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Summary

Analytical models of gasflooding are important for enhanced-oil-
recovery (EOR) screening, for interpretation of laboratory data,
and for streamline modeling. Introduction of two Lagrangian coor-
dinates linked with one of the components and with the overall
two-phase flux results in splitting the compositional model into an
auxiliary system and an independent scalar equation. The number
of equations in the auxiliary system is less by one if compared with
the compositional model, making analytical modeling possible for
more practical cases. The auxiliary system contains only thermo-
dynamic functions and is independent of transport properties.
Therefore, phase transitions and minimum miscibility pressure for
gas injection are also independent of transport properties. The new
splitting method is applicable for both self-similar solutions of
continuous gas injection and nonself-similar solvent-slug pro-
blems. Analytical solution for four-component oil displacement
by a nitrogen-based solvent was obtained using the splitting tech-
nique. The compositional two-phase model contains an elliptic
region if and only if an elliptic region is also present in the auxi-
liary system. Calculations for several four-component mixtures
exhibit existence of an elliptic region in compositional modeling.

Introduction

Miscible displacement is characterized by the injection of fluids
that mix totally or partially with reservoir fluid (Lake 1989; Latil
1980). Basically, there are three main distinct miscible-hydrocar-
bon-solvent processes—miscible-slug injection, enriched-gas in-
jection, and high-pressure lean-gas injection (van Poolen 1980).
The miscible-slug process consists of the injection of a slug of
liquid hydrocarbon driven by a chase fluid, which may be natural
gas or even water. The enriched-gas process is essentially the
injection of a slug of enriched natural gas displaced by lean gas
or water. In the third process, lean gas is injected at high pressure
to achieve retrograde evaporation of oil and the formation of
a miscible phase between gas and oil phases flowing in the
reservoir. The most important technical problem of miscible-
hydrocarbon injection, besides its cost, is related to the high
mobility ratio of solvent to crude oil. As oil price increased,
carbon dioxide became a natural substitute for hydrocarbons in
miscible flooding processes. It is also suitable for continuous
injection during production lifetime, depending on the thermody-
namic behavior of its mixture with reservoir fluid. Recently, more
attention has been given to the injection of inert gas, such as
nitrogen (N2) or flue gas, with promising results.

The derivation of analytical models for two-phase multi-
component displacement was motivated by the planning and
result-interpretation of partially miscible corefloods, by perfor-
ming sensitivity studies and EOR screening and by developing
streamline simulators. An (n–1)�(n–1) hyperbolic system of con-
servation laws describes 1D two-phase displacement of oil by gas
at large scale, assuming mixture-volume conservation, where n is
the number of components (Johns et al. 1993; Orr et al. 1995;
Johns and Orr 1996; Wang and Orr 1997; Orr 2007). The continu-
ous injection of gas results in a Riemann problem, while the

displacement of oil by a gas slug with another gas drive is de-
scribed by an initial and boundary-value problem with piecewise
initial data (Bedrikovetsky 1993).

The elementary hyperbolic waves of the 2�2 system for two-
phase three-component displacement can be described both
analytically and graphically (Wachmann 1964; Hirasaki 1981;
Hirasaki 1982; Zick 1986). Analytical 1D models for continuous
gas injection with different types of ternary phase diagrams and
boundary conditions related to injection of different fluids were
developed by solving the Riemann problem that arises in these
cases (Lake 1989; Wachmann 1964; Hirasaki 1981; Hirasaki
1982; Zick 1986). Injection of gaseous solvents with gas drives
also allows for analytical modeling by solving the problem of
elementary-wave interactions (Bedrikovetsky 1993; Barenblatt
et al. 1991).

The semianalytical solutions for n-component gasflooding,
obtained by numerical combination of shock and rarefaction
waves, allow thermodynamic analysis, minimum-miscibility-
pressure calculations, and recovery estimates (Johns et al. 1993;
Orr et al. 1995; Johns and Orr 1996; Wang and Orr 1997; Orr
2007; Bedrikovetsky 1993). This technique was developed for any
number of components.

A hyperbolic system for partially miscible gas injection is
similar to that for polymer flooding. The solution of two-phase
multicomponent displacement of oil by a polymer solution can
be projected into that for one phase. With the projection, ele-
mentary waves of a two-phase system are mapped onto those for
a one-phase system. The observation that concentration waves in
a two-phase environment can be lifted from one-phase multi-
component flow was used for the development of a semianaly-
tical Riemann-problem solver for two-phase n-component
polymer flooding (Johansen and Winther 1989; Johansen et al.
1989; Dahl et al. 1992). The exact solutions for this problem,
with adsorption governed by a Langmuir isotherm, were
obtained by use of a one-phase solution (Johansen and Winther
1989; Rhee et al. 1970). The projection technique cannot be
extended for nonself-similar problems of oil displacement by
polymer slugs.

