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Abstract. During two-phase flow in porous media, non-wetting phase is present simultaneously
in states of mobile connected continuum and of trapped isolated ganglia. Mass exchange between
these two parts of non-wetting phase is going on by dissolution and diffusion of component in the
wetting phase, so, compositions of non-wetting phase in both parts are different. Nevertheless, the
traditional mathematical model for two-phase multicomponent transport in porous media assumes
the homogeneous distribution of each component in the overall non-wetting phase. New governing
equations honouring ganglia of non-wetting phase are derived. They are successfully verified by a
number of laboratory tests. Analytical model is developed for miscible water-alternate-gas (WAG)
displacement of oil-condensates. The modelling shows that the significant amount of oil-condensate
is left in porous media after miscible WAG, while the traditional model predicts that the miscible
displacement results in the total sweep.
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Nomenclature

c gas concentration in active oleic phase.
D 3-D domain of flow.
f fractional flow for oleic phase (gas-condensate, gas).
kr relative phase permeabilities.
O initial of coordinates on the plane (s,f ).
OI, OJ points on the (s,f) plane which correspond to velocities of concentration fronts.
p pressure.
q volume (mass) exchange between active phase and ganglia.
qc volume (mass) exchange by gas component between active phase and ganglia.
q1−c volume (mass) exchange by oil-condensate component between

active phase and ganglia.
s saturation of overall oleic phase which is just called

saturation throughout this paper.
s0 maximum saturation during waterflooding.
sg minimum saturation at which ganglia saturation becomes zero.
sor saturation of oil-condensate which resides in porous media

after waterflooding (gas-condensate residual).
t, T dimensional and dimensionless time.
u dimensionless velocity of the total flux.
uW, uO phase velocities.
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U velocity of the total two-phase flux.
Vc velocity of concentration front.
Vs velocity of the displacement (saturation) front.
x, X dimensional and dimensionless linear coordinate.

Subscripts and Superscripts
a relates to the active phase.
I initial (saturation, concentration).
J injected (fractional flow, concentration).
m mass (flux, concentration, etc.).
O, G oil-condensate and gas components.
t relates to the trapped phase (ganglia).
W, O for water and oleic phases.
0 boundary value on the injector ( flux, concentration).
+ value ahead of the shock front.
− value behind the shock front.

Greek Symbols
λ total mobility of two phases.
µ viscosity.
ξ self-similar coordinate which equals to X/T.
ρ density.
�+, � surfaces of injection and of production.

 porosity.
� arbitrary reference volume.

1. Introduction

Maintenance pressure development of gas-condensate fields by gas injection is
an effective method of improved gas-condensate recovery. Pressure maintenance
above the dew point allows preventing liquid condensate precipitation and provides
high displacement efficiency. Nevertheless, highly mobile gas will finger through
reservoir fluid, leading to early breakthrough and low sweep efficiency.

Injection of water in gas-condensate reservoir will not result in viscous fin-
gering. Nevertheless, high gas saturation resides after displacement of gas phase
by water. Pressure maintenance in gas-condensate fields by injection of water have
been proposed and studied (Hawes et al., 1986; Fishlock et al., 1988; Carson, 1989;
Henderson et al., 1991a, b).

The WAG process (Water Alternate Gas), which is a combination of gas and
water floods, have also been studied in gas-condensate recovery both theoretically
and experimentally (Caudle and Dyes, 1958; Lake, 1989; Bedrikovetsky, 1993;
Cullick et al., 1993). Compared with gas injection, fingering is suppressed by the
simultaneous injection of water, since this reduces the apparent mobility contrast
between the injected and displaced fluids (Lake, 1989; Blunt and Christie, 1993).

The WAG process in gas-condensate fields is described by the basic equations
for two-phase multicomponent transport in porous media. This model contains
phase saturations and concentration of each component in each phase (Aziz and
Settari, 1979; Lake, 1989; Bedrikovetsky, 1993; Green and Willhite, 1998). It means
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that the model assumes the homogeneity of distribution of components in each
phase. The consequence is zero residual gas-condensate saturation after miscible
displacement by gas at mobile water presence. The same schema is valid for resid-
ual oil after miscible WAG displacements.

Nevertheless, non-wetting phase is present in porous media as a continuous
phase and also as separated ganglia and droplets (Stalkup, 1983; Barenblatt and
Entov, 1972; Chartsis et al., 1983; Barenblatt et al., 1987; Lake, 1989; Nikolaevskii,
1993). If the component is soluble in non-wetting phase and is insoluble in wetting
phase, it cannot freely diffuse between the continuous part of non-wetting phase
and the ganglia of non-wetting phase. Therefore, concentrations of this component
in the continuous part and in the ganglia of the non-wetting phase are different.
Therefore, the basic equations for two-phase multicomponent transport in porous
media are to be modified.

The separation of non-wetting phase on continuous part and on ganglia was
observed during the laboratory displacement under a microscope and by the net-
work micro modelling of two-phase displacements (Chartsis et al., 1983; Campbell
and Orr, 1985; Dullien, 1992; Stauffer and Aharony, 1992; Seljakov and Kadet,
1997). Literature reports of laboratory miscible WAG floods clearly indicate that
the presence of water at high saturations blocks oil from contact with an injection
solvent (Raimondi and Torcaso, 1964; Stalkup, 1970; Shelton and Schneider, 1975;
Tiffin et al., 1991; Green and Willhite, 1998).

The division of the overall phase saturation on the continuous part and on
the separated part has been proposed in the literature. A ganglia saturation as a
function of overall non-wetting phase saturation (so called water blocking func-
tion) has been obtained from laboratory displacements (Raimondi and Torcaso,
1964; Stalkup, 1970; Shelton and Schneider, 1975; Tiffin and Yellig, 1983; Tiffin
et al., 1991), and correlation expressions have been developed (Raimondi and
Torcaso, 1964; Green and Willhite, 1998). It was already shown how to calculate
water blocking function from hysteretic relative phase permeability for non-wetting
phase (Lake, 1989).

Equations for immiscible displacement honouring discontinuity of one phase
have been derived (Carson, 1989), and they coincide with the traditional Rapoport-
Leas model.

In the current paper we derive equations for two-phase transport of multicom-
ponent fluids honouring phase discontinuities. The equations derived differ signif-
icantly from the traditional model, which assume the homogeneous distribution of
components in each phase. The model derived has a hysteretic behaviour such that
the system of governing equations and formulation of initial and boundary value
problems are different for imbibition and for drainage.

The model has been successfully verified by comparison with a number of
laboratory experiments.

Analytical solutions for one-dimensional miscible WAG displacement have been
obtained. The solutions show that a significant amount of gas-condensate is left in
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porous media after the displacement in ganglia state, while the traditional model
gives the total sweep of gas-condensate after miscible displacement. The model
developed is applicable to miscible WAG injection in oil reservoirs.

2. Formulation of the Phenomenon

After displacement of gas-condensate by water in water-wet porous media the
residual gas-condensate forms separated ganglia and droplets (Aziz and Settari,
1979; Lake, 1989; Bedrikovetsky, 1993) (Figure 1(a)). Capillary forces equili-
brate pressure gradient on an isolated ganglia, therefore, ganglia are immobile.
The mobile part of non-wetting phase is geometrically connected (Figure 1(b)). So,
non-wetting oleic phase is present in porous media in connected mobile state (ac-
tive phase) and as separated ganglia (trapped phase). Both parts of non-wetting
phase are isolated from each other by water.

Under the strong domination of capillary forces over viscous forces the phases
are distributed over the porous space according to wettability. The placing of active
and trapped parts of non-wetting phase and of water on micro level is determined
by the pore space geometry and by phase saturations.

Let us discuss injection of miscible gas which is insoluble in water. Gas-
condensate and gas form binary non-wetting oleic phase. The displacing gas is
non-wetting and mobile, so it occupies the same domain in the porous space as the
displaced gas-condensate. Therefore, the mixing of gas-condensate with gas occurs
only inside the active phase. At each moment the ganglia which are separated from
the active phase by water are inaccessible for gas injected (Figure 1(b)).

