s = s f (A-5)

The boundary condition given by Eq. A-4 allows us to determine the constant on the right
hand side of Eq. A-2, separately for water and oil injections. For water injection (si = sir)

d�

dω
= f − D (s − sir) (A-6)

and for oil injection (si =1)

d�

dω
= D (1 − s)− (1 − f ) (A-7)

Equation A-6 can be integrated from an initial saturation (si) to any saturation (s). For
water injection

s∫
sir

� ′ (s) ds

f − D (s − sir)
= ω − ω0 (A-8)

and for oil injection

123



A Semi-Analytical Model for Two Phase Immiscible Flow in Porous 207

s∫
1

� ′ (s) ds

D (1 − s)− (1 − f )
= ω − ω0 (A-9)

Let us analyze the solution given by Eqs. A-8 and A-9 as s approaches si. Assuming
that near to the saturation si the f-f function is of an order of (s − si )

β , and β > 1, which
is the usual case (Honarpour et al. 1986; Barenblatt et al. 1991) and the Buckley–Leverett
function is of an order of (s − si )

α , and α > 0, which is the requirement for the finiteness
of the capillary pressure. We find that the integral on the left hand side of Eqs. A-8 and A-9
converges. Assigning the value s (ω0) = si, for the positive values of ω−ω0, we obtain s=si

and, for the negative values of ω − ω0,the solution of the problem is given by Eqs. A-8 and
A-9.

Now let us analyze the solution (Eqs. A-8 and A-9) as s approaches s f . With the same
assumptions about the fractional flow and the capillary pressure curves, we obtain that the
denominator of the integrant of Eqs. A-10 and A-11 is of an order of (s − s f )

2. The numera-
tor remains limited, so the integral diverges. As a result, the independent variable ω tends to
the negative infinity. The solution satisfies Eqs. A-1, A-4 and A-5 for any constant ω0. The
solution takes the form given by Eqs. A-8 and A-9. For water injection

s∫
sir

� ′ (s) ds

f − D (s − sir)
= X − DT

ε
− ω0 (T ) (A-10)

and for oil injection

s∫
1

� ′ (s) ds

D (1 − s)− (1 − f )
= X − DT

ε
− ω0 (T ) (A-11)

So the solution given by Eqs. A-10 and A-11 is steady-state solution in the reference
system linked with the displacement front. Therefore, it is called as the ‘stabilized zone
solution’.

Appendix B: Matching the Stabilized Zone Solution with the Buckley–Leverett
Solution

Erdélyi (1956) proposed the following method of matching the discontinuous outer solution
with the stabilized zone solution. The continuous solution is described by Eq. 25. Let us find
the free-parameter ω0 from the condition of the material balance. The integral of Eq. 27 w.r.t.
X (0→1) should be equal to the volume of water currently present in the core. For water
injection

1∫
0

(sBL + sSZ − ssh)dX − sir = T (B-1)

Because the capillarity-free Buckley Leveret solution also conserves the material balance:

1∫
0

sBL (X, T )dX − sir = T (B-2)
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Comparing Eqs. B-1 and B-2, we obtain the condition for the material balance

1∫
0

sSZ (X, T )dX = s f DT + sir (1 − DT ) (B-3)

We can calculate the integral on the left hand side of Eq. B-3, taking into account that the
saturation in the first zone (for X > DT+εω0, Fig. 2) is equal to the initial saturation. Also
using Eq. 23 to change the variable of the integral

DT +εω0∫
0

sSZ (X, T ) dX + sir (1 − DT − εω0 (T ))

= ε

ω0∫
−DT /ε

s (ω)dω + sir (1 − DT − εω0 (T )) (B-4)

Let us change the integration variable in Eq. B-4 from ω to s using Eq. A-6 and substitute
the result into the material balance equation (Eq. B-3):

ε

s(−DT /ε)∫
sir

s
−ψ ′ (s) ds

f − D (s − sir)
= s f DT + sirεω0 (T ) (B-5)

Writing Eq. A-10 for ω = (−DT/ε) saturations s = s(−DT/ε) for a given moment T :

s(−DT /ε)∫
sir

� ′(s)ds

f − D (s − sir)
= −DT

ε
− ω0 (T ) (B-6)

Solving Eqs. B-5 and B-6

ε

s(−DT /ε)∫
sir

(s − sir)
ψ ′ (s) ds

D (s − sir)− f
= (

s f − sir
)

DT (B-7)

For oil injection, Eqs. B-1–B-7 can be reproduced as follows:

1 −
1∫

0

(sBL + sSZ − ssh)dX = T (B-8)

1 −
1∫

0

sBL (X, T )dX = T (B-9)

1∫
0

sSZ (X, T )dX = s f DT + (1 − DT ) (B-10)

DT +εω0∫
0

sSZ (X, T ) dX + (1 − DT − εω0 (T )) = ε

ω0∫
−DT /ε

s (ω)dω

+ (1 − DT − εω0 (T )) (B-11)
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ε

s(−DT /ε)∫
1

s
−ψ ′ (s) ds

D(1 − s)− (1 − f )
= s f DT + εω0 (T ) (B-12)

s(−DT /ε)∫
1

� ′(s)ds

D (1 − s)− (1 − f )
= −DT

ε
− ω0 (T ) (B-13)

ε

1∫
s(−DT /ε)

(1 − s)
ψ ′ (s) ds

D (1 − s)− (1 − f )
= (

1 − s f
)

DT (B-14)

Equations B-7 and B-14 determine the value s(−DT/ε) at each moment, T for water
and oil injections, respectively. The value ω0(T ) is calculated from Eq. B-6 or B-13 at each
moment, T . Equations A-10 or A-11 are then used to determine the saturation profile in the
stabilized zone.

Appendix C: Asymptotic End-effect Solution

Let us derive the saturation distribution at the outlet of the core after Barenblatt et al. (1991).
Introducing the inner variable (Eq. 27) into Eq. 1:

ε
∂s

∂T
− ∂ f

∂ς
= ∂2�

∂ς2 (C-1)

As discussed before in Sect. 2.3 that the end-effect saturation profile does not depend on
the type of the fluid injected but the wettability preference of the rock; we shall describe the
solution of Eq. C-1 for boundary conditions (Eqs. 10–15) for different wettability preferences.
The boundary condition given by Eqs. 10–15 for the inner coordinate after the breakthrough
takes the following form, for water-wet rock

ς = 0: s = s0 (C-2)

and for oil wet rock

ς = 0: s = sir (C-3)

When ε approaches to zero, the solution of Eq. C-1 is the same as the large-scale approxi-
mation, i.e. Eqs. 19–22.

ς → ∞: s (ς) → sBL (1, T ) (C-4)

Neglecting the ε-order-term in Eq. C-1 yields an ordinary differential equation. Let us
reduce the order of the ordinary differential equation by taking into account the condition
given by Eq. C-4

d�

dς
= f (sBL (1/T )) − f (s) (C-5)

Separating variables in Eq. C-5 and integrating w.r.t. s

ς =
s(ς=0)∫

s

� ′ (s) ds

− f (s)+ f (sBL (1/T ))
(C-6)
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We can write Eq. C-5 for boundary conditions given by Eqs. C-2 and C-3 as,
For water-wet system

(1 − X)/ε =
s0∫

s

� ′ (s) ds

− f (s)+ f (sBL (1/T ))
(C-7)

For oil wet system

(1 − X)/ε =
s∫

sir

� ′ (s) ds

f (s)− f (sBL (1/T ))
(C-8)

Equations C-7 and C-8 give the end-effect saturation profile for the water- and oil-wet
systems, respectively. For a mixed wet system, the end-effect saturation profile is weighted
average of saturations derived from Eqs. C-7 and C-8 on the basis of the fraction of water-
and oil-wet surfaces in the rock, i.e.

sEE (ς,mixed_wet) = sEE (ς,water_wet)× Fw_wet + sEE (ς, oil_wet)× (
1 − Fw_wet

)
(C-9)

Appendix D: Pressure Drop Calculations for the Global Asymptotic Solution

The pressure drop in the core can be calculated from

�p (T ) =
1∫

0

−∂P

∂X
dX (D-1)

Let us express the pressure gradient in the water phase and oil phase from the modified-
Darcy’s law (Eqs. 5a and 5b) and substitute it into Eq. D-1

k�pw (T )

LUμo
= 1

μo

1∫
0

dX

λ (s)
+ ε

1∫
0

kro

μo

∂ J (s)

∂X

dX

λ (s)
(D-2)

or

k�pw (T )

LUμo
= 1

μo

1∫
0

dX

λ (s)
+ ε

s(X=1)∫
s(X=0)

(1 − f (s)) J ′ (s) ds (D-3)

Once the saturation profile is known at any moment T , Eq. D-3 can be used to calculate
pressure drop through the water phase in the core. Similarly for the oil phase:

k�po (T )

LUμo
= 1

μo

1∫
0

dX

λ (s)
− ε

s(X=1)∫
s(X=0)

f (s) J ′ (s) ds (D-4)

During coreflooding, the pressure drop is measured outside the core where the capillary
pressure is zero, which means that the oil and water phase pressures are the same. For this
reason, some researchers have suggested that, since the pressure drop in both phases is the
same, any of the above equations (Eq. D-3 or D-4) can be used to calculate pressure drop
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across the core (Civan and Donaldson 1989). But, if we consider oil injection in a water-wet
core, the second integral term in Eq. D-3 becomes infinite (consider the inlet boundary) while
Eq. D-4 still gives a finite pressure drop. Physical reason for this phenomenon is that, at the
inlet water is a discontinuous phase while oil is continuous. Hence, we can conclude that
for oil injection oil is the continuous phase throughout the core and the measured pressure
drop can be calculated from Eq. D-4. Similarly, Eq. D-3 should be used for water flooding.
Ramakrishnan and Cappiello (1991); Virnovsky et al. (1995) and Hussain et al. (2010) have
adapted a similar assumption for the pressure drop calculations.
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