A projection approach analogous to that of one-/two-phase
polymer flooding was applied to derive the exact solutions
for gasflooding for the case of n-component ideal mixtures
(Bedrikovetsky and Chumak 1992a; Bedrikovetsky and Chumak
1992b). The model of ideal mixtures is analogous to a multicom-
ponent Langmuir sorption; it results in full exact integrability of
one-phase and two-phase cases. The projection maps the two-
phase compositional system onto the reduced system with the
number of equations less by one. These solutions, along with the
definition of the reduced system, were further used for the injec-
tion of different gases into different oils (Entov 1997; Entov and
Voskov 2000). The projection technique can be applied for real
mixtures; it involves equation-of-state-based flash calculations
and the semianalytical combining of shock and rarefaction waves
(Johansen et al. 2005; Wang et al. 2005). For two-phase composi-
tional models, the projection technique is valid only for the case
of continuous gas injection and cannot be applied for nonself-
similar slug-injection problems.

Another approach, which is the introduction of the Lagrangian
coordinate linked to aqueous-phase conservation and using it with
an Eulerian coordinate instead of the traditional independent
variables Eulerian coordinate and time, also results in splitting
the polymer-flood system into an auxiliary thermodynamics
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system containing only sorption isotherms and a scalar hydrody-
namics equation containing relative permeability and viscosity of
both phases (Pires et al. 2006). The number of equations in the
auxiliary system is less by one than that of the total system, which
results in several analytical models. This splitting technique is
valid for any initial-boundary-value problem, including the pro-
blems of continuous and slug injections.

The problem of nonstrict hyperbolicity of a multicomponent
polymer-flooding system (existence of parameter values where
different eigenvelocitites of the system coincide) was investigated
with regard to the appearance of both rarefaction and shock waves
of the same index in the solution of the displacement problem
(Johansen and Winther 1989; Johansen et al. 1989; Dahl et al.
1992). Hyperbolicity of the conservation-law system and the pos-
sible existence of elliptic regions have never been discussed for
either polymer flooding or for gas injection (i.e., for two-phase
compositional flows).

The existence of elliptic regions in three-phase flow is a well-
known phenomenon and has a long research history (Marchesin
and Plohr 2001; Guzmán and Fayers 1997a; Guzmán and Fayers
1997b). It results in different types of analytical models and in a
change of numerical procedures (Kulikovskii et al. 2001). Hyper-
bolicity of a three-phase-flow system is highly dependent on the
relative permeability model (Guzmán and Fayers 1997a; Guzmán
and Fayers 1997b; Juanes and Patzek 2004a; Juanes and Patzek
2004b; Juanes and Patzek 2004c). Yet, physics assumptions on
three-phase relative permeability result in the disappearance of the
elliptic region in the flow model (Guzmán and Fayers 1997b;
Juanes and Patzek 2004a; Juanes and Patzek 2004b; Juanes and
Patzek 2004c).

The vanishing of the elliptic region when physics assumptions
are imposed on the model supports the idea that the existence of
the elliptic region is physically unrealistic and is a consequence of
inaccurate determination of empirical functions. Even more, it is
recommended to reject the empirical functions that give rise to a
mixed-type conservation-law model (Juanes and Patzek 2004a;
Juanes and Patzek 2004b; Juanes and Patzek 2004c; Fayers and
Matthews 1984).

Nevertheless, the conservation-law model for the commingled
flow of gas, oil, and water layers between two parallel plates has a
mixed hyperbolic/elliptic type (Talon et al. 2004; Shariati et al.
2004). The model does not contain any empirical functions.
The elliptic region develops on the displacement tip where the
parallel-flow assumption breaks down. Crossing the elliptic
region by compositional path corresponds to nonclassical shocks
(LeFloch 2002).

For this paper, an elliptic region was observed for two-phase
multicomponent flow in porous media for a so-called composi-
tional model. The introduction of two Lagrangian coordinates,
one linked with the nth-component motion and the other linked
with overall flow, and the use of them instead of the Eulerian
coordinate and time in the compositional model, result in the
splitting of the two-phase multicomponent system into an
auxiliary system and a lifting equation. The splitting reduces the
problem of hyperbolicity of the compositional model to that
for the auxiliary system. The existence of an elliptic region
was observed for the auxiliary system of the four-component gas-
flooding model.

The structure of the paper is as follows. First, we briefly
derive the compositional model for mixtures, with conservation
of the mixture volume. Then, two Lagrangian coordinates are
introduced instead of the traditional independent variables (xD,
tD), which results in the splitting of the compositional system
into an auxiliary system and a scalar lifting equation. Phase
diagrams for two four-component mixtures that are built by
equation-of-state-based flash calculations for different pressures
and temperatures are presented in the next section. Further cal-
culations based on phase diagrams show that the auxiliary sys-
tem contains elliptic regions for some investigated mixtures.
Finally, the example of oil displacement by inert gas is pre-
sented, with component concentrations and saturation profiles
and with the recovery curve.

Mathematical Model for Solvent Miscible
Flooding

We consider 1D two-phase multicomponent solvent miscible
flooding under the following assumptions:

• Negligible dissipation effects—capillary pressure, gravity,
and diffusion

• Instantaneous thermodynamic equilibrium
• Constant pressure and temperature
• Equal and constant individual densities of components in

both phases.
The detailed derivation of the compositional model under the

those assumptions can be found elsewhere (Orr 2007; Bedriko-
vetsky 1993; Zick 1986); this section contains only a brief intro-
duction of conservation laws for component masses and of
geometric parameters on a phase diagram.

