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Asymptotic solution for non-linear stage of colloidal suspension flow in porous media is developed. The
expansion is performed behind the concentration front; the zero order approximation coincides with the
short-time solution of the linearised system. Using the first order approximation allows significantly
enhancing the validity time period for the analytical model if compared with the linearised solution,
allowing using the long-term experimental breakthrough concentration history for the model
adjustment. Laboratory injection tests for three size colloids are performed. The asymptotic solution is
used to tune the model parameters from the breakthrough histories of two size particles; good quality
of matching is observed. The breakthrough concentration history for the third size particles is compared
with the prediction by the adjusted model; good quality prediction is observed. The above serves for val-
idation of the asymptotic method for the model tuning and prediction of non-linear colloidal suspension
flow in porous media.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Colloidal suspension flow in porous media with particle capture
is essential for numerous chemical, environmental and petroleum
technologies. It takes place in industrial filtering, size exclusion
chromatography, water production by artesian wells, industrial
waste disposal, aquifer remediation, contamination of aquifers by
viruses and bacteria, low quality water injection in oilfields, and
fines migration in low consolidate and high-clay-content oil
reservoirs [1–11].

Planning and design of the above chemical engineering and
petroleum technologies are based on mathematical modelling.

Deep bed filtration of colloidal suspensions in porous media is
described by the equation of mass balance of suspended and
retained particles and the retention rate equation [12–14]:
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Nomenclature

a reciprocal of the front speed
C suspended particle concentration distribution by sizes,

L�4

Cv variance coefficient
c total suspended particle concentration, L�3

D accuracy of the asymptotic model
E normalised least square deviation of the model from the

measured data
fa accessible fractional flow function
H pore concentration distribution by sizes, L�3

h total pore concentration (density), L�2

j jamming ratio
k permeability, L2

k1 conductance in a single pore, L4

l inter-chamber distance, L
pa particle attachment probability
rp radius of a pore, L
rs radius of a particle, L
S dimensionless captured particle concentration
t time, T or dimensionless
tf total injection time
U Darcy velocity, LT�1

u combined standard uncertainties
x linear coordinate, L or dimensionless
y independent variable in the differential-integral system

Greek letters
d Dirac delta function

dC relative combined standard uncertainties for suspended
concentration

dS relative combined standard uncertainties for retained
concentration

fb zeta potential for glass beads, ML2 T�3 I�1

K dimensionless filtration coefficient
k filtration coefficient, L�1

m flux reduction factor in a single pore
r total concentration of captured particles, L�3

/ porosity
/a accessible porosity
R captured particle concentration distribution by sizes,

L�4

ws surface potential for particles, ML2 T�3 I�1

Subscripts
a accessible
C suspended concentration
S retained concentration
p pore
0 initial value
0,1,2 the zero, first and second order of asymptotic solution

Superscripts
0 boundary value at the inlet
L boundary value at the outlet
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@

@t
ð/sc þ rÞ þ U

@

@x
ðcfaÞ ¼ 0; fa ¼ 1 ð1Þ
@r
@t
¼ kðrÞUc ð2Þ

where kðrÞ is the filtration coefficient and s is the accessibility
factor that is equal to the ratio between the porosity accessible to
particles and the overall rock porosity. The fractional flow function
fa corresponds to the fraction of the overall flux moving via the
accessible pores [15,16].

At low retained concentration r, the filtration coefficient
becomes constant kð0Þ and the system becomes linear, allowing
for exact solution for clean bed injection with constant concentra-
tion c0:

cðx;tÞ¼ exp � k
f a

x
� �

; t> a

0; t< ax

(
; rðx;tÞ¼ kðt�axÞexp � k

f a
x

� �
; t> ax

0; t< ax

(
; a¼/s

fa

ð3Þ

More complex solutions for deep bed filtration accounting for
diffusion are presented by van Genuchten and Alves [17], Ziskind
et al. [18] and Guerrero et al. [19,20].

Population balance models for colloidal suspension flows in
porous media include particle size distributions of suspended
and retained concentrations and pore throat size distribution
[21–24]. The models describe the distribution changes due to dif-
ferent attachment and straining rates of different size particles in
different size pores.

Other micro scale models include stochastic trajectory analysis
[25,26], random walk master equation [27–32] and direct pore
scale simulation [14,33].
The model adjustment from the laboratory data is necessary for
reliable process prediction by the mathematical modelling. The
adjustment of deep bed filtration models is performed by solving
the inverse problems [34,35] or by least square tuning of the model
parameters [36]. Presently the tuning is performed using the ana-
lytical solution for the linearised population balance model (3),
where the breakthrough concentration values c(1,tbr) for particles
with different radii rs are used to determine the filtration coeffi-
cient kðrsÞ [37]. So, only one tuning constant is retrieved per one
size of the injected particles, i.e. one measurement (3) provides
with just a single constant for tuning of the population balance
model.

It significantly limits the experimental information necessary
for the population balance model adjustment due to limited num-
ber of particle sizes available on the market. The amount of exper-
imental information can be significantly increased by using the
suspended concentration histories long after the breakthrough
moment, but the expressions (3) are valid during short after-the-
breakthrough periods.

Moreover, the accurate determination of suspension concentra-
tion in the breakthrough time cannot be done from one measure-
ment, so the average from the ‘‘neighbouring’’ points is taken.
Yet, the retention concentration grows after the breakthrough
moment; it is not accounted for in the solution (3) and decreases
the accuracy of c(L,L/U) calculation. Despite the method (3) is
widely spread, the time period after the breakthrough where the
method is valid has never been estimated.