Figure 2 presents variation of active and trapped phases during gas injection
into porous media with residual gas-condensate and water after waterflooding. At
the beginning of injection gas forms active phase with a small saturation, gas-

Figure 1. Schematic for the basic statement that miscible gas mixes with active phase only.
(a) Trapped oil after waterflood is in state of separated ganglia. (b) During the displacement
there are active and trapped phases.
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Figure 2. Oil ganglia join the active gas during the injection: development of oleic phase at
three different times.

condensate is in state of separated ganglia (moment t1). During gas injection the
saturation of active phase increases, and some ganglia join it (moment t2). Only
at this stage the injected gas reaches ganglia. At the late stage (moment t3) all the
ganglia join the active phase.

So we introduce saturation of the overall oleic phase and saturations of the
active and of the trapped oleic phases

s = sa + st (1)

The oleic phase consists of gas and gas-condensate components.
Propagation of injected gas is going on inside the connected mobile phase, so

this gas is dissolved in the active phase only (Figure 1(b)). Due to insolubility
of gas in water, gas-condensate ganglia are inaccessible for gas until the ganglia
join the active phase during the increase of the active oleic phase saturation with
gas injection. During drainage and imbibition processes with the variation of oleic
phase saturation ganglia join and disjoin the active oleic phase, so there is mass
transfer between the active phase and the trapped phase.

2.1. WATER BLOCKING FUNCTION

Let us recall some basic statements on the two-phase displacement of immiscible
phases in porous media.

The residual gas-condensate after the waterflooding forms a set of separated
ganglia in water-wet porous media (Figure 1(a)). The mechanism of gas-condensate
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Figure 3. Formation of trapped oil droplet after waterflooding; 1,2,3-positions of the oil–water
menisci at three different moments.

trapping in porous media is shown in Figure 3 for the case of the displacement of
gas-condensate by water in two capillaries of different radii. At the first moment
the meniscus enters in the loop. The meniscus in the thin capillary propagates
faster than in the thick capillary (moment 2) because at the low flow velocities
capillary force dominates the viscous force. After passing the outlet capillary junc-
tion, the meniscus from the thin pore imbibes into the thick pore and traps the
gas-condensate drop (moment 3).

After the trapping the flow of water continues in the thin pore. Water in the
thick pore is immobile due to the gas-condensate plug. Therefore, the pressure
drop on the gas-condensate droplet equals the difference of the pressure in water
phase between two junction points. This pressure drop deforms menisci of the
trapped drop (Figure 4). The downstream meniscus has a lower curvature than
the upstream meniscus. Therefore, the upstream capillary pressure is higher than
the downstream capillary pressure, and the resulting capillary force equilibrates the
‘outer’ pressure drop across the gas-condensate droplet. For thin capillaries and
low pressure gradients, which are typical for porous media and gas-condensate–
water flows, the pressure drop across a single separated droplet will always be

Figure 4. Immobility of oil and water droplets in capillary. Application of the pressure gradi-
ent causes deformation of the droplet, and the resulting capillary force equilibrates the outer
pressure gradient. (a), (c) – droplets before being submitted to the pressure gradient, (b), (d) –
deformed droplets; (a), (b) – oil-wet capillary, (c), (d) – water-wet capillary.
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equilibrated by the capillary force. Therefore, separated gas-condensate droplets
in water-wet porous media are immobile (see monographs Barenblatt et al., 1987;
Dullien, 1992).

The same conclusion relates to the gas-condensate ganglia which occupy the
sets of pores. A phase is mobile on the pore scale if and only if it occupies a
connected set of pores. The phenomenon of immobility of separated ganglia in
porous media is called the Jamin effect.

It takes place for low flow velocity and high interfacial tension, when the cap-
illary number Uµ/σ does not exceed 10−4, which is usually the case for conven-
tional fluids in petroleum reservoirs. Here capillary forces strongly dominate over
the viscous ones.

So, after the waterflooding gas-condensate is in state of immobile separated
ganglia; therefore, during the waterflooding the gas-condensate phase is in two
states (Figure 1(b)). The active (continuous) part occupies an ‘infinite’ cluster of
connected pores. Separate ganglia of trapped gas-condensate occupy finite
clusters.

Under capillary dominant conditions the picture of the filling of thin and thick
pores by wetting and non-wetting phases is determined by capillary forces, that is,
by the geometry of the pore network and by the pore radii. Wetting phase tends
to fill thin pores and high curvature areas, non-wetting phase moves into thick
pores. Therefore, for each moment of displacement the placing of wetting and non-
wetting phases in porous space is determined by saturation. This is the reason why
relative permeabilities and capillary pressure are functions of saturation only. By
the same reason the active gas-condensate saturation is a function of the total gas-
condensate saturation:

sa = sa(s) (2)

The function (2) introduced depends on the pore space geometry and is inde-
pendent of flow velocity, interfacial tension and phase viscosities.

The scenarium for development of active and trapped phases during the dis-
placement (Figure 2) allows to formulate the properties of active saturation func-
tion (Figure 5):

• if gas-condensate saturation is lower than the threshold saturation sor, gas-
condensate forms finite clusters only, and sa is zero;

• the larger the gas-condensate saturation the lower the trapped gas-condensate
saturation (Figure 6), so the function s − sa(s) decreases monotonically, and
the function sa(s) increases monotonically;

• only a part of the overall gas-condensate saturation belongs to the active
continuous gas-condensate, so sa is lower than s;

• at some large value of the saturation sg a connected cluster joins all ganglia,
and sa coincides with s.
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Figure 5. Shapes for active saturation function (continuous line) and for trapped saturation
function (dotted line).

Figure 6. Interphase mass transfer between active oleic phase and trapped ganglia.

A rough estimate of the shape of function sa(s) can be given by a simplified
percolation model. It is assumed in monographs (Stauffer and Aharony, 1992;
Seljakov and Kadet, 1997) that pore network is a regular grid with stochastically
distributed pore radii (Figure 7). It is assumed also that the wetting phase fills
thin pores and non-wetting phase fills thick pores, which is a simplified descrip-
tion but gives realistic shapes for relative permeability curves. Active non-wetting
phase fills infinite cluster of thick pores and ganglia of non-wetting phase fill finite
clusters.
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Figure 7. Percolation model for two-phase flow with ganglia: (a) periodical grid of capillary
(b) probabilistic distribution of capillary radii.

The formula for density of infinite cluster allows to calculate functions sa(s) and
s − sa(s). The shapes of functions obtained by the percolation model are the same
as the ones in Figure 5.

2.2. LABORATORY MEASUREMENTS OF ACTIVE SATURATION FUNCTION

The active phase saturation function was determined from the experimental data
obtained in a paper by Raimondi and Torcaso (1964).

Cores were saturated by gas-condensate and water at fixed saturation. This
was done by flooding the core with gas-condensate and water at the desired gas-
condensate–water ratio until steady-state, that is, qo/qw the same on the inlet and on
the outlet of the core. Then, without any interruption and without change in flow
rate, the displacement was started by switching from gas-condensate to solvent
injection. The gas-condensate and the solvent were chosen to have equal viscosity
and density, so the water distribution over the pore space was not disturbed after
the beginning of solvent injection. This was controlled by measurement of the
fractional flow of water in the effluent. This fraction remains constant during the
displacement, which indicated that steady-state conditions were preserved during
the displacement.

Prior to each run the cores were cleaned with alcohol, then flooded with water.
Cores were then flooded with gas-condensate at high rate until water vanished in
the effluent.

The saturation of the overall gas-condensate phase at various stages was ob-
tained by making an accurate material balance for each of the steps. The amount
of trapped gas-condensate for each saturation was calculated as the difference
between the initial overall gas-condensate saturation and the amount of
gas-condensate displaced up to the moment when gas-condensate disappears in
the effluent. It allowed to calculate the desired dependence sa(s) (Figure 8).