Under thermodynamic equilibrium and constant pressure
and temperature, the two-phase n-component system has n - 2
degrees of freedom. We choose the independent mass fractions
of components i = 2, 3, . . . , n - 1 in the gas phase as
independent variables. The vector of independent phase-mass
fractions determines all component concentrations in phases:

~g ¼ c2g ; c3g ; ::: ; c n�1ð Þg
� �

: (1)

Under those conditions, the total two-phase flux is conserved,
and n mass balances for n components are replaced by n-1 vol-
ume-conservation laws for n-1 components.

@Ci

@tD
þ @Fi

@xD
¼ 0

xD ¼ x

l
; tD ¼ u t

F l
; : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : . (2)

where the overall ith-component volume fraction and flux are

Ci ¼ cil S þ cig 1 � Sð Þ (3)

and

Fi ¼ cil f þ cig 1 � fð Þ: (4)

Here, f is the fractional flow of liquid:

f S ; ~gð Þ ¼
krl S ; ~gð Þ=ml ~gð Þ

krl S ; ~gð Þ=ml ~gð Þ þ krg S ; ~gð Þ.
mg ~gð Þ

: (5)

Initial and boundary conditions for continuous gas injection
correspond to given compositions of injected gas and dis-
placed oil:

Ci xD ; 0ð Þ ¼ CI
i

Ci 0 ; tDð Þ ¼ CJ
i : (6)

The boundary conditions for the displacement of oil by solvent
slug with lean gas drive are

Ci 0 ; tDð Þ :
CJ
i ; tD < 1

CD
i ; tD > 1

�
; (7)

where CD
i is the composition of the gas driving the solvent slug.

At this point, we introduce the following variables:

ai ~gð Þ ¼ cil � cig
cnl � cng

; i ¼ 2 ; 3 ; . . . n� 1 (8)

and

bi ~gð Þ ¼ cig � aicng; i ¼ 2; 3; . . . ; n� 1: (9)

Fig. 1 shows the geometrical meaning of ai and bi. Vertices 1,
2, . . . , n correspond to pure components in this phase diagram.
Tie Line GL connects equilibrium phase compositions, GiLi is
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the tie-line projection on the plane (1-i-n). The slope of the
straight line GiLi is equal to ai, and the intersection of GiLi with
the axes Ci is equal to bi.

Applying the new variables, Eq. 2 takes the form

@C

@tD
þ

@F C ; ~b
� �
@xD

¼ 0

@ ~a ~b
� �

C þ ~b
� �

@tD
þ

@ ~a ~b
� �

F þ ~b
� �

@xD
¼ 0: (10)

In Eq. 10, C is equal to Cn, the overall volumetric fraction of
the nth component, and F is equal to Fn, the overall volumetric
fractional flow of the nth component.

The unknowns in Eq. 10, composed of n-1 equations, are C
and bi, i = 2,3, . . . , n-1.

After the introduction of variables (Eqs. 8 and 9), the initial
and boundary conditions (Eq. 6) for continuous gas injection
become

C xD ; 0ð Þ ¼ CI
n

bi xD ; 0ð Þ ¼ bi ~g I
� �

(11)

and

C 0 ; tDð Þ ¼ CJ
n Þ

bi 0 ; tDð Þ ¼ bi ~gJ
� �

: (12)

Usually, the reference length l in Eq. 2 is a core size or
distance between injection and production rows. The solution of
the continuous-injection problem is self-similar and is indepen-
dent of l. For displacement of oil by a rich-gas slug with lean-gas
drive, l is the length of the slug.

l ¼ Os

fA
; (13)

where Os is the slug volume and A is the reservoir cross section.
The boundary conditions (Eq. 7) for injection of a rich-gas slug

with lean-gas drive take the form

C 0 ; tDð Þ :
CJ
n ; tD< 1

CD
n ; tD > 1

(

bi 0 ; tDð Þ :
bi ~gJð Þ ; tD< 1

bi ~gDð Þ ; tD > 1

�
: (14)

Splitting Between Hydrodynamics and
Thermodynamics

The conservation-law form of Eq. 10 allows the introduction of
the following potential:

C ¼ � @f
@xD

; F ¼ @f
@tD

: (15)

Eq. 10 is the equality of mixed second derivatives of the
potential taken in different orders.

The potential f(xD, tD) is equal to the nth-component volume
flowing through any curve connecting points (0, 0) and (xD, tD):

f xD; tDð Þ ¼
ZxD ;tD
0;0

FdtD � CdxD: (16)

From Eq. 10, it follows that the integral (Eq. 16) is indepen-
dent of the curve (i.e., it is a function of xD and tD).

Let us introduce the following variable:

c ¼ xD � tD: (17)

From the incompressibility of the total flux, it follows that
c(xD,tD) is equal to the overall mixture volume flowing through
a curve connecting points (0, 0) and (xD, tD).

After the following transformation of independent variables,

Y : xD; tDð Þ ! c;fð Þ; (18)

Eq. 10 becomes

@

@f
C

F� C

� �
� @

@c
1

F� C

� �
¼ 0 (19)

and

@~b
@f

þ
@~a ~b

� �
@c

¼ 0: (20)

Derivation of Eqs. 19 and 20 is presented in Appendix A.
Potential f is a Lagrangian coordinate associated with overall

flux of the nth component. Phase velocities of the nth component
in oil and gas phases are not equal. Nevertheless, overall volume
balance of the nth component, described by Eq. 10, allows the
introduction of a mean velocity of the nth component:

dxD
dtD

¼ F xD; tDð Þ
C xD; tDð Þ : (21)

From Eq. 10, it follows that potential f is constant along mean
trajectories xD = xD(tD) of the nth component. The relative flux
of the nth component by means of the mean trajectory is zero.