In the present work, the asymptotic model for non-linear deep
bed filtration processes is developed. The zero order approxima-
tion coincides with the known solution of the linearised system
(3). The first order approximation allows prolonging significantly
the time period, where the breakthrough concentration can be
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used for the model adjustment, allowing increasing the number of
independent constants to adjust the population balance model by
three. The second order approximation allows determining the
validity time interval for the first order approximation.

The laboratory deep bed filtration is performed for colloids of
three different sizes. The analytical method allows the population
balance model adjustment from two-particle-size filtration and
predictive modelling for a third size particle. It was found out that
under the common accuracy of the colloidal flow test, the first
order approximation model can use the breakthrough concentra-
tion during 110 pore volumes injected (PVI) while the solution
(3) is valid for 10 PVI. Good match of the laboratory data for two
size particles and good agreement between predictive modelling
and experimental data for third size particles validate the proposed
method for the population balance model tuning based on the
asymptotic solution.

The paper is organised as follows. The population balance equa-
tions and their upscaling are briefly presented in Section 2. Section
3 derives the asymptotic solution for one-dimensional suspension
injection at large scale; the detailed derivations are given in
Supplementary Information. Downscaling of the asymptotic
solution along with the derivation of pore throat size distribution
during size exclusion is given in Section 4. Section 5 describes
the laboratory tests on one-dimensional suspension injection.
The asymptotic model is adjusted by the experimental data in Sec-
tion 6, where the method validity is also analysed from the point of
view of uncertainties and errors in measurements and modelling.
The paper is concluded by discussions of the validity of asymptotic
method for adjustment of non-linear population balance model for
colloidal suspension flow in porous media.

2. Stochastic model for colloidal suspension transport in porous
media

A simplified geometric structure of the parallel bundles of size
distributed cylindrical capillary intercalated by the mixing
chambers is assumed for the modelling of suspension and colloids
in porous media (Fig. 1). Complete mixing occurs in the chambers.
A spherical particle larger than the capillary cross sections is
irreversibly captured at the entrance of this capillary at the cham-
ber exit, while the smaller spheres continue motion in thicker
capillary.

The total concentrations of suspended particles, retained
particles and pores (c, r and h, respectively) are obtained by aver-
aging of the corresponding size distributed concentrations:

cðx; tÞ ¼
Z 1

0
Cðrs; x; tÞdrs ð4Þ

rðx; tÞ ¼
Z 1

0
Rðrs; x; tÞdrs ð5Þ
Fig. 1. Geometric model of porous media: parallel ca
hðx; tÞ ¼
Z 1

0
Hðrp; x; tÞdrp ð6Þ

Here the surface pore concentration H is defined by the number of
pores crossing the unity cross section area and is equal to volumet-
ric concentration times the inter-chamber distance l.

Flow of size distributed particles in porous media with the vary-
ing size pores is described by the system of three equations: the
population balance equation for suspended and retained particles,
the kinetic equation for particle retention and the equation for pore
plugging (see [24] for detailed derivations):

@

@t
/a½H; rs�Cðrs; x; tÞ þ Rðrs; x; tÞf g þ U

@

@x
fCðrs; x; tÞfa½H; rs�g ¼ 0

ð7Þ

@Rðrs;x;tÞ
@t

¼UCðrs;x;tÞf a½H;rs�
lk½H�

Z 1

0
½1�mðjÞþmðjÞpa�k1ðrpÞHðrp;x;tÞdrp

ð8Þ

@Hðrp;x;tÞ
@t

¼�k1ðrpÞ
k

UHðrp;x;tÞ
Z 1

0
½1�mðjÞþmðjÞpa�Cðrs;x;tÞfa½H;rs�drs

ð9Þ

Here pa is the particle attachment probability, the flux reduction
factor in a single pore m is a function of jamming ratio j = rs/rp and
l is the inter-chamber distance:

mðjÞ ¼ ð1� jÞ2ð1þ 2j� j2Þ; j < 1
0; j P 1

(
; l ¼ l0ð1� faÞ

b ð10Þ

The accessible and overall porosity are obtained by the pore
cross section averaging:

/a½H; rs� ¼
Z 1

rs

pr2
pHðrp; x; tÞdrp; /½H� ¼

Z 1

0
pr2

pHðrp; x; tÞdrp

ð11Þ

The fractional function for accessible flow is obtained by the
averaging of the flux over all pores:

fa½H; rs� ¼
1
k

Z 1

0
mðjÞk1ðrpÞHðrp; x; tÞdrp ð12Þ

where the conductivity of a single pore and the overall rock perme-
ability are

k1ðrpÞ ¼ pr4
p=8; k½H� ¼

Z 1

0
k1ðrpÞHðrp; x; tÞdrp ð13Þ

Introduction of accessible and inaccessible flows, fa and 1 � fa,
makes the suspension transport in porous media analogous to
two-phase immiscible flow, where /a// and (/ � /a)// are phase
saturations (see [1] for detailed derivations).
pillary bundles alternated by mixing chambers.
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Under the condition of complete pore plugging, the sum of vol-
umetric concentrations of vacant pores and retained particles is
constant, i.e. h/l + r = h0/l + r0.