Three types of porous media were used: consolidated Berea sandstone, crushed
Berea sandstone and artificially consolidated Silica sandstone. One curve for Berea
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Figure 8. Active saturation function obtained by direct laboratory measurements for three
different cores.

sandstone was obtained by imbibition, another curve for Berea sandstone was
obtained by drainage.

The shapes of four curves 1–4 shown in Figure 8 fulfil the above formulated fea-
tures of the active saturation function, which have been formulated from intuitive
speculations.

2.3. WATER BLOCKING FUNCTION FROM HYSTERETIC RELATIVE

PERMEABILITY

Let us discuss primary drainage and imbibition in a water-wet core.
With the primary drainage, gas-condensate occupies an infinite cluster of the

connected network of the thick pores only. There is no gas-condensate in the core
before the primary drainage and no mechanism which can separate gas-condensate
from its active part (Figure 9(a)). Primary drainage results in separation of some
water droplets which are left in porous media after the process, and in creation
of the water film which fills areas of a high curvature (Figure 9(b)). Further with
the imbibition process the active gas-condensate phase shrinks due to increasing
water saturation and also due to separation of gas-condensate ganglia (Figure 9(c)).
This is the conventional explanation of relative permeability and capillary pressure
hysteresis (see monographs Aziz and Settari, 1979; Lake, 1989).

Let us assume that relative permeability for gas-condensate is dependent of
the saturation of the accessible gas-condensate only and is independent of the
saturation of discontinuous immobile gas-condensate. This allows to calculate the
function sa(s) from gas-condensate relative permeability curves for the primary
drainage and imbibition (curves 1D and I in Figure 10).

For any arbitrary value kro the value of the argument on the gas-condensate
relative permeability curve I is s, which is the sum of saturations for the active
and inaccessible gas-condensate. Relative permeability kro is function of sa only.
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Figure 9. Hysteresis of oil relative permeability due to oil ganglia.

During the primary drainage sa coincides with s, thus, the argument value on the
curve 1D is equal to sa. So we end up with the relationship:

k1D
ro (sa) = kI

ro(s) (3)

It allows to calculate the function sa(s) as an inverse function from (3)
(Figure 10).

For the shape of relative permeability curves, shown in Figure 10, the properties
of the active saturation function sa(s), which have been formulated in one of previ-
ous sections, are fulfilled, the shape of the function is the same as the one given in
Figure 5. Relative permeability for the primary drainage 1D and imbibition I differ
from each other up to the point of interstitial water saturation, so gas-condensate
ganglia do exist even at high gas-condensate saturation below s0. Therefore, the
point s0 for the case of curves in Figure 10 coincides with the point g where all
ganglia join the continuous cluster (see Figure 5).

The proposed method can be verified using relative permeability curves for
the first drainage and for the imbibition obtained experimentally in the mentioned
above work (Raimondi and Torcaso, 1964). Active saturation function for two cores
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Figure 10. Relative permeability for oil is higher for primary drainage then for imbibition.

Figure 11. Active saturation function obtained from hysteretic relative permeability curves
and from direct measurements, Berea sandstone.

have been calculated above based on direct measurements presented in the same
work (Cullick et al., 1993) (Figures 8, 11 and 12). The dotted curve in Figure 11
was obtained by the formula (3) from hysteretic relative permeability curves for
the Berea sandstone, the continuous curve is a plot of the active saturation function
obtained from the steady state displacement data from the same core (the points
are taken from Figure 8).

One can observe a fairly good agreement between the two curves obtained by
two different methods.
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Figure 12. Comparison of active saturation obtained from hysteretic relative permeability
curves and from direct measurements, artifially consolidated Silica sand.

Figure 12 presents the same data for the artificially consolidated Silica sand.
The continuous curve was obtained from hysteretic relative permeabilities using
formula (3). The dotted curve was obtained from the displacement data (the points
are taken from Figure 8).

For both cores, relative permeability for gas-condensate for the processes 1D
and I coincide at high values of saturation below s0, therefore the point g is located
to the left of the point of maximum saturation s0.

So, the laboratory measurements give the same shape of the active saturation
function as the one which has been predicted from the qualitative analysis of the
growth of ganglia population, and also as the shape of the active saturation function
given by the percolation model. Besides, very good quantitative agreement between
values of the active saturation function obtained from the laboratory mass balance
measurements and from hysteretic relative permeability was observed. So, the hy-
pothesis that the active phase saturation is a function of the overall phase saturation
has been verified experimentally.

2.4. MASS EXCHANGE BETWEEN ACTIVE PHASE AND GANGLIA

Let us determine terms of inter phase mass transfer between active and trapped
phases by the gas component qmc and by the gas-condensate component qm1−c
(Figure 6). The scenario of joining ganglia to the increasing oleic phase (dur-
ing miscible gas injection into the porous medium with water and residual gas-
condensate) is shown in Figure 2 for three different moments. There were some
separated immobile gas-condensate ganglia in porous media after water injection.
During injection of gas, the saturation of active oleic phase increases (Figure 2,
moment t1) due to supply of gas and due to ganglia joining the active phase. With
the joining of some ganglia to the active phase, saturation of the trapped phase
decreases (moment t2). At high oleic phase saturation, all ganglia join active phase
and the trapped phase disappears (moment t3).



242 PAVEL BEDRIKOVETSKY

Figure 13. Mass exchange between active phase and ganglia.

The volume of oleic phase which moves from the trapped phase to the active
phase per unit of time in the unity volume of porous media q equals to time
derivative of ganglia saturation:

q = −∂st
∂t

(4)

During the drainage process, saturation of overall oleic phase increases, satura-
tion of ganglia decreases, some ganglia join active phase and disjoin the trapped
phase. So there is an influx in the active phase, and the joining ganglia transfer
oleic phase from the trapped phase, the average gas concentration in transferring
flux is cmt , see Figure 13(a).

During the imbibition process, the saturation of the overall oleic phase decreases
and the saturation of ganglia increases, some ganglia disjoin active phase and join
the trapped phase. So, there is an outflux from the active phase. At each moment
density and gas concentration of ganglia which leave the active phase equals the
average density and gas concentration cm inside the active phase, see formula (A.5)
(Figure 13(b)).

2.5. 1-D DISPLACEMENT WITH CONSERVED FLUX

Amagat’s law means that the volume of the mixture equals to the sum of volumes
for individual components. It allows the introduction of volume concentrations of
each component with the total of concentrations equals to unity (see Lake, 1989;
Bedrikovetsky, 1993):

ρOc
m = ρGc; ρO(1 − cm) = ρO(1 − c) (5)

Here ρG and ρO are densities of individual components which are assumed to
be constant.

Let us derive equations for 1-D displacement of 2-phase 3-component Amagat’s
fluids.

Substituting the Amagat law (5) in Equations (A.2) and (A.3), cancelling the
constant individual densities and adding these two equations to the water balance
equation (A.1) we obtain the conservation of the total flux: U = U(t).



WAG DISPLACEMENTS OF OIL-CONDENSATES 243

Introducing dimensionless linear coordinate and time

X = x

L
; T =

∫ t
0 U

0(τ )dτ

φL
; u = U

U 0(t)
(6)

we obtain volume balance for the overall oleic phase:

∂s

∂T
+ ∂f (s, c)

∂X
= 0 (7)

The volume balance equation (A.2) for gas component in both oleic phases in
dimensionless coordinates becomes:

∂[csa + ct(s − sa)]
∂T

+ ∂cf

∂X
= 0 (8)

Equation (A.7) takes the form:

∂ctst

∂T
= ct

∂st

∂T
,

∂s

∂T
< 0

∂ctst

∂T
= c ∂st

∂T
,

∂s

∂T
> 0 (9)

The system of three equations (7)–(9) is closed. It determines three unknowns:
s(X, T ), c(X, T ) and ct(X, T ).

For drainage processes and for imbibition processes system (7)–(9) can be re-
duced to two equations.

Differentiation by parts of the left hand side of the first equality (9) results in
the following conclusion for drainage:

∂ct

∂T
= 0, ct = ct(X) (10)

During the drainage process ganglia join the active phase, and concentration of
gas in the remained ganglia remains the same. So, considering initial distribution
of gas in gas-condensate ganglia ct(x, t = 0), there is no way to change it during
drainage.