Potential c is a Lagrangian coordinate associated with overall
flux. It follows from the total volume conservation that mean
velocity is unity. The linear coordinate in the reference system
linked to overall flux is c.

The transformation equation (Eq. 18) changes from Eulerian
coordinate xD and time tD to Lagrangian coordinates f and c.
The transformed system of Eqs. 19 and 20 has the form of conser-
vation laws. Eq. 19 is mass balance of the nth component;
Eq. 20 consists of conservation laws for components 2, 3, . . . ,
n - 1. Therefore, in subsequent text, the dependencies ai = ai(b2,
b3, . . . , bn-1) are called flux functions.

Eq. 20 separates from Eq. 19 because n - 2 equations (Eq. 20)
are independent of unknown C(c,f). Eq. 18 splits the (n - 1) �
(n - 1) conservation-law system (Eq. 10) into the (n - 2) � (n - 2)
system (Eq. 20) and the scalar hyperbolic equation (Eq. 19).

The unknowns in the system (Eq. 20) are bi, i = 2, 3, . . . ,
n - 1. The hyperbolic equation (Eq. 19) contains the unknown
C(c,f) and the known vector function bi(c,f), which is the solu-
tion of Eq. 20.
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Fig. 1—Phase diagram and geometrical meaning of � and �.
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Eq. 20 is called the auxiliary system associated with the large
system (Eq. 10). It is important to mention that the system
(Eq. 10) contains thermodynamic functions and transport proper-
ties, while the auxiliary system (Eq. 20) contains only ther-
modynamic functions. The so-called “lifting equation” (Eq. 19)
contains a hydrodynamic-flux function FðC;~bÞ that depends
on both phase relative permeabilities and phase viscosities.

The Cauchy data for the Riemann problem of continuous gas-
flooding (Eqs. 11 and 12) and the initial-boundary data for the
injection of a solvent slug with gas drive (Eq. 14) are transformed
by mapping (Eq. 18) to those for the lifting equation (Eq. 19) and
for the auxiliary system (Eq. 20). (The detailed derivations are
presented in Appendix B.) Finally, the solution for the composi-
tional model (Eq. 10) is split into solving the auxiliary problem
(Eq. 20) first and then solving the lifting problem (Eq. 19).

Therefore, the change of variables (Eq. 18) splits problems of
two-phase multicomponent displacement into those for the auxil-
iary thermodynamic system and for the lifting equation.

The calculation of eigenvalues for Eqs. 10 and 20 using
standard hyperbolic techniques (Dafermos 1999; Courant and
Friedrichs 1985; Kulikovskii and Sveshnikova 1995) shows that
the eigenvalues of the large and auxiliary systems for b waves are
related by

Lk C ; ~b
� �

¼
F þ 1

.
lk ~b

� �
C þ 1

.
lk ~b

� � ; k ¼ 2 ; 3 ; . . . ; n� 1; (22)

where lk are wave speeds of the auxiliary system. The relationship
(Eq. 22) is obtained by straightforward calculation.

Moreover, the transformation equation (Eq. 18) maps rarefac-
tion b waves of the compositional model (Eq. 10) into rarefaction
waves of the auxiliary system (Eq. 20).

The Hugoniot-Rankine conditions of mass balance for all com-
ponents on the shock (Dafermos 1999; Courant and Friedrichs
1985; Kulikovskii and Sveshnikova 1995) for the initial composi-
tional model (Eq. 10) are

C½ �D ¼ F½ �
~a ~b
� �

Cþ~b
h i

D ¼ ~a ~b
� �

Fþ~b
h i

; (23)

where [A]=A+-A- is a jump of the value A and D is the shock
speed.

The mass-balance conditions on the shock for the auxiliary
system (Eq. 20) are

~b
h i

V ¼ ~a ~b
� �h i

; (24)

where V is the shock-wave speed for the auxiliary system.
Simple algebraic transformations of Eqs. 23 and 24 show that

the shock-wave speeds V of the auxiliary system are linked with
the shock-wave speeds of the large system D by

D ¼ F þ V

C þ V
: (25)

Transformation (Eq. 18) maps b-shock-wave loci of the com-
positional model (Eq. 10) onto those for the auxiliary system
(Eq. 20).

The splitting technique (Eqs. 18 through 20) yields the following
procedure for the solution of the large compositional system (Eq. 10)
subject to initial and boundary conditions (Eqs. 11, 12, and 14):

• Solution of the auxiliary problem (Eq. 20 and Eqs. B-1
through B-7) and determination of b(c,f);

• Solution of the lifting problem (Eqs. 19 and B-8) and calcu-
lation of C(c,f);

• Inverse transformation (Eq. 18) of independent variables.
Now, we present formulas to obtain the analytical composi-

tional model C(xD,tD), b(xD,tD) from the solution in Lagrangian
coordinates C(c, f), b(c, f).