In the particular case of mono-sized suspension flow

Cðrs; x; tÞ ¼ cðx; tÞdðrs � r0Þ ð14Þ

system (7–9) allows for exact solution

Hðrp; x; tÞ ¼ Hðrp; yðhÞÞ ¼ H0ðrpÞe�½1�mðjÞþmðjÞpa �k1ðrpÞyðhÞ;

y ¼ 0 : H ¼ H0ðrpÞ ð15Þ

where the auxiliary function y(h) is implicitly determined by

hðyÞ ¼
Z 1

0
H0ðrpÞe�½1�mðjÞþmðjÞpa �k1ðrpÞydrp; y ¼ 0 : h ¼ h0 ð16Þ

Substituting (14–16) into system (7–9) and integrating in rs

from zero to infinity yields:

@

@t
ð/aðrÞc þ rÞ þ U

@

@x
ðcfaðrÞÞ ¼ 0 ð17Þ

@r
@t
¼ kðrÞUc ð18Þ

where the effective material functions of the phenomenological
model (17, 18) – accessible porosity /a(r), fractional flow fa(r)
and filtration coefficient kðrÞ – are calculated from the micro scale
model (8, 11, 12) as

/aðrÞ ¼
Z 1

r0

pr2
pH0ðrpÞe�½1�mðjÞþmðjÞpa �k1ðrpÞyðh0�lrÞdrp ð19Þ

faðrÞ ¼
1

kðrÞ

Z 1

0
mðjÞk1ðrpÞH0ðrpÞe�½1�mðjÞþmðjÞpa �k1ðrpÞyðh0�lrÞdrp ð20Þ

kðrÞ ¼ 1
lkðrÞ faðrÞ

Z 1

0
½1� mðjÞ

þ mðjÞpa�k1ðrpÞH0ðrpÞe�½1�mðjÞþmðjÞpa �k1ðrpÞyðh0�lrÞdrp ð21Þ

where kðrÞ ¼
R1

0 k1ðrpÞH0ðrpÞe�½1�mðjÞþmðjÞpa �k1ðrpÞyðh0�lrÞdrp.
For mono-sized suspension transport, the unknowns for the

system (17, 18) are the averaged particle concentrations c and r
and size distributed concentration of pores H, i.e. the system is
defined at the pore scale. However, system (17, 18) depends on
all the averaged concentrations, i.e. the transformation (15, 16)
along with averaging realise the exact upscaling.

For size exclusion particle capture, the particle attachment
probability pa = 0; therefore, the filtration coefficient becomes
kðrÞ ¼ 1

l f aðrÞ½1� f aðrÞ� (see [38]).
The procedure (15, 16) allows for inversion, i.e. the distributed

pore concentration H(rp, x, t) can be calculated from each solution
of the upscale system (17, 18).

Introduction of the dimensionless parameters x! x=L;
t ! Ut=L/0; C ¼ c=c0; S ¼ r=c0/0; K ¼ kðrÞL and s = /a//0 leads
to the following dimensionless form of the governing Eqs. (17, 18):

@

@t
ðsðSÞC þ SÞ þ @

@x
ðCfaðSÞÞ ¼ 0 ð22Þ

@S
@t
¼ KðSÞC ð23Þ

Constant concentration injection into clean porous media corre-
sponds to the following initial and boundary conditions:

t ¼ 0 : C ¼ S ¼ 0 ð24Þ

x ¼ 0 : C ¼ 1 ð25Þ
The system (22, 23) contains both time and special derivatives
of suspended concentration, so both initial and boundary condi-
tions are posed for C. The system contains only time derivative
for retained concentration, so only initial condition for S is posed.
The boundary x = 0 coincides with characteristic line for Eq. (23).
Therefore, the retained concentration at the inlet boundary S(0,t)
can be found by substituting the boundary condition C = 1 into
Eq. (23) and separating variables in the obtained ordinary differen-
tial equationZ Sð0;tÞ

0

du
KðuÞ ¼ t

i.e., (22–25) is a Goursat problem [39].
The characteristic form of the system (22, 23) shows that ahead

of the front (for x > t/a, where a = s(0)/fa(0) is the reciprocal of the
front speed), the suspended and retained concentration is equal
to zero. As it follows from (23), the retained concentration is a
continuous function (see [1] for proof). Therefore, the retained
concentration along the front is equal to zero.

The characteristic lines of the system (22, 23) with velocity fa/s
start at the inlet boundary x = 0 and completely cover the domain
x > 0, t � ax > 0 (see Eq. (A2)). So, boundary condition (25) and the
value S = 0 on the concentration front t = ax provide with the
unique solution.

Characteristic line passing point (0,0) in the (x,t) plane coincides
with the concentration front. Therefore, the suspended concentra-
tion along the front can be also found from the condition S = 0; the
expression is derived in Supplementary Information.

Suspended and retained concentrations are positive behind the
concentration front. The corresponding asymptotic solution of the
problem (22–25) is derived in the next section.

3. Asymptotic solution

Let us consider particle concentrations behind the front. The
suspension concentration C(1,t) is measured at the core effluent
after the breakthrough, i.e. for x = 1, t > a. This half-interval
ð1; a;1½ �Þ in plane (x,t) belongs to the domain behind the concen-
tration front t � ax = t0 > 0 (Fig. 2). The period from the moment
of passing of the concentration front up to the current moment t0

= t � ax is assumed to be a small parameter in the domain behind
the front. Therefore, the asymptotic solution of the system (22, 23)
subject to the boundary condition (25) and zero value of S on the
front is presented in the following series form

Cðx; tÞ ¼ c0ðxÞ þ ðt � axÞc1ðxÞ þ ðt � axÞ2c2ðxÞ þ . . . ð26Þ

Sðx; tÞ ¼ ðt � axÞs0ðxÞ þ ðt � axÞ2s1ðxÞ þ ðt � axÞ3s2ðxÞ þ . . . ð27Þ
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The problem is solved in the domain x > 0, t � ax > 0. The
detailed derivations of zero, first and second order asymptotic
systems are presented in Supplementary Information. The solu-
tions derived in Supplementary Information provide the zero, first
and second order asymptotic approximations for C and S.

