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CONTRIBUTION
In this work, we show that large hyperedges are
better from both theoretical and empirical stand-
points. We then propose a novel guided sampling
strategy for large hyperedges, based on the con-
cept of random cluster models. Our method can
generate pure large hyperedges that significantly
improve grouping accuracy without exponential
increases in sampling costs.

PROBLEM
The normalized cut criterion for partitioning the
set of vertices of a hypergraph H = (V,E) into
(S, Sc) is

ncut(S, Sc) = vol(S, Sc)
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where the volume or cost of the cut vol(S, Sc) is

vol(S, Sc) =
X

e2c(S,Sc)

w(e)
|e \ S||e \ Sc|

�(e)
.

An overwhelming majority of the previous works
that utilized the hypergraph formalism limited
the hyperedges of the smallest possible size.

WHY USE LARGE HYPEREDGES?
1. The cut value vol(S, Sc) is always higher for

larger hyperedges, since the numerator in-
creases quadratically while the denomina-
tor increases linearly. Hence, given two hy-
peredges of the same weight w(e) and the
same size ratio, NCut will inherently favour

preserving the larger hyperedge and cutting the

smaller hyperedge.

2. The preference can be rationalized since
larger hyperedges convey more evidence
on the existence of a cluster than smaller hy-
peredges.
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(a)-(b) A typical sample for a circle fitting prob-
lem of sizes 3 and 8 respectively. (c)-(d) miss-
classification rate with number of pure samples.

THE EFFECTS OF LARGE HYPEREDGES
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Yale face database B: Sampling accuracy
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Yale face database B : ISS
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(a) Sampling accuracy for different degree D, (b)–
(d) Misclassification rate of three methods on Yale
Face Database B. For RS and ISS in the Figs.(b)–(c)
the miss-classification rate increases with D; this
reflects the inability of these methods to sample
large pure hyperedges, and not because large hy-
peredges are ineffective.

RANDOM CLUSTER MODEL(RCM)
The Swendsen-Wang method introduces the bi-
nary “bond" variables d = {de} for each edge e
of the auxiliary graph G(0) to yield the extended
Potts model

P (f, d) =
1

Z 0

Y

e=<i,j>2E(0)

g(fi, fj , de),

where the factor g is defined as

g(fi, fj , de) =

8
><

>:

1� pe if de = 0,

pe if de = 1 and fi = fj ,

0 if de = 1 and fi 6= fj .

A realization of (f, d) effectively partitions the
vertices into a set of connected components.
Marginalizing d in returns the Potts model, while
marginalizing f in yields the RCM P (d).

PROPOSED FRAMEWORK: SWENDSEN-WANG SAMPLING
Input: Data V , number of clusters K, hyperedge degree D, iteration count T and M , threshold ✏.
Output: A set of hyperedges E