The model for displacement consists of Equations (7) and (8), where concen-
tration in ganglia ct(X) = ct(X, T = 0) is a known function.

For imbibition process, the substitution of expressions for the mass exchange
(9) into the mass balance (7) and (8) results in the equation:

∂c

∂T
+ f (s, c)

sa

∂c

∂X
= 0 (11)

So variation of gas concentration in active gas-condensate is independent of
the gas concentration in ganglia, because during imbibition the saturation of gas-
condensate ganglia decreases, ganglia disjoin from the active gas-condensate phase,
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influx into ganglia phase changes gas concentration in ganglia, but the content of
gas in the active phase is not affected (Figure 13).

The variation of gas concentration in ganglia ct is determined after the solution
of the system (7) and (11) from the first equation (9):

ct(x, t) = 1

s − sa(s)
(
ct(x, 0)(si − sa(si))+

∫ t

0
c
∂(s − sa(s))

∂τ
dτ

)
(12)

The imbibition process is described by the system of two equations (7) and
(11) with unknowns s(X, T) and c(X, T), concentration ct(X, T ) is found from the
expression (12).

3. Analytical Model for 1-D Flows

Let us discuss displacement of gas-condensate and water by the miscible gas with
water:

T = 0: s = sI; c = 0; ct = 0; X = 0: f = f 0; c = 1 (13)

The solutions are self-similar and are dependent on one coordinate X/T only:

s(X, T ) = s(ξ); c(X, T ) = c(ξ); ξ = X/T (14)

The fraction f 0 of gas in the injected water–gas fluid can be expressed via the
ratio of water and gas fluxes (so called WAG-ratio): f 0 = 1/(1 + WAG).

We denote values of the initial state as I, and values of the injected state as J.
The solution of the problem (13) corresponds to a path on the plane (s, c) which
links points (sJ, c0) and (sI, 0).

For the sake of simplicity we discuss the simplified case where fractional flow
function is independent on concentration, which corresponds to equality of gas-
condensate and gas viscosities. In this case the Equation (7) can be separated from
Equations (8) and (9), and these equations become linear.

Analytical solutions with varying fractional flows help to understand how much
gas-condensate is left in porous media after the injection of water with miscible
gas. Let us try to guess the answer in advance.

Figure 14. Schematic for consuming the oil ganglia by active oleic phase during drainage.
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Figure 15. Schematic for appearance of gas ganglia during imbibition.

Initially porous medium is saturated by gas-condensate and water, and some
gas-condensate ganglia are trapped by water (Figure 14(a) and Figure 15(a)).

If the fractional flow of gas in the injected mixture is higher than the fractional
flow for gas-condensate in the displaced gas-condensate–water fluid, the drainage
process takes place, and oleic phase saturation increases. Some gas-condensate
ganglia join the active phase where the mixing of the displaced gas-condensate
with the injected gas happen (Figure 14(b)) shows the schematic for phases after
the displacement). No mixing happen in ganglia. So, saturations of active phase
and of ganglia after the displacement are determined by the fractional flow of
injected gas–water mixture and are independent of initial saturations, concentra-
tion of gas-condensate in the active phase equals zero and concentration of gas-
condensate in the residual ganglia equals unity (Figure 14(b)).

The ganglia which consist of the pure gas-condensate, are called ‘black’ ganglia.
If the fractional flow of gas in the injected mixture is lower than the fractional

flow for gas-condensate in the displaced gas-condensate–water fluid, the imbibi-
tion process takes place, and oleic phase saturation decreases (Figure 15(b)) shows
active and trapped oleic phases after the displacement). Some ganglia disjoin the
active oleic phase. The question is whether these ganglia consist of gas-condensate,
gas or gas–gas-condensate mixture (i.e. the disjoining ganglia are black, white
or grey, correspondingly). The answer depends on velocities of oleic and water
phases.

If oleic phase moves faster than water, at first gas displaces gas-condensate
inside the active phase in each point of the porous medium, and then ganglia disjoin
active phase when the saturation front arrives. In this case disjoining ganglia consist
of gas only (i.e. they are white).

If water moves faster than the oleic phase, saturation front reaches each point
of the reservoir faster than the concentration front. So disjoining ganglia consist of
gas–condensate only.

One could expect the intermediate cases where disjoining ganglia consist of the
gas-condensate–gas mixture (i.e. they are grey).
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So, after the displacement by imbibition, saturations of active and trapped phases
are also dependent of gas–water ratio of the injected fluid but are at the same
time dependent of initial saturations. There is also no gas-condensate left in the
active phase after the displacement. The ganglia which have been in reservoir
before the displacement consist of gas-condensate only. The ganglia which disjoin
from active phase during imbibition could consist of gas, of gas-condensate and
of gas-condensate–gas mixture, depending on which phase velocity is
higher.

Let us see whether the analytical solutions confirm the initial guess.

3.1. COMPARISON WITH LABORATORY TESTS

Let us discuss first the simple case of injection of water–solvent mixture with a
fraction of water which equals the water fraction in the initial water–gas-condensate
mixture in the reservoir: f 0 = f (sI).

The solution has a piston-like type: c = 1 behind the concentration front,
and c = 0 ahead of the front. The velocity of the displacement front is
Vc = f 0/sa(sI).

Distribution of oleic phase over the porous space remains the same, and position
of the horizontal line which separates active oleic phase from water in Figure 14
remains the same. Miscible displacement takes place inside the active phase, which
is in accordance with the initially proposed schematic of the process (Figure 1(b)).
Gas completely displaces gas-condensate from the active part, gas-condensate re-
mains in ganglia.

The traditional model where sa(s) = s also gives a piston-like displacement
solution with the constant saturation (Lake, 1989; Bedrikovetsky, 1993). The velo-
city of the displacement front in this case is Vs = f 0/sI.

If compared with the traditional model, the solution obtained exhibits higher
velocity of the piston like front, Vc = f 0/sa(sI) > f 0/sI. It corresponds to the
fact that the injected solvent propagates inside the active phase through the ‘cross
section with the area sa(sI)’, while the traditional model assumes the cross-section
area equals to the overall gas-condensate saturation s. From the point of view of the
recovery, according to the model proposed, gas-condensate ganglia are left behind
the piston like front, so it takes less time to produce all the gas-condensate when
compared with the case of the total displacement with the same gas-condensate–
water ratio at the outlet. The amount of gas-condensate trapped is sI − sa(sI) =
f 0(1/V )s − 1/V ).

The solution obtained has been compared with results of laboratory displace-
ment in Raimondi and Torcaso (1964) work. The tests are the same as the ones
given in Figures 8, 11 and 12. Here we discuss two runs (No. 2 and No. 4) where
continuous injection of the gas-condensate–water fluid was switched to injection
of the solvent–water fluid, ratios water/gas-condensate and water/solvent were the
same, and gas-condensate and solvent have the same viscosity and density.
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Figure 16. Comparison of laboratory data with results of analytical modelling: (a) concentra-
tion at the outlet, run 2; (b) recovery factor, run 2; (c) concentration at the outlet, run 4; (d)
recovery factor, run 4.

It was observed during the laboratory test that the water cut at the outlet was
almost constant, f (X = 1, T ) = f 0 = f (sI) (Figure 16(a) and (c)), the same as in
the obtained solution.

The measured concentration in the core outlet and the cumulative recovery dur-
ing the displacement from Berea sandstone are given in Figure 16(a) and (b) for
gas-condensate–water ratio 0.96 and in Figure 16(c) and (d) for gas-condensate–
water ratio 9,94. The core is relatively short (72 in) for the piston-like profile to
be expected. Diffusion and non-equilibrium of dissolution of gas-condensate in
solvent smooth the profile. So one could expect better match between the laborato-
ry data and the results of modelling in large scale approximation for final recovery
rather than for the dynamics of concentration.