It follows from Eqs. 16 and 17 that the transformation
maps point xD = tD = 0 to the origin f = c = 0. Integrating

Eqs. A-2 and A-3 from Appendix A along any path linking points
(0, 0) and (c, f), we obtain

tD c;fð Þ ¼
Zc;f
0;0

1

F� C
dfþ C

F� C
dc (26)

and

xD c;fð Þ ¼
Zc;f
0;0

1

F� C
dfþ F

F� C
dc: (27)

In this paper, we solve the auxiliary problem to show the
compositional path in the phase diagram, to emphasize splitting
between thermodynamics and hydrodynamics for gas-based EOR
processes and to prove independence of phase transitions of trans-
port properties in oil/gas/rock systems.

Let us show that phase transitions occurring during any non-
self-similar gas-based EOR displacements throughout the 1D res-
ervoir are determined only by the thermodynamics of the oil/gas
system and are independent of transport properties.

In Appendix B, it is shown how the initial-boundary-value
problems (Eqs. 11, 12, and 14) are projected onto the auxiliary
problems (Eqs. B-7 through B-9). It is possible to prove that any
Cauchy or initial-boundary-value problem for the compositional
model (Eq. 10) can be projected onto the corresponding Cauchy or
initial-boundary-value problem for the auxiliary system.

The solution of the large system bi(xD, tD) realizes the
mapping from the plane (xD, tD) to the set of tie lines in a four-
vertices tetrahedron of a four-component phase diagram. The im-
age of the domain of the plane (xD, tD), xD > 0, tD > 0, defines 2D
surfaces in the tetrahedron. The auxiliary solution bi(c, f) also
maps the domain of the plane (c, f), where the initial-boundary-
value problem is defined, onto a 2D surface in the tetrahedron.
From the splitting of the compositional model (Eq. 10) into the
auxiliary system (Eq. 20) and the lifting problem (Eq. 19), it
follows that these surfaces coincide.

The auxiliary solution depends on the thermodynamic func-
tions ai and bi and on the composition fractions of the initial and
boundary conditions. Therefore, the 2D solution image in the
tetrahedron is independent of transport properties (i.e., fractional-
flow curves, phase relative permeability, and phase viscosities).

As a particular case, minimum miscibility pressure is also
independent of phase relative permeabilities and phase viscosities.
The phenomenon of compositional-path independence of hydro-
dynamic properties of an oil/gas/rock system was observed for
continuous-gas-injection processes (Wang and Orr 1997).

Splitting significantly reduces the amount of calculation for
sensitivity study with respect to the transport properties: The aux-
iliary thermodynamic problem may be solved once for given
reservoir and injected compositions; variation of relative perme-
abilities and viscosities should be performed only in the solution
of one transport equation.

Phase Behavior

To calculate the flux functions a = a(b) of the auxiliary system, it
is necessary to model the phase behavior of the fluids analyzed.
The Peng-Robinson equation of state (Peng and Robinson 1976)
was used to determine the phase diagram of the mixtures. The list
of the analyzed four-component systems is presented in Table 1.

. . . . .
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Table 2 presents critical parameters of each component (Prausnitz
1969).

The phase-equilibrium diagrams were built using in-house
software. Mole fractions were converted to volume fractions, as-
suming that individual densities of each component in both phases
are equal.

Flash calculations were performed for the set of basic mixture
points that were selected in a way to cover the domain of b2 and
b3 variation uniformly.

Figs. 2 through 6 present, respectively, two-phase diagrams
for the five systems listed in Table 1. For evaluated temperatures
and pressures, the two-phase region is relatively small for all
systems. Phase diagrams are used to calculate flux functions for
the auxiliary system (Eq. 20).

Flux functions a = a(b) are also determined from the same
basic mixture points as were used for building phase diagrams
(Figs 2 through 6). The values of fluxes a2, a3 and concentrations
b2, b3 were calculated in the same points by Eqs. 8 and 9, res-
pectively. Flux functions ai(b2, b3), i=2, 3 were approximated
by second-order polynomials using the least-squares method.

Existence of Elliptic Region

In this section, it is shown that the auxiliary system (Eq. 20) can
contain an elliptic region (i.e., it is not always hyperbolic). All
eigenvalues for the compositional two-phase model are real if and
only if the same is applicable for the auxiliary system (Pires et al.
2006). Therefore, from the fact that the auxiliary system contains
an elliptic region, it follows that the compositional system also
has an elliptic region.

The auxiliary system of the four-component-flow problem
consists of two equations

@b2
@f

þ @a2 b2; b3ð Þ
@c

¼ 0

and

@b3
@f

þ @a3 b2; b3ð Þ
@c

¼ 0: (28)

The 2 � 2 quasilinear system (Eq. 28) is called hyperbolic
if two eigenvalues are real. It is called elliptic if two eigenvalues
are complex. If eigenvalues are not equal for all variables (b2, b3),
the system is strictly hyperbolic (Dafermos 1999).