The zero order term c0ðxÞ; ðt � axÞs0ðxÞ is the solution of system
(B5)

c0ðxÞ ¼ ðaf1 � g1Þ þ ð1þ g1 � af1Þe
k0
f 0

x
� ��1

ð28Þ

s0ðxÞ ¼ k0 ðaf1 � g1Þ þ ð1þ g1 � af1Þe
k0
f 0

x
� ��1

ð29Þ

and constants f0, f1, . . ., g1, g2, . . . are defined by Eq. (A6).
The first order term has the form ðt � axÞc1ðxÞ; ðt � axÞ2s1ðxÞ,

determined by system (B6)
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Fig. 3. Breakthrough concentrations obtained from 0th, 1st and 2nd order
asymptotic solutions.

c1ðxÞ ¼
ðg2k0 � ak0f 2Þ þ ð1þ g1 � af1Þ k1 � 2f 1k0

f 0

� �
e

k0
f 0

x � ðg2k0 � ak0f 2Þ þ ð1þ g1 � af1Þ k1 � 2f 1k0
f 0

� �� �
e2

k0
f 0

x

ðaf1 � g1Þ þ ð1þ g1 � af1Þe
k0
f 0

x

 �3 ð30Þ

s1ðxÞ ¼
k0k1

2 ðaf1 � g1Þ þ k0ð1þ g1 � af1Þ k1 � f 1k0
f 0

� �
e

k0
f 0

x � k0ð1þ g1 � af1Þ k1
2 �

f 1k0
f 0

� �
e2

k0
f 0

x

ðaf1 � g1Þ þ ð1þ g1 � af1Þe
k0
f 0

x

 �3 ð31Þ
The second order term ðt � axÞ2c2ðxÞ; ðt � axÞ3s2ðxÞ is obtained
by solving system (B7)

c2ðxÞ ¼ c4
0ðxÞe

3
k0
f 0

x
Z x

0
FðxÞdx ð32Þ

where

FðxÞ¼ 3af1s1ðxÞc1ðxÞþ3af2ðxÞs2
0ðxÞc1ðxÞþ6af2s0ðxÞs1ðxÞc0ðxÞþ3af3s3

0ðxÞc0ðxÞ
�
�ð3g1s1ðxÞc1ðxÞþ3g2s2

0ðxÞc1ðxÞþ6g2s0ðxÞs1ðxÞc0ðxÞþ3g3s3
0ðxÞc0ðxÞÞ

�ððg1�af1Þc0ðxÞþ1Þðk1s0ðxÞc1ðxÞþk1s1ðxÞc0ðxÞþk2s2
0ðxÞc0ðxÞÞ

� f 1s0ðxÞc01ðxÞþ f 1s00ðxÞc1ðxÞþ f 1s1ðxÞc00ðxÞþ f 1s01ðxÞc0ðxÞ
�
þf 2s2

0ðxÞc00ðxÞþ2f 2s0ðxÞs00ðxÞc0ðxÞ
�	

e�3
k0
f 0

xf�1
0 c�4

0 ðxÞ

and

s2ðxÞ¼
1
3

k1s1ðxÞc0ðxÞþk2s2
0ðxÞc0ðxÞþk1s0ðxÞc1ðxÞþk0c2ðxÞ

� �
ð33Þ

The zero order approximation

C0ðxÞ ¼ c0ðxÞ
S0ðx; tÞ ¼ ðt � axÞs0ðxÞ

ð34Þ

is presented in Figs. 8 and 9 by dash-dotted curves, the first order
approximation

C1ðx; tÞ ¼ c0ðxÞ þ ðt � axÞc1ðxÞ
S1ðx; tÞ ¼ ðt � axÞs0ðxÞ þ ðt � axÞ2s1ðxÞ

ð35Þ

is given by dashed curves and the second order approximation

C2ðx; tÞ ¼ c0ðxÞ þ ðt � axÞc1ðxÞ þ ðt � axÞ2c2ðxÞ
S2ðx; tÞ ¼ ðt � axÞs0ðxÞ þ ðt � axÞ2s1ðxÞ þ ðt � axÞ3s2ðxÞ

ð36Þ

is shown by solid curves. The solution curves corresponding to the
zero, first and second order approximations for three size particles
are shown in Fig. 3 for suspended concentration and in Fig. 4 for
retained concentration. The difference between the zero and first
order approximations highly exceeds the difference between the
first and second order approximations. The curves for the first and
second order approximations almost coincide for all particle sizes.
The deviation between lower and higher order approximations
increases with time. However, the difference between the second
and first order approximations remains negligible during the overall
testing period. Despite more rigorous mathematical analysis is
required, the above indicates the convergence of the series (26,
27). Therefore, the second term in asymptotic expansion (32, 33)
can be used for the residue estimation. Further in the text, the first
order approximation (35) is used as an analytical model to tune the
constants in population balance model and the second order
approximation (36) is used for estimation of the accuracy of asymp-
totic modelling.
4. Downscaling expression for expansion terms via micro scale
parameters (H,l)

In this section we present micro scale solutions that correspond
to the zero and first order approximations (34, 35).

Substituting the asymptotic solutions (28–31) into (15) and
accounting for (16) yields the following downscaling expression
for pore concentration distribution:

Hðrp; x; tÞ ¼ H0ðrpÞe�k1yðh0�Siðx;tÞc0/0 lÞ ð37Þ

where i = 0 and 1 correspond to the zero and first order solutions,
respectively. Function h(y) in (37) is obtained by numerical integra-
tion in Eq. (16).