For both tests experimental data are matched by the ‘ganglia model’ much better
than by the traditional model.
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For the first case (Figure 16(a) and (b)), position of the piston-like concentration
front given by the obtained analytical solution with concentration front velocity
Vc = f 0/sa(sI) almost coincides with the ‘centre of mass’ for the profile with
laboratory displacement. The velocity of the front given by the traditional model
is much lower. The arrival time predicted by the ganglia model is 0.39 p.v.i. while
the traditional model gives the value 0.83 p.v.i. (Figure 16(a)). Such a large differ-
ence in arrival times corresponds to the large difference between active saturation
sa(si) = 0.192 and overall saturation of oleic phase si = 0.406. The cumulative
recovery curve (Figure 16(b)) shows that the final recovery (0.186) almost coin-
cides with the amount of gas-condensate in the ‘active’ mobile state (0.192), and
ganglia are not recoverable.

For the second case (Figure 16(c) and (d)) also a good agreement between the
laboratory data and the modelling results was observed. Difference between active
phase saturation (0.398) and overall oleic phase saturation (0.456) is lower than
in the first case. Therefore, difference in arrival times given by solution obtained
(0.44 p.v.i.) and by the traditional model (0.51 p.v.i.) is lower also. The final recov-
ery is 0.403 (Figure 16(d)) which almost coincides with the active gas-condensate
saturation, 0.398.

So the introduction of active and trapped phases in mathematical model re-
sults in a significant improvement of the matching of the experimental data by the
modelling results.

3.2. WAG WITH DRAINAGE

Now let us discuss WAG with drainage, where WAG-ratio is lower then the initial
water–gas-condensate ratio in the reservoir, f 0 > f (sI).

The equation for saturation is (7), concentration can be found from Equation
(8). Initial concentration of gas in ganglia equals zero, so it remains zero during
the displacement (10).

The solution for the ‘separate saturation-problem’ (7) is given by a full shock
J → I, the velocity Vs of the front is determined by the Hugoniot condition of the
water balance on the shock front.

Let us discuss the Hugoniot condition of material balance for gas component
on the concentration shock. As it follows from conservation law (8), the velocity
of the concentration shock is

Vc = c−f − − c+f +

c−s−a − c+s+a (15)

For the region on the plane (X, T ) outside the saturation jump where s = const
equation (8) degenerates into the linear hyperbolic equation (11) with constant
characteristic velocity.

The velocity of concentration shock for Equation (11) is: Vc = f/sa. The same
expression follows from the Hugoniot condition (15) for c− = 0 or c+ = 0.
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Figure 17. Saturation and concentration profiles for miscible WAG with drainage.

The velocity Vc can be calculated geometrically on the plane (s, f ) (Figure 17).
Let us mark the point O with coordinates (s − sa, 0). The tangent of the slope of
the straight line O–(s, f) equals Vc.

For points I and J shown in Figure 17(b) we have Vs > VJ > VI. So, the concen-
tration shock cannot coincide with the saturation shock. Therefore, the trajectory
of concentration front lies either ahead of the saturation front, or behind it. But
the velocity of the saturation front is higher than the velocity of the concentration
front. So, the concentration front lags behind the saturation front.

See saturation and concentration profiles in Figure 17(a).
This solution allows to calculate the amount of residual (remaining) gas-

condensate after miscible WAG injection under drainage conditions. Initially there
was sa(sI) of the active gas-condensate and sI − sa(sI) of ganglia in porous media
(cross-section of the core is shown in Figure 14(a)).

If during WAG injection the drainage happens, saturation of the active oleic
phase increases and ganglia join it. So, there is no chance for gas to get into ganglia,
and remaining ganglia consist on gas-condensate component only. The amount of
residual gas-condensate equals the trapped phase saturation. After the displacement
there is sa(sJ) of gas and sJ−sa(sJ) of gas-condensate in porous media (cross-section
of the core is shown in Figure 14(b)). The amount of residual gas-condensate and
the recovery factor after WAG are:

sor(f
0) = sa(sJ), f 0 = f (sJ), η = sI − sa(sJ)

sI
(16)

The graphical procedure for calculation of the residual gas-condensate after
miscible WAG is shown in Figure 18. The simplified assumption of the
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Figure 18. Incremental recovery for tertiary WAG with drainage.

independence of fractional flow function on concentration results in the single
fractional flow curve involved with the solution (Figure 17). When one calculates
the residual gas-condensate, the active part of oleic phase is filled by gas, so the
fractional flow curve for system water–gas is to be considered. The saturation sJ
is determined from the fractional flow curve ‘water–gas’. Saturation of the trapped
gas-condensate sJ−sa(sJ) is determined from the plot of the trapped gas-condensate
versus overall saturation (Figure 18).

Fractional flow for gas is very high even for low saturation due to the low
gas viscosity (Figure 18). Therefore, even for high value of f 0 (for low water–
gas ratio), saturation sJ is lower than sg, so, some ganglia remains unswept by the
miscible WAG.

The plot of the residual gas-condensate versus fractional flow of injected gas
is shown in Figure 19. The part of the curve which corresponds to the drainage
process lies to the right of the initial reservoir point I. The residual gas-condensate
decreases with the increase of f 0. It decreases, from the value sor for the water
flooding, slowly for the values of f 0 up to 0.5–0.6. For high values of f 0 the
residual gas-condensate decreases faster, and it becomes zero for f 0 = f (sg).

It is important to emphasise that according to the traditional model for mis-
cible WAG, which does not take into account gas-condensate ganglia, residual
gas-condensate saturation after WAG equals to zero for any WAG-ratio from zero
to infinity (Lake, 1989; Bedrikovetsky, 1993).
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Figure 19. Residual oil after miscible WAG with drainage.

3.3. WAG WITH IMBIBITION

Let us discuss continuous WAG injection with a water–gas ratio (WAG-ratio) higher
than the initial water–gas-condensate ratio in the reservoir, f 0 < f (sI). The injec-
tion point J is located on the phase plane below the initial point I (Figures 20–24).
The equation for saturation is (7), concentration can be found from Equation (11).
Initial and boundary conditions are homogeneous, (13).

Figure 20. Saturation and concentration profiles for WAG with imbibition and with delayed
concentration front.
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Figure 21. WAG with imbibition and with fast saturation front.

3.3.1. Black Residual Ganglia
The relationships between the velocity of the saturation front Vs, velocity of
c-characteristic line ahead of the shock VI and behind the shock VJ depend on
the location of points I and J on the (s, f) plane. Let us discuss first the cases of
slow concentration front where Vs > Vc.

3.3.1.1. Tertiary WAG with High WAG-Ratio. If points I and J are located both
on the convex part of f–f curve (below the inflection point of f–f curve)
(Figure 20(a)), the saturation distribution is given by a rarefaction wave. Here the
velocity of the piston-like front of concentration is VJ = f (sJ)/sa(sJ).

Profiles of saturation and concentration during the displacement are given in
Figure 20(c).

Let us calculate the concentration ct of gas in ganglia. Ahead of the concentra-
tion front c = 0, so the term under the integral (12) equals to zero. Behind the front
the concentration is unity, but saturation does not change, and q = 0. Therefore,
for the solution presented, the expression under the integral (12) equals zero. The
first term in brackets in right hand side of (12) is zero also for the case where there
is no gas in initial gas-condensate. Therefore, ct(X, T ) = 0.
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Figure 22. WAG with imbibition and with single saturation-concentration front.

Gas saturation in ganglia behind the saturation front can be found from the
Hugoniot condition of the mass conservation for gas on the discontinuity, see (8):

(c+s+a + c+t s+t − c−s−a + c−t s−t )Vc = (c+f + − c−f −) (17)

Substituting in (17) expression for the velocity of c-characteristic line behind
the shock VJ, condition of continuity of saturation on the c-shock s− = s+, con-
centrations ahead of the shock c− = 0 and behind the shock c+ = 1, concentration
in ganglia ahead of the shock c+t = 0, we obtain: c−t = 0.