It follows from Eq. 22 that if the n-component auxiliary system
(Eq. 20) presents elliptic regions [some pairs of eigenvalues lkð~bÞ

are complex], the general system (Eq. 10) also is a mixed hyper-

bolic/elliptic type [pairs of complex eigenvalues LkðC;~bÞ].
Eigenvalues lk of Eq. 28 are roots of the determinant of the

matrix

det

@a2
@b2

@a2
@b3

@a3
@b2

@a3
@b3

" #
� l I

( )
¼ 0; (29)

where I is the identity matrix. Eq. 28 is hyperbolic (i.e., Eq. 29 has
two real roots) if discriminant

z ¼ @a2
@b2

þ @a3
@b3

� �2

� 4
@a2
@b2

@a3
@b3

� @a2
@b3

@a3
@b2

� �
(30)

is nonnegative. If, in some region of the plane (b2,b3), function z
assumes negative values, the region is called elliptic.

For all studied values of pressure and temperature (Table 1),
the C1-C3-C6-C10 system of hydrocarbons was strictly hyperbolic
(i.e., z > 0). Substitution for methane by N2 in the mixture
resulted in the appearance of an elliptic region.

The following flux functions were determined for the N2-C3-
C6-C10 system at 100 bar and 350 K:

a2 b2; b3ð Þ ¼ 14:23 b2ð Þ2þ1:095b2 � 0:3104b3 þ 811:2b2b3

and

a3 b2; b3ð Þ ¼ 9953 b3ð Þ2þ0:2b2 þ 29:91b3 � 102:1b2b3:

. . . . . . . . . . . . . . . . . . . . . . . . : (31)

Fig. 7 shows a 3D plot of z(b2, b3) as calculated by Eq. 30
from compositions of coexisting phases and parameters a and b in
basic points. The fact that function z can take negative values is
visible from projection of the surface z = z(b2, b3) in Fig. 8 on the
plane (b3, z). Fig. 8 shows the region where function z is negative.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . .

Fig. 2—Phase diagram for C1-C3-C6-C10 at 50 bar and 350 K.

Fig. 3—Phase diagram for C1-C3-C6-C10 at 100 bar and 300 K.

Fig. 4—Phase diagram for N2-C3-C6-C10 at 100 bar and 350 K.
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For the values (b2, b3) where z(b2, b3) < 0, auxiliary-system
Eq. 28 is elliptic.

Similar results were obtained for this system at the same tem-
perature and greater pressures. The following flux functions were
determined at 200 bar and 350 K:

a2 b2; b3ð Þ ¼ 11 b2ð Þ2�0:8688b2 þ 0:09526b3 þ 424:5b2b3

and

a3 b2; b3ð Þ ¼ 5233 b3ð Þ2�6:126b2 � 4:262b3 þ 212:6b2b3:

. . . . . . . . . . . . . . . . . . . . . . . . : (32)

And at 300 bar and 350 K,

a2 b2; b3ð Þ ¼ �2:856b2 � 0:8497b3 þ 382:8b2b3

and

a3 b2; b3ð Þ ¼ 4130 b3ð Þ2þ8:725b2 � 47:632b3 � 633:9b2b3:

. . . . . . . . . . . . . . . . . . . . . . . . : (33)

Figs. 9 and 10 show the elliptic regions for system N2-C3-C6-
C10 at 200 bar and 350 K and at 300 bar and 350 K, respectively.

To check if the existence of elliptic regions is a property of
the compositional model (Eq. 10) and not an artifact of the
polynomial adjustment of flux functions (Eqs. 31 through 33),
the Jacobian matrix (Eq. 29) was calculated numerically—partial
derivatives were obtained from flash calculations for the mixtures
in neighborhoods of the basic mixture points. Forms of elliptic
regions were close to those shown in Figs. 8 through 10.

It is important to find out for which multicomponent mixtures
and for which equations of state the elliptic region could be
expected. The formulation is similar to those already posed
(Juanes and Patzek 2004a; Juanes and Patzek 2004b; Juanes and
Patzek 2004c), where physics assumptions on the behavior of a

three-phase system in porous media resulted in hyperbolicity of
the flow system. The analogous formulations for the existence of
an elliptic region in a compositional model are

• Which thermodynamic property corresponds to the existence

of only real eigenvalues of the matrix @ai
@bj

			 			?
• Which thermodynamic systems possess a set of tie lines that

have complex eigenvalues?
This research involves differential geometry of tie-line mani-

folds. A more practical question would be, “Which combinations
of adjustment parameters in different equations of state corre-
spond to the mixed hyperbolic/elliptic type of auxiliary system?”
In this paper, we present only examples of the existence of the
elliptic region, leaving the other research for a future paper.

Probably, splitting of the compositional model into thermody-
namic and hydrodynamic models is more fundamental fact than
that presented in this paper. The model (Eq. 10) assumes that
pressure is constant during the displacement, which is relevant
for displacement processes. For compositional flows toward a
well, where pressure drawdown is important, Darcy’s law is cou-
pled with mass-balance equations (Eq. 10). Splitting for this sys-
tem is performed asymptotically, where a small parameter is
dimensionless well rate (Oladyshkin and Panfilov 2006).

Oil Displacement by N2-Based Solvent

Consider displacement of oil by N2 with low-concentration hydro-
carbon additives at pressure P = 300 bar and temperature T = 350
K. The phase diagram for the mixture is shown in Fig. 6. At some
mixture points, the discriminant is negative (Fig. 10) (i.e., the
system contains an elliptic region). Compositions of injected and
displaced fluids are presented in Table 3. Points J and I on the
phase diagram (Fig. 11) correspond to compositions of injected
gas and reservoir oil, respectively.