The evolution of pore concentration distributions at the core
inlet and outlet are presented in Fig. 5(a). There is a delay in pore
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concentration reduction at the outlet if compared with that at the
inlet, which is due to particle travel along the overall core.

The wave of disappearing plugged pores propagates from the
inlet to the outlet. Concentrations of pores larger than the injected
particles do not change with time, since the pores allow particles to
pass without being captured. Concentrations of all pores smaller
than the particles rp < r0 decrease with time monotonically. The
smaller are the pores the lower is the particle flux through them.
Therefore, larger pores are plugged with higher intensity. Pores
with size rp = r0 disappear at the inlet at the moment
t = 1000 PVI, while they disappear at the outlet at t = 1500 PVI.
The size interval of the disappeared pores [rpmax,r0] extends with
time. The maximum size of remaining pores tends to zero until
the complete plugging of the small pores as time tends to infinity.

Fig. 5(b) shows the results of downscaling for the zero and first
order approximations; the corresponding pore size concentration
distributions are denoted by continuous and dashed curves,
respectively. The first order approximation exhibits faster pore
plugging than the zero order approximation. The difference
between curves increases with time, which corresponds to Fig. 3
where the deviation between lower and higher order approxima-
tions also increases with time.
5. Experimental study of suspension flow in porous media

This section describes the materials used, laboratory setup,
experimental procedures and calculations of interaction between
the latex particles and porous media. The repulsion conditions
are created in order to avoid particle attachment to the grains
and pore walls; size exclusion becomes a dominant particle reten-
tion mechanism.

5.1. Materials

Spherical soda-lime glass beads with diameters 30–50 lm
(Catalog Number 18901, Polysciences, Inc., Warrington, PA, USA)
are used for the preparation of an engineered porous medium.
The glass beads have the following chemical composition (% by
weight): SiO2 – 66–75, Al2O3 – 0–5, CaO – 6–15, MgO – 1–5,
Na2O – 10–20, and Fe2O3 – <0.8. Organic impurities are removed
from the surface of glass beads by washing in the following
sequence with hexane, acetone, MilliQ water, hydrochloric acid
and MilliQ water. The beads are wet-packed into the flow-through
column in order to eliminate ingress of air pockets and achieve a
homogeneity of the porous medium.

Fluorescent yellow-green latex microspheres modified with
surface carboxyl groups (Polysciences, Inc., Warrington, PA, USA)
are used for suspension preparation. The mono-sized particles with
the following radii are used in each test: rs1 = 1.568, rs2 = 2.179 and
rs3 = 3.168 lm, which further in the text are called the first, second
and third particle radii, respectively. Particles with the smallest
radius rs0 = 0.510 lm have also been injected. Concentrations of
the injected latex particle suspensions vary from 1 to 4 ppm.

The suspensions are prepared using deionised high-purity Mil-
liQ water (EMD Millipore, former Millipore Corporation, USA) with
electrical resistivity of 18.2 MOhm � cm at 25 �C. Carboxyl groups
undergo deprotonation resulting in a negative net surface charge
for latex particles. Glass beads also develop a negative net surface
charge in alkaline solutions. It promotes the repulsion between the
latex particles and glass beads leading to a dominant size exclusion
mechanism for the particle capture. To guarantee the repulsion
conditions, the suspension alkalinity at pH above 10 is adjusted
by addition of an aqueous NaOH solution to the MilliQ water.
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5.2. Experimental setup and procedures

Laboratory setup used in the present study is schematically
shown in Fig. 6 and is described in details in [40]. Two pulseless
syringe pumps (NE-1000 dual syringe pumps 1 and 2, New Era
Pump Systems, Inc., Farmingdale, NY, USA) uninterruptedly deliver
suspension with latex particles top-to-bottom in the flow-through
column. The effluent sample masses are measured by an analytical
balance (KERN EW 420-3NM, Inscale Ltd., Bucks, UK). Particle
counter PAMAS S4031 GO (PAMAS GmbH, Salzuflen, Germany,
referred further in the text as PAMAS) measures the number and
size distribution of latex particles which are converted in ppm.
The following data characterise: packed column The length and
diameter of the flow-through column packed with glass beads
are equal to 1.594 and 2.336 cm, respectively. The porosity for
the rhombohedral packing of spherical glass beads is assumed to
be equal to 0.396 (see the monograph by Dullien [41]). The pore
volume is equal to 2.705 cm3.

The normalised retained particle concentration along the flow-
through column is determined after the completion of the size
exclusion experiments. The compacted glass beads with retained
latex particles are removed from the column and are split in three
parts of about 0.5 cm in length. Mass of each sample is measured
by an analytical balance. Each sample is placed in a separate bea-
ker. MilliQ water with pH adjusted at above 10 is added to the bea-
ker at the ratio of 40 mL/g. Ultrasonification of these glass beads
results in release of the retained latex particles. The particles are
released into suspensions; their concentration is measured by
PAMAS.
5.3. Electrophoretic mobility, surface and zeta potentials, and
interaction energy

The total potential energy of interaction between latex micro-
spheres and glass beads is calculated by Derjaguin–Landau–Ver-
wey–Overbeek (DLVO) theory [42,43]. Potential energy of
interaction is calculated using the values of zeta potentials for latex
particles and glass beads which in turn are calculated using the
respective experimental electrophoretic mobility data. The electro-
phoretic mobilities for latex microspheres and glass beads are
measured by Zetasizer Nano ZS (Malvern Instruments Ltd.,
Worcestershire, UK).