Let us interpret the solution obtained. Figure 15(a) presents the initial state
in the core before the displacement. The saturation front moves faster than the
concentration front (Figure 20(c)). Therefore, these are gas-condensate ganglia
which disjoin the active phase after passing the imbibition rarefaction wave of
saturation. The schematic for the moment after passing the imbibition wave and
before coming the concentration front is shown in Figure 20(d), moment t2. After
passing the concentration front at moment t3 gas-condensate is displaced by gas
from the active phase. So, the ganglia disjoined from the active phase, left after the
imbibition, corresponding to grey ganglia in Figure 15(b), are not touched by gas,
being, in fact, pure gas-condensate ganglia, black in Figure 20(d).
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Figure 23. WAG with imbibition and with slow saturation front.

Figure 24. Residual oil after miscible WAG for low initial water saturation.

The important conclusion is that there is no gas left in the trapped gas-condensate
after WAG. So the amount of residual gas-condensate equals the saturation of
ganglia after WAG which is determined by WAG-ratio applied, formula (16) is
valid for this case also.

3.3.1.2. Medium Initial Saturation and High WAG-Ratio. Let us determine point
JI which is the tangent point between f–f curve and the interval I–JI. If initial point
I is located above the inflection point of f–f curve, and injection point J is located
below the point JI, the saturation path consists of a sequence of rarefaction wave



WAG DISPLACEMENTS OF OIL-CONDENSATES 255

and shock wave (there will be jump up to the point J after the continuous line in
saturation profile, Figure 20(c)).

In this case also velocity of c-characteristic Vc is lower than the velocity of s-
wave. The concentration jump lays behind the zone of varying saturation. So all
the ganglia left after the displacement consist of gas-condensate only.

3.3.1.3. Medium Initial Saturation and Medium WAG-Ratio. Let us determine
point 2 in which velocities of c-front and of s-wave coincide: f/sa = f/s, and
point JII in which Vs = VJ. Another case where Vs > Vc is realised where point
I is located below point 2, and point J is located above point JI (Figure 21). The
solution for saturation is given by shock which moves faster than the concentration
shock Figure 21(b) and (c). As in the previous case appearance of ganglia on the
s-shock is going on under the absence of gas, so there is no gas in ganglia.

Also there is no variation of ct on the concentration jump, and c−t = 0. Ganglia
which disjoin the active phase after passing the imbibition shock of saturation
(Figure 21(d)) consist of gas-condensate only. After the displacement all remain-
ing ganglia are black (Figure 15(b)). In this case the saturation of residual gas-
condensate equals the saturation of ganglia after WAG, formula (16).

The same flow regime takes place if point I is located above point 2, and point
J is located below JII.

So, for the above described four cases s-velocities in rarefaction and shock
waves are higher than c-velocities along the path on the plane (s, f ), and all the
remaining ganglia consist of gas-condensate only, that is, they are ‘black’. The re-
sidual gas-condensate is given by formula (16). The plot of residual gas-condensate
versus fractional flow of gas–water with WAG injection is shown in Figure 19 (it is
the same as for WAG with drainage), the part of the curve which lies to the left of
the initial point I corresponds to imbibition processes. If the fractional flow value
tends to zero (WAG-ratio tends to unity) the residual gas-condensate tends to the
value of the residual gas-condensate after waterflooding.

3.3.2. Grey Disjoining Ganglia
Now let us discuss the cases where the s-shock propagates slowly or with the same
velocity as the c-shock. It takes place if point I is located above the point 2, and
point J is located above the point JII.

Let us mark the point OI with co-ordinates (stI, 0) on the plane (s, f)
(Figure 22(a)). The slope of the line OI–I equals to VI. The intersection points
between the line OI–I and fractional flow curve we denote as JIII. In this point,
VI = Vs < VJ. If to lower the position of point J, Vs increases, and VJ decreases.
The point where Vs = VJ was denoted as JII.

Let us discuss the case where point I is located above the point 2, and point J is
located in between the points JII and JIII. The inequality VI < Vs < VJ takes place.
Both c-characteristic lines arrive on the s-shock (Figure 22(b)).
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If the c-shock would be located ahead of the s-shock, where s = sI, the velocity
of the concentration front would be equal to VI. This is impossible because VI < Vs.

If the c-shock would be located behind the s-shock, where s = sJ, the velocity
of the concentration front would be equal to VJ. This is impossible because Vs < VJ.

So there is just one possibility left, which is Vc = Vs, saturation and concentra-
tion fronts coincide.

Let us find concentration of gas in ganglia behind the displacement front and
determine the recovery factor. Substituting values of s and c ahead and behind the
displacement front into the condition (17) of the mass balance of gas on the shock,
we obtain

c−t = fJ/(Vs−saJ)

sJ − saJ
(18)

Let us prolong the line I–J until the intersection with the line f = 0 at the point
OD on the plane (s, f ) (Figure 22(a)). The numerator in the ratio (18) equals to the
length of the interval OD–OJ, the denominator equals to the length of the interval
O–OJ. The interval OD–OJ is just a part of the interval O–OJ, so their ratio is less
than unity, and s−t < 1.

The saturation decreases on the shock, so some ganglia appear. Concentration
jump happens simultaneously with the saturation jump, so it is not clear which
concentration of gas c∗ is ‘carried’ by the ganglia which appear from the active
phase. The amount of gas which moves into ganglia during the passing of shock
front is c∗(stI − stJ), this amount of gas is dissolved in the ganglia behind the
displacement front with the saturation stJ.

Concentration of gas in the ‘new’ grey ganglia is:

c−t stJ = c∗(sI − sJ), c∗ = fJ/(Vs−saJ)

stJ − stI (19)

The concentration c∗ equals to the ratio of segments OD–OJ and OI–OJ. For the
case VI < Vs < VJ the segment OI–OJ is longer than the segment OD–OJ, so the
concentration c∗ is lower than unity.

The schematic for phases after passing the s–c-shock is shown in Figure 22(d).
The ganglia which disjoin the active phase after passing the imbibition shock are
grey, the concentration equals to c∗, (19). The average concentration in ganglia is
c−t .

So, the residual oleic phase saturation after WAG with intermediate water veloc-
ity equals to stJ, concentration of gas-condensate component in the residual phase
equals to 1 − c−t . The amount of residual gas-condensate equals sJ − fJ/Vs which
is equal to the length of segment O–OJ (Figure 22(a)).

3.3.3. White Disjoining Ganglia
Now let us discuss the case where the point J is between the points JIII and I, and
point I is located above the point 2 (Figure 23(a)). For this case the inequality
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Vs < VI < VJ is fulfilled. The concentration front moves ahead of the saturation
front with the velocity VI. Concentration and saturation profiles are shown in Fig-
ure 23(c).

Let us find concentration of gas in ganglia after WAG. There is no separation
of ganglia on the concentration front because saturation is constant on this shock,
so there is no way to change concentration ct on the concentration jump. This
conclusion can also be checked from the condition of gas mass balance on the
shock (17). The amount of ganglia which appear on the s-shock is stI − stJ. Ganglia
separate from the active phase which consists on gas only, so the new ganglia also
consist on the pure gas (i.e. they are white, Figure 23(d)). The amount of gas which
disjoin ganglia is dissolved in the amount of ganglia stJ behind the s-front. So the
concentration c−t of gas in the residual ganglia is

c−t = stJ − stI
stJ

(20)

After passing the concentration front, gas-condensate is completely displaced
by gas from the active phase (Figure 23(d), moment t2). Therefore, after passing
the imbibition saturation front these are gas ganglia which disjoin the active phase
(moment t3). The amount of residual gas-condensate equals the concentration of
gas-condensate in the residual ganglia 1 − c−t times saturation of trapped phase stJ,
as it follows from (20) this amount equals to stI.

The plot for residual gas-condensate (which is the saturation of residual oleic
phase times concentration of gas-condensate in it) versus fractional flow ratio for
cases where initial point I is located much higher than the inflection point of the
fractional flow curve (Figures 22 and 23) is given in Figure 24. The drainage part
of the curve (to the right to point I) corresponds to formula (16). The horizontal
segment of imbibition curve corresponds to the case of delayed saturation front
where the residual gas-condensate equals the trapped gas-condensate ganglia be-
fore the injection, so for the regime shown in Figure 23 the residual gas-condensate
is independent on WAG-ratio. For lower values of fractional flow value where the
displacement regime transforms to the regime with the single front (Figure 22) the
residual gas-condensate is determined by formula (19). For very lower values of
fractional flow, which are near to zero, the regime transforms to the regime with
advanced saturation front, and residual gas-condensate is determined by (16).