The auxiliary system (Eq. 28) is a conservation-law system
with quadratic-polynomial flux functions (Eq. 33), and the auxil-
iary problem (Eqs. 11 and 12) is a Riemann problem. The solution

Fig. 5—Phase diagram for N2-C3-C6-C10 at 200 bar and 350 K. Fig. 6—Phase diagram for N2-C3-C6-C10 at 300 bar and 350 K.

Fig. 7—Function z for system N2-C3-C6-C10 at 100 bar and 350 K.
Fig. 8—Eigenvalue analysis for system N2-C3-C6-C10 at 100 bar
and 350 K.
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was obtained using Pakman software, which is based on Riemann-
problem solutions for 2 � 2 conservation-law systems with sec-
ond-order-polynomial fluxes (Marchesin and Plohr 2001).

The solution of the auxiliary problem under consideration con-
sists of two shocks that can be expressed by the structural formula
J!M!I. The values of shock speed and b values for points that
are present in the solution are given in Table 4.

Fig. 12 presents trajectories of shock waves corresponding to
solution J!M!I of the auxiliary system on the plane (c,f).
Initial condition I and boundary condition J are set along straight
lines. Two shocks in the solution correspond to the appearance of
Zone M between Zones I and J.

The structure of displacement zone with trajectories of shock
fronts is presented in Fig. 13 on the plane (xD,tD). The solution
consists of a jump from J to 1 with speed DJ1, of rarefaction 1–2,
of shock 2–M, constant state M, shock M!3, constant state 3
followed by another jump from 3 to I.

The compositional path corresponding to the described solu-
tion is shown in Fig. 11.

Table 5 presents shock speed, saturation, and b values for
points that are present in the solution.

Profiles of liquid saturation and four concentrations are shown
in Fig. 14. Evaporation shock moves with low speed DJ1 = 0.041.
Phase transitions during condensed drive occur along fronts that
move with speeds D2M = 0.986 and DM3 = 0.987. Phase transition
does not occur on the shock D3I = 1.010.

Welge’s method for calculating an average value in a self-
similar solution (Welge 1952) can be generalized for the case of
average component concentration in the compositional model
(Bedrikovetsky 1993). This method allows calculating the recov-
ery factor for each component. The recovery factor for the fourth
(the heaviest) component vs. time in pore volumes injected (PVI)
is shown in Fig. 15.

Since phase transitions occur at a sequence of shocks with
speeds near unity, solvent breakthrough takes place at approxi-
mately 1 PVI; production of initial reservoir oil takes place until
that moment. The speed of jump J!1 is very low. Therefore,
complete evaporation of oil into injected gas occurs after several
PVI. Recovery factor increases slowly until the moment of com-
plete evaporation.

Summary and Conclusions

The (n - 1)�(n - 1) system of conservation laws for two-phase
n-component flow in porous media with interphase mass transfer

can be split into an (n - 2)�(n - 2) auxiliary system and one
independent lifting equation. The splitting is obtained from the
change of independent variables (xD,tD) to flow potentials (c, f).
The flow potentials are Lagrangian coordinates associated
with mean flux of the nth component and with the overall flux,
respectively. This change of coordinates changes the conservation
law for the nth component into the lifting equation. It transforms
conservation laws of components 2,3, . . . , n-1 into the auxiliary
system. The auxiliary system contains only equilibrium thermo-
dynamic variables (equilibrium fractions of each phase), while
the large system contains both hydrodynamic (phase relative per-
meabilities and viscosities) functions and equilibrium ther-
modynamic variables. Therefore, phase transitions occurring
during displacement are determined by the auxiliary system
(i.e., they are independent of hydrodynamic properties of fluids
and rock).

Approximation of auxiliary flux functions by quadratic poly-
nomials allows for exact solution of the 2�2 auxiliary problem
by use of the Pakman software. The solution could contain any
sequence of rarefaction and shock waves. Therefore, the splitting
technique provides an analytical model of four-component dis-
placement of real reservoir mixtures.

The auxiliary system for four-component two-phase flow in
porous media was analyzed, elliptic regions were found in sys-
tems containing N2 at pressures ranging from 100 to 300 bar and
at a temperature of 350 K. Systems of hydrocarbons are hyper-
bolic for this range of pressures and temperatures.

Fig. 9—Eigenvalue analysis for system N2-C3-C6-C10 at 200
bar and 350 K. Fig. 10—Eigenvalue analysis for system N2-C3-C6-C10 at 300 bar

and 350 K.