Electrophoretic mobility of solid micro-sized particles in
suspensions with high ionic strength vanishes. However, there
does exist a residual non-zero electrophoretic mobility of
�1.268�10�8 m2/(V � s) for carboxyl-modified latex particles in
MilliQ water-based suspensions with ionic strength of 1 M NaCl
(see Badalyan et al. [40]). Therefore, the carboxyl modified latex
particles should be considered as the so-called ‘‘soft’’ particles
[44]. The ‘‘softness’’ causes the penetration of ions from an
electrolyte solution into the polyelectrolyte (carboxyl) layer. The
ion penetration distorts the electrical double layer surrounding
latex particle and changes the particle surface charge.
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The outer surface potential for carboxyl-modified latex
particles is calculated using the Ohshima theory for ‘‘soft’’ parti-
cles [45,46] for the electrophoretic mobility data that correspond
to the present experimental conditions (ionic strength of
6.24�10�5 M and pH at about 10, see [40]): ws = �206.8 mV.
Zeta potential for glass beads at the present experimental condi-
tions is calculated according to the Henry’s expression (see [47])
accounting for electrophoretic retardation and relaxation effects:
fb = �51.99 mV. The outer surface potential for latex particles
and zeta potential for glass beads are used for calculation of
the repulsive electric double-layer interaction potential energy
(EDL).

The total potential energy of interactions between the latex
particles and glass beads is equal to the sum of those from the
attractive long-range London-van der Waals (LW), the short-range
repulsive EDL and Born forces. Equations proposed by Gregory
[48,49] are used for calculation of LW and repulsive EDL potential
energies of interactions, and Born interaction energy is calculated
according to the equation introduced by Ruckenstein and Prieve
[50].

Variation of the DLVO total interaction potential energy as a
function of the separation distance between latex microspheres
and glass beads is calculated for latex particles with radius of
3.168 lm and presented in Fig. 7. A very high repulsive potential
energy barrier of 63,620 kBT indicates that latex particles having
an average energy of Brownian motion of about 1.5 kBT are unable
to overcome this barrier and be trapped in the primary energy
minimum. Besides, the primary energy minimum has very high
positive value of 62,573 kBT at separation distance of 0.33 nm
meaning that latex particles cannot approach the surface of glass
beads due to mutual repulsion.

A shallow negative secondary minimum of �0.056 kBT at the
separation distance of about 436 nm may indicate to the possibil-
ity for latex particles to be reversibly trapped in this minimum
and attached to the surface of glass beads (see insert in Fig. 7).
However, the average energy of Brownian motion for latex parti-
cles is high enough to overcome the attraction from glass beads,
and the particles can escape without being attached to glass
beads.

Finally, the latex particles cannot be electrostatically attached
to glass beads for the entire range of separation distance under
the conditions of the performed tests. Therefore, the dominant par-
ticle retention mechanism in the present study is size exclusion
particle capture.
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Fig. 7. Total potential energy of interaction between latex particles and glass beads
with zoom near to the secondary potential energy minimum.
6. Laboratory data treatment by the asymptotic model

In this section, history matching of the suspension flow test
data with two particle sizes by the asymptotic model is performed,
and the prediction by the tuned model is compared with the
experimental data for the third particle size (subsection 6.1). The
laboratory measurements uncertainties, deviation between the
modelling and experimental data and the asymptotic modelling
accuracy are introduced in subsections 6.2, 6.3 and 6.4,
respectively. The comparison between the above three values for
conditions of the laboratory study and asymptotic modelling
results in the conclusion about the validity of asymptotic method
for the laboratory-based predictive modelling (subsection 6.5).

6.1. History matching of experimental data and predictive modelling

Four mono-sized coreflood tests of different particle sizes have
been performed. The measured breakthrough concentrations of
particles with the first and second radii are used for the model tun-
ing in order to determine the model parameters – mean and vari-
ance coefficient for two-parametric pore throat size distribution,
maximum inter-chamber distance and its exponent – from the
breakthrough concentrations of particles with the first and second
radii. The deviation of the breakthrough concentration from the
smallest particles from unity is significantly lower than the accu-
racy of measurements, so these data does not contribute to the
model tuning. The third radius particle test is used for comparison
with the model prediction.

It is assumed that the initial pore size distribution of the
engineered porous medium fulfils the conditions of the breakage
algorithm and, therefore, is lognormal (see [51] for details). There-
fore, the distribution is defined by the mean pore radius hrpi and
variance coefficient Cv. The inter-chamber distance is the power-
law function of the fractional flow defined by the constant value
l0 and the power b, see (10). The population balance model
becomes four-parametric under the above assumptions.

Least squares goal function of deviation between the model pre-
dicted and measured data is used in the model tuning procedure.
The Levenburg-Marquardt minimization algorithm has been
applied [52]. The optimised model constants are: hrpi = 3.44 lm,
Cv = 0.31, l0 = 0.21 lm and b = 0.58. Good match of the break-
through curves by the model is shown in Fig. 8. The coefficient of
determination for the curves with the first and second particle radii
are R2 = 0.995 and 0.993, respectively.

The history matching based model tuning allows for data
prediction and their comparison with other experimental results.
The measured and the tuned-model-predicted curves for the third
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radius particles are in good agreement, indicated by the coefficient
of determination R2 = 0.975 (Fig. 8).

Fig. 9 presents the retained profiles for particles with four radii
obtained from the tuned asymptotic model. The retained concen-
trations have been measured post-mortem by dividing the core
into three pieces and weighting. So, the averaged concentrations
in three intervals have been determined from the asymptotic
model and compared with the measured data. The coefficients of
determination for three particle radii are R2 = 0.963, 0.950 and
0.899, respectively.

6.2. Uncertainties in laboratory measurements

The accuracy of laboratory measurement is estimated by the
combined standard uncertainties (CSU) using the linear
uncertainty propagation method [53]:

uðzÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1

@f
@yi


 �
uðyiÞ

� �2
vuut ð38Þ

where u(z) is the combined standard uncertainties of the function
z = f(y1, . . . yi . . . yN); u(yi) is standard uncertainty associated with
the input parameter yi; of/oyi is sensitivity coefficient; i is the
number of the input parameter; N is the total number of the input
parameters.

For the measurement of effluent concentration, there are two
input parameters in (38): y1 = CL, y2 = C0 (see [40] for details). The
function f is equal to y1/y2. u(CL) and u(C0) are the combined stan-
dard uncertainties for inlet and outlet suspension concentrations,
respectively. The relative combined standard uncertainties dC is
calculated from u(CL/C0)/C0 and presented in the third column of
Table 1.

For the retained concentration measurement, define the four
input parameters in (38) as y1 = Vwk, y2 = crk, y3 = c0 and y4 = Mk.
The results of relative uncertainty dS are shown in the fifth column
of Table 1.

6.3. Deviation between the modelling and laboratory data

The normalised least square deviation of the model (first order
asymptotic solution) from the measured data is calculated as:
Table 1
Accuracy analysis from the asymptotic solution and experimental data.

rs (lm) EC (%) dC (%) ES (%) dS (%) tl,1 tl,0

1.568 1.79 2.29 2.25 2.96 87.56 30.34
2.179 1.56 1.81 3.49 2.84 119.77 9.46
3.168 0.89 2.48 5.72 5.53 82.90 9.60
EC ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
tf

Z tf

0

C1ð1; tÞ � Cexpð1; tÞ
Cexpð1; tÞ

� �2

dt

s

ES ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ 1

0

S1ðx; tf Þ � Sexpðx; tf Þ
Sexpðx; tf Þ

� �2

dx

s
ð39Þ

for suspended and retained concentrations respectively. The results
for three particle sizes are presented in second column of Table 1 for
suspended concentration and in fourth column for retained
concentration.

6.4. Accuracy of the asymptotic model

Let us define the accuracy of the first order asymptotic expan-
sion (35) consistent with the above introduced relative combined
standard uncertainty and the deviations (39). The second order
approximation evaluates the exact model prediction while the
residue is represented by the second order asymptotic term. The
following expressions

DC12 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
tf

Z tf

0

C2ð1; tÞ � C1ð1; tÞ
C2ð1; tÞ

� �2

dt

s

DS12 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ 1

0

S2ðx; tf Þ � S1ðx; tf Þ
S2ðx; tf Þ

� �2

dx

s
ð40Þ

where tf is the total injection time in the test, are the normalised
least square residues of the first order approximation.

The accuracies of the zero order approximations DC01 and DS01

are defined from the first order term of the expansion similarly
to (40). The results are presented in Table 2.

6.5. Analysis of the data accuracy and uncertainty

Three criteria introduced above for accuracy of laboratory mea-
surements, of the first order asymptotic model and the normalised
deviation between the laboratory and modelling data have the
form of the variance coefficient, which is the ratio between the
standard deviation and the mean value. The criteria are consistent
with each other and used below for validation of the first order
asymptotic model.

The normalised least square residues for the first order asymp-
totic model are shown in second and fourth columns of Table 2;
third and fifth columns show normalised least square residues
for the zero order approximation. The residues for the first order
asymptotic model are significantly lower than those for the zero
order approximation for both suspended and retained concentra-
tions for all size particles, which indicates the convergence of the
series.

Tables 1 and 2 show that the variance coefficient DC12 of the
first order asymptotic solution, which is the model used for tuning
of the breakthrough concentration, is significantly lower than the
relative combined standard uncertainties for measurements of
the breakthrough concentration, DC12� dC. Therefore, the accuracy
of the asymptotic model does not contribute significantly to the
matching error.

Table 2 shows that the normalised deviations for breakthrough
concentrations of the first and second particle radii is smaller than
Table 2
Accuracy analysis of the asymptotic solution.

rs (lm) DC12 (%) DC02 (%) DS12 (%) DS02 (%)

1.568 0.23 0.92 6.47 24.98
2.179 0.11 2.97 1.48 13.49
3.168 0.27 4.27 0.44 6.42
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the corresponding relative combined standard uncertainties,
which indicates good match of breakthrough concentrations by
the asymptotic model. The fourth row of the Table 2 exhibits same
inequality for breakthrough concentrations of the third radius par-
ticles, so the quality of the breakthrough concentration prediction
is also good. Although the required inequality ES < dS for the nor-
malised deviation and the relative combined standard uncertain-
ties for retained concentration do not hold for the second and
third radii, the values are close to each other. It allows claiming
qualitative agreement between the experimental data on the
retained concentration profiles and the data of predictive
modelling.

Let us determine time interval where the first order asymptotic
model is valid. The second asymptotic term provides the estimate
for the residue. The first order model can be applied where the nor-
malised residue does not exceed the accuracy of measurements, i.e.
the valid period of the first order solution tl,1 is determined from
the equality

jC2ð1; tl;1Þ � C1ð1; tl;1Þj
C2ð1; tl;1Þ

¼ dC ð41Þ

The validity period values are presented in sixth column of the
Table 1. The values exceed 70 PVI applied in the presented study,
confirming the validity of the model during the test time period.

The valid period for the zero order solution tl,0 is determined as

jC1ð1; tl;0Þ � C0ð1; tl;0Þj
C2ð1; tl;0Þ

¼ dC ð42Þ

The time period for the validity of the first order asymptotic
model tl,1 is significantly longer than that of the zero order approx-
imation model tl,0, allowing using significantly larger amount of
information for the model adjustment and tuning of the model
constants.
7. Discussions

Each term of the asymptotic expansions for the initial and
boundary conditions (24, 25) provide with unique solution for each
term of the expansion for system (34–36) up to the second order.
The rigorous analysis requires checking these conditions for all
terms with proof of the convergence. However, for the purposes
of current work the claim of the regular expansion is limited by
the analysis of the zero, first and second approximations only.

Treatment of breakthrough curves using the linearised model (3)
provides with only one constant per particle size; the constant is
determined by the effluent concentration at the breakthrough
moment. Moreover, unknown time interval where the breakthrough
concentration is constant decreases the accuracy of its measure-
ment. Breakthrough concentration increases with time, which
increases degree of freedom of the treated information by one in
the case of linear breakthrough curves and at least by two for non-
linear growth. For a given number of coreflood by different radii par-
ticles, treatment of the long-term breakthrough curves by the
asymptotic model increases the accuracy of the model tuning. Very
limited number of different particle sizes is available in the market.
Using the asymptotic model for the parameter tuning, yields the
decrease in the necessary number of different particle sizes.

For example, three different size particles have been used for
mono-sized suspension coreflood in the presented laboratory
study. Lognormal pore throat size distribution was assumed. The
population balance model has four degrees of freedom: two
constants determine the lognormal size distribution and two con-
stants determine the correlation length function of the particle
radius. So, three constant breakthrough concentrations does not
allow for the model adjustment. Application of the asymptotic
model allows for the history matching from two tests, leaving
the third test for the model validation.

Two tuned breakthrough concentration histories exhibit good
quality of history matching, which validates the asymptotic model.
Good agreement between the experimental data and fully predic-
tive modelling for the third test also validates the model. However,
only qualitative agreement between the measured effluent concen-
tration history and that fully predicted by modelling has been
observed. It is explained by low accuracy of the retention profile
measurements. More accurate measurements such as CT scanning
in the future tests would allow further validation of the model [2,3].

The asymptotic solution allows determining the time interval
where the model is valid. It also allows determining the validity
time for the constant breakthrough concentration, improving the
routine procedure.

The presented study aims the prolongation of the after-the-
breakthrough period where an analytical model can treat the
breakthrough concentration. So, this period (t � ax) is chosen as a
small parameter, i.e., the solution is expanded behind the break-
through front. Another way of the asymptotic integration could
be the choice of the maximum retained concentration as a small
parameter. The method can be applied not only for the upscaled
system (22, 23), but also for the population balance model with
distributed particle and pore sizes (7–9).

We discuss the general case of particle capture due to size exclu-
sion, electrostatic attachment, segregation, diffusion into dead end
pores, etc. The filtration coefficient is presented in Eqs. (8) and (9) as
the sum of pure size-exclusion term and all other mechanisms by
introduction of the particle capture probability ‘‘inside’’ the pore.
However, the laboratory tests are designed to tune the model from
two injections with two different particle sizes, so the simplified
conditions of size exclusion domination have been created during
laboratory tests. Adjustment of the model with both straining and
attachment can be performed using the asymptotic model
(28–33) but requires the larger number of tests.

The first order asymptotic solution allows adjusting the mathe-
matical model based on the breakthrough concentration during the
time significantly longer than the period where the solution of the
linearised model is valid. Involvement of the larger amount of
information for tuning yields fewer tests and, consequently, smal-
ler number of different size particles. The comparison between the
zero, first and second order terms indicates convergence of asymp-
totic expansion, allowing using the last expansion term for the res-
idue estimate. The period where the first order approximation is
valid is estimated from the second order approximation and is
found to vary between 82.90 and 119.77 PVI for the laboratory
conditions performed. The valid period of the zero order approxi-
mation is obtained from the first order approximation and varies
from 9.46 to 30.34 PVI. So, the first order approximation is valid
during significantly larger period than the zero order solution (3).
8. Conclusions

Asymptotic integration of non-linear deep bed filtration model
along with laboratory study allows drawing the following
conclusions:

(1) One-dimensional large-scale system of deep bed filtration
allows for asymptotic expansion behind the concentration
front with explicit formulae for second order approximation.

(2) Since the large scale system is obtained from the small-scale
population balance model by exact averaging, the asymp-
totic solution obtained allows for downscaling, describing
timely evolution of pore size distribution due to pore plug-
ging during the mono-sized suspension injection.
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(3) Downscaling of the first order asymptotic solution shows
that the intermediate size pores smaller than the injected
particles are plugged faster than small pores, resulting in
earlier disappearance of the intermediate size pores. The
pores with radius equal to the injected particle radius
disappear first.

(4) The first order asymptotic model allows for history matching
during significantly larger time interval than that by the
linearised model.

(5) The validity time of the linear-model-based estimates is
obtained from the first order asymptotic model.

(6) Good match between the laboratory and modelling
suspension concentrations has been observed during the
tuning of the population balance model from two injections
of mono-sized particles.

(7) Good agreement between the laboratory data on suspended
concentration of the third size particles and the prediction
by the tuned model is observed.

(8) Using the asymptotic solution improves the quality of tuning
for the population balance model, requiring fewer mono-
sized suspension injections.
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