For the case with fast concentration front (Figures 22 and 23), the residual gas-
condensate also tends to the value of residual gas-condensate after waterflooding
when fractional flow value f 0 tends to zero. For this case the traditional model also
predicts zero residual gas-condensate after WAG with any WAG-ratio (Lake, 1989;
Bedrikovetsky, 1993).

So, for the miscible WAG with drainage the residual oleic phase saturation
equals to the saturation of the trapped ganglia which correspond to the overall
oleic phase saturation in the injected gas–water mixture.

For the case of the delayed concentration front, there is no gas dissolved in
the trapped gas-condensate. It corresponds to the displacement of gas-condensate–
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water mixture with the middle and high water saturation by WAG with the middle
and high water–gas ratio.

For the case of the advanced concentration front, gas concentration in the trapped
ganglia equals the ratio between the variation of ganglia saturation on the s-shock
and the ganglia saturation behind the s-shock, see (20). This case corresponds to
displacement of gas-condensate and water with low water–gas-condensate ratio by
WAG with low water–gas ratio.

For the intermediate case of the displacement of gas-condensate with low water
saturation by WAG with the intermediate water–gas ratio positions of saturation
front and of concentration front coincide, gas concentration in residual ganglia are
given by formula (18).

4. Transport in Porous Media with Different Wettability

The state of each phase in porous media is strongly wettability-dependent. As it was
mentioned above, for strongly water-wet porous media the non-wetting residual
oil-condensate is mostly in state of isolated ganglia and droplets. The wetting con-
nate water fills concave surfaces and forms thin films, which are immobile and are
geometrically linked to the continuous phase; the wetting phase also forms some
ganglia which fill finite clusters of thin pores, as analysed in work (Nikolaevskii,
1993).

Generally speaking, discontinuous phases exist for both wetting and non-wetting
phases, but for case of strong wettability of porous media by one phase, ganglia
of wetting phase can be ignored. So, for water-wet porous media the effect of
oil-condensate ganglia is important, in oil-wet porous media the water droplets
are to be taken into account (Figure 25).

With chemical flooding where low concentration aqueous solutions of polymers
and surfactants are injected, the mass concentration of chemical is usually used (see

Figure 25. Continuous and discontinuous phases for porous media with different wettability.
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Figure 26. Waterflood with tracer in oil-wet porous media.

Barenblatt and Entov, 1972; Aziz and Settari, 1979; Lake, 1989; Bedrikovetsky,
1993). The injection of an aqueous chemical solution or tracer into oil-wet porous
media is also described by Equations (7)–(9) where c and ct are mass concentra-
tions of chemical in water (Figure 26). Sorption of chemicals can be also handled
by adding amounts of adsorbed species in active phase and in ganglia in cumulative
terms in mass balance equations (8) and (9).

In the current model (7)–(9) for miscible WAG and gas injection it is assumed
that gas injected can be dissolved only in the active oleic phase, while in traditional
model gas is assumed to be dissolved in the overall oleic phase (Figure 26). For
the process of injection of water with additives into oil-wet porous media (polymer
and surfactant flooding, tracer injection) an additive can be dissolved in the active
water only, while the conventional equations provide with the additive dissolution
in the overall water (Figure 26).

For mixed wet, fraction wet and intermediate wet rocks both phases have active
and passive parts (Figure 25). This case is subject of more complex theory.

5. The Model Generalisations and Applications

The equations presented (7)–(9) include effects of different viscosity for injected
and displaced gas fluids. The model can be applied for miscible WAG displacement
of oil. The analytical 1-D model (14)–(20) was derived for the case where the vis-
cosities of displaced oil-condensate and displacing gas are equal. This model can
be applied for cases of low oil-condensate viscosity. Another application is in situ



260 PAVEL BEDRIKOVETSKY

gas storage in already waterflooded gas or gas-condensate flied where an annual
exploitation cycle includes sequential injection and production of gas, and concen-
trations of injected and reservoir gases in the produced fluid are to be maintained
in strict limits by managing injection and production rates and periods.

The equations presented do not describe viscous fingering. Using the empirical
model for an averaged gas component fractional flow and phase mobility in three
component flow (Blunt and Christie, 1993) allows to derive a model which account
for both viscous fingering and ganglia.

The Equations (7)–(9) ignore dissolution of injected gas in water which is un-
acceptable for CO2 floods. The diffusion of CO2 through the water phase probably
plays a major role in the recovery processes, which is controlled by the mass-
transfer rate (Mueller and Lake, 1990). Introduction of CO2 concentration in water
and inter phase mass transfer terms allows to study the effects of CO2 diffusion
from mobile gas phase to ganglia through water on oil recovery.

6. Summary

For the case of immiscible displacement the model which honours phase discon-
tinuities coincides with the traditional Buckley-Leverett equation.

6.1.1.1. Features of the Model with Ganglia. The model for two phase multi-
component flow honouring phase discontinuities differs significantly from the
traditional model. The reason for this difference is: the component, which is in-
soluble in the wetting phase and is injected together with non-wetting phase, can
be dissolved in the active non-wetting phase only, and ganglia are inaccessible
for this component. If the discontinuous part of the phase is not considered, as
traditional model does, the component is distributed homogeneously in the overall
non-wetting phase, which is a simplified image of two-phase multicomponent flow
in porous media.

Mechanisms of mass exchange between continuous phase and ganglia are dif-
ferent for imbibition and for drainage. Therefore, the model developed is of a
hysteretic type.

6.1.1.2. Active Saturation Function. The new equations proposed contain a new
empirical function of active phase saturation versus overall saturation. A method
for prediction of this function from hysteretic relative permeability curves for non-
wetting phase is developed. Calculations using this method show excellent agree-
ment with the data from direct laboratory measurements. It confirms the main
assumption of the model that the distribution of non-wetting phase on an active
part and on ganglia is determined by the value of saturation.

6.1.1.3. Effects. The model proposed predicts faster propagation of the compo-
nent injected with non-wetting phase than the traditional model. This is due to the
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fact that the injected component is transported in an active part of the phase with
lower saturation rather than in an overall phase with higher saturation.

The proposed model predicts significantly lower recovery factor for miscible
WAG injection if compared with the traditional model. This is due to the fact that
some gas-condensate is trapped in ganglia state behind the miscible displacement
front. It is worth to emphasise that the traditional model predicts no oil-condensate
remaining after a miscible flooding.

6.1.1.4. Structure of Residual Reserves after Miscible WAG. Analytical solu-
tions for displacement of oil-condensate with water by miscible gas with water
exhibit a complex picture of ‘active phase–ganglia’ mass transfer and of residual
oil-condensate distribution after flooding.

If the fractional flow of gas in the injected gas–water mixture is higher than
the fractional flow for gas-condensate in the displaced gas-condensate–water fluid,
some oil-condensate ganglia join the expanding active oleic phase. The ganglia
which do not join active phase remains in porous media after the flooding.

If the fractional flow of gas in the injected gas–water mixture is lower than the
fractional flow for oil-condensate in the displaced oil–water fluid, some ganglia
disjoin active phase and remain in porous media after the flooding. For the case
where the velocity of the saturation front is higher than the velocity of the con-
centration front, the disjoining ganglia consist of oil-condensate only. For the case
where the velocity of the saturation front is lower than the velocity of the concen-
tration front, the disjoining ganglia consist on injected gas only. If the velocity of
the saturation front is lower than the velocity of concentration wave which propa-
gates over the injected state but is higher then the velocity of concentration wave
which propagates over the initial state, the disjoining ganglia consist on the gas–oil
mixture with the concentration which is calculated from the analytical solution.

The oil-condensate ganglia which have been present in porous media before the
injection, remain in porous media after application of WAG with imbibition.

6.1.1.5. Applications. The model developed describes miscible WAG and gas
injection into water-wet reservoirs as well as chemical flooding and tracer injection
in oil-wet reservoirs.

If to nominate an initial reservoir fluid as ‘oil pseudo component’ and an injec-
ted gas as ‘gas pseudo component’, the model presented describes multicomponent
displacement for any number of components.

If the component injected is soluble in both phases, it diffuses from active
non-wetting phase towards ganglia via the wetting phase. Concentrations of this
component in active phase and in ganglia are linked by the kinetic equation, where
the delay equals to the time of diffusion.

General theory for 3-phase flows with ganglia is very complex but can be sim-
plified for specific cases. For immiscible WAG we introduce two trapped phases:
‘oil in water’ and ‘oil in gas’. Saturations of trapped phases are functions of satu-
rations of water and gas phases, it closes the system of governing equations.
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7. Conclusions

1. The traditional mathematical model for 2-phase multicomponent displace-
ments (EOR) contradicts the conventional image about non-wetting phase in
porous media which is present simultaneously as continuous mobile phase
and as separated immobile ganglia.

2. A new mathematical model for 2-phase multicomponent flows in porous me-
dia which accounts for ganglia and droplets of non-wetting phase has been
developed.

3. The new model shows excellent agreement with laboratory experiments while
the traditional model significantly overestimates the recovery.

4. The new model shows significant residual oil after miscible WAG while the
traditional model predicts no residual oil.

Appendix A. Mass Balance Equations

Equation for continuity of water is:



∂ρW(1 − s)

∂t
+ divρWuW = 0 (A.1)

Gas and oil-condensate components are present in both active and trapped
phases, the transport is going on via the active phase. Therefore, the mass balance
equations for gas component and for oil-condensate component in both active and
trapped phases are:

∂

∂t
(ρOc

msa + ρOc
m
t st)+ div(ρOc

muO) = 0 (A.2)

∂

∂t
(ρO(1 − cm)sa + ρO(1 − cmt )st)+ div(ρO(1 − cm)uO) = 0 (A.3)

Mass balance equations for gas component in ganglia and for oil-condensate
component in ganglia are:



∂ρOtc

m
t st

∂t
= −qmc (A.4)



∂ρOt(1 − cmt )st

∂t
= −qm1−c (A.5)

From formula (4) and from the explanation of the influx and of the outflux
(Figure 13) we obtain the following expression for terms of interphase mass trans-
fer between active and trapped phases by the gas component qmc and by the oil-
condensate component qm1−c

qmc = cmt ρOtq, qm1−c = (1 − cmt )ρOtq,
∂s

∂T
> 0

qmc = cmρOaq, qm1−c = (1 − cm)ρOaq,
∂s

∂T
< 0 (A.6)
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Substituting the expression for the volumetric exchange term (4) into mass
exchange terms (A.6) we obtain equation for mass balance of gas component in
the trapped phase:

∂ρOtc
m
t st

∂t
= ρOtc

m
t
∂st

∂t
,

∂s

∂t
< 0

∂ρOtc
m
t st

∂t
= ρOac

m ∂st

∂t
,

∂s

∂t
> 0 (A.7)

Appendix B. Closed System of Governing Equations

From the dependence sa(s) follows that relative permeabilities for mobile phases
are functions of s and cm:

uj = −k krj(sa, s, c
m)

µj(cm)
∇p, j = W,O (B.1)

Therefore, fractional flow is also the function of s and cm:
uO = fU ; uW = (1 − f )U ; U = uO + uW (B.2)

Adding two equations (B.1) we obtain expression for the total flux of two-phase
fluid

U = −kλ(s, cm)∇p (B.3)

λ(s, c) = krO(sa(s), s, c
m)

µO(c
m)

+ krW(sa(s), s, c
m)

µW
(B.4)

Equations (A.1)–(A.5), (A.7) and (B.1)–(B.4) form a closed system of gov-
erning equations for two-phase three-component flow in porous media honouring
ganglia of non-wetting phase.

Substitution of the modified Darcy’s law (B.1) into Equations (A.1)–(A.5) and
(A.7) allows to obtain four governing equations, the unknowns are p, s, cm and cmt .

Equation for volumetric balance of water follows from (A.1) and (B.1)–(B.3)
with the assumption of water incompressibility:

−
∂s
∂t

= div((1 − f )λ(s, cm)∇p) (B.5)

Equations for mass balance of gas and oil-condensate components in the overall
oleic phase follows from (A.2), (A.3) and (B.1)–(B.3):



∂

∂t
(ρOc

msa + ρOc
m
t st) = div(ρOc

mf (s, c)λ(s, c)∇p) (B.6)



∂

∂t
(ρO(1 − cm)sa + ρO(1 − cmt )st) = div(ρO(1 − cm)(1 − f )λ(s, c)∇p)

(B.7)
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Equations (A.7) and (B.5)–(B.7) form the closed system of governing equations.
The traditional equations can be obtained from the system derived by just as-

suming st = 0. Equations (B.5)–(B.7) with st = 0 and sa = s describe two-
phase three-component flow in porous media without considering ganglia (Aziz
and Settari, 1979; Lake, 1989; Bedrikovetsky, 1993) and determine unknowns p, s
and cm.

Appendix C. Initial and Boundary Conditions for 3-D Reservoir Model

Initial conditions are:

t = 0: s = sI(x), cm = cmI (x), cmt = cmtI (x), x ∈ D (C.1)

The system (A.7) and (B.5)–(B.7) is elliptic for the pressure p(x, t) (the detailed
mathematical analysis of analogous problem for two-phase flow of incompress-
ible fluids can be found in Antontsev et al. (1990) and Mitlin (1993)), so initial
conditions for pressure are not to be prescribed.

We introduce surfaces of injection wells �+ and of production wells �− inside
three-dimensional domain D.

Boundary conditions on the injection wells surface �+ are:

x ∈ �+: p = p0(x, t), f = f 0(x, t), cm = cm0(x, t) (C.2)

For conservation laws (B.5)–(B.7) three fluxes for water, gas and gas-condensate
are to be posed on the injection surface �+. The water flux is determined by the
fraction f and by the velocity U, together with gas concentration cm it determine
fluxes of gas component and of oil-condensate component.

Although often in the literature the water saturation s is set on the injection
surface instead of the water flux f, this formulation can result in the unsolvable
singularity in the neighbourhood of the injection surface (the example is shown
in Barenblatt and Entov (1972)), so setting the saturation value on the injection
surface �+ results in an ill-posed problem.

The unknown concentration cmt is ‘attached’ to the immobile phase and is not
transferred by any flux. Therefore, the problem for the function cmt is of Goursat
type (Tikhonov and Samarsky, 1963). So, the initial condition for cmt is to be posed,
the boundary condition for cmt on the injection surface is not to be set because
there is no flux of components in ganglia. The analogous case for non-equilibrium
sorption was analysed in Fishlock et al. (1988), Bedrikovetsky (1993).

The boundary condition on the production surface �− is:

x ∈ �−: p = p−(x) (C.3)

The system (A.7) and (B.5)–(B.7) is hyperbolic for saturation s and for concen-
tration cm, so initial conditions for these two unknowns are to be set, and boundary
conditions for them are to be posed on the injection surface �+ only (the detailed
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analysis for analogous problem for two-phase multicomponent flow is given in
Antontsev et al. (1990) and Mitlin (1993)).

Condition of impermeability is posed on the boundary of the flow domain:

x ∈ ∂D: (∇p)n = 0 (C.4)

The problem (C.1)–(C.4) is properly posed if the pressure gradient on the injec-
tion surface is not tangent to this surface.

Appendix D. Stability of Concentration Shock

Stability of c-shocks with respect to vanishing smoothing is proven by construction
of the solution of the initial-value problem with the smoothed jumps. c-character-
istic lines for the solution obtained are shown in Figures 20–23(b). With the smooth-
ing interval tending to zero, the continuous solution tends to the initial shock.
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