Fig. 11—Initial, injection, and intermediate mixture points along
with the compositional path on phase diagram.
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Nomenclature

c = volumetric fraction

C = overall volumetric fraction of nth component

Ci = overall volumetric fraction of ith component

D = shock speed for the large system

f = liquid fractional flow

F = overall volumetric fractional flow of nth component

Fi = overall volumetric fractional flow of ith component

~g = vector of independent mass fractions of gas phase

G = gas-phase composition

kr = relative permeability

l = reservoir size

L = liquid phase composition

n = number of components

P = pressure

S = liquid volumetric fraction

t = time

T = temperature

tD = dimensionless time

u = total flux

V = shock speed for the auxiliary system

x = distance

xD = dimensionless distance

a = geometric parameter of thermodynamic equilibrium

b = geometric parameter of thermodynamic equilibrium

Y = transformation of independent variables

l = eigenvalue of auxiliary system

L = eigenvalue of large system

m = viscosity

f = potential for nth-component flow

F = porosity

c = flow potential of overall flux

o = acentric factor

O = closed domain

Subscripts

c = critical

g = gas phase

i = component index

k = wave index

l = liquid phase

Superscripts

D = drive gas

I = initial oil

J = injected solvent
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Appendix A—Derivation of Conservation-Law
System in Lagrangian Coordinates

Let us derive Eq. 19. The differentials of two potentials (Eqs. 16
and 17) are:

df ¼ FdtD � CdxD

and

dc ¼ �dtD þ dxD: (A-1)

The differentials dtD and dxD can be calculated from Eq. A-1,
which is a 2 � 2 linear system with respect to unknowns dxD
and dtD.

dtD ¼ 1

F� C
dfþ C

F� C
dc (A-2)

and

dxD ¼ 1

F� C
dfþ F

F� C
dc: (A-3)

Taking full differential of both sides of Eq. A-2 yields

d2tD ¼ 0 ¼ @

@f
C

F� C

� �
� @

@c
1

F� C

� �
 �
dfdc: (A-4)

Eq. 19 follows from Eq. A-4.
Let us show that if C(xD,tD), bi(xD,tD), i = 2, 3, . . . , n - 1 is a

solution of Eq. 10, and f (xD,tD) and c(xD,tD) are the potential
functions (Eqs. 16 and 17), then the function bi(c,f) obeys the
following conservation law:I

@O

aidf� bidc ¼ 0; (A-5)

where O is a closed domain O�R2.
Eq. 10 was derived from the conservation law of ith compo-

nent volume balance in the integral form:I
@O

ai F þ bið Þ dtD � ai C þ bið Þ dxD ¼ 0: (A-6)

Here, O is an arbitrary domain in plane (xD,tD) with smooth
boundary @O.

Applying the Green-Gauss theorem to Eq. A-6 yieldsZ Z
@ aiCþ bið Þ

@tD
þ @ aiFþ bið Þ

@xD


 �
dxDdtD ¼ 0: (A-7)

From Eq. A-6, and using the definition of potentials in Eqs. 16
and 17, we obtain:I

@O

ai F þ bið Þ dtD � ai C þ bið Þ dxD

¼
I
@O

ai F dtD � C dxDð Þ � bi dxD � dtDð Þ

¼
I
@O

aidf� bidc ¼ 0: (A-8)

In domains O where the solution is a smooth function, from the
integral conservation-law (Eq. A-8) the system of partial-differential
equations (Eq. 20) follows. In narrow domains around shock trajec-
tories, from Eq. A-8 the Hugoniot-Rankine conditions follow.

Appendix B—Initial-Boundary-Value Problem for
Auxiliary System and Lifting Equation

Now we formulate initial-boundary-value problems for continu-
ous gas injection and for injection of a rich-gas slug with gas drive
for independent variables (c,f).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . .

. . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . .

. . . . . . .

. . . . . . . . . . . . . . . . . . . . . .
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The initial and boundary conditions (Eqs. 11, 12, and 14) allow
calculation of both potentials along the axes xD and tD where the
conditions are set.

Performing the integration (Eq. 16) in xD accounting for
Eq. 11, we obtain the potential f along the axis xD:

tD ¼ 0 : f ¼ �CI
nc

c ¼ xD: (B-1)

Therefore, the initial conditions (Eq. 11) in coordinates (c, f)
become

f ¼ �CIc : C ¼ CI (B-2)

and

f ¼ �CIc :~b ¼~bI: (B-3)

Integration (Eq. 16) in tD, accounting for boundary conditions
(Eq. 12), allows calculation of the potential f along the axis tD.

xD ¼ 0 : f ¼ �FJ
n c

c ¼ �tD
: (B-4)

The boundary conditions (Eq. 12) take the form

f ¼ �FJc : C ¼ CJ (B-5)

and

f ¼ �FJc :~b ¼~bJ : (B-6)

The boundary condition (Eq. 14) for slug injection gives the
following value of potential f:

xD ¼ 0 : f ¼ �FJ
n c;�1 < c < 0

FJ
n � FD

n cþ 1ð Þ;�1 < c < � 1

�
: (B-7)

Therefore, the boundary conditions (Eq. 14) become

C ¼ CJ ;f ¼ �FJc;�1 < c < 0

CD;f ¼ �FJ � FD c� 1ð Þ;�1 < c <� 1

�
(B-8)

and

~b ¼ ~bJ ;f ¼ �FJc;�1 < c < 0
~bD;f ¼ �FJ � FD c� 1ð Þ;�1 < c<� 1

�
: (B-9)

Therefore, the transformation (Eq. 18) separates the initial and
boundary conditions for the large system (Eq. 10) into the
initial-boundary-value problem for the auxiliary system (Eq. 20)
and the initial-boundary-value problem for the lifting equation
(Eq. 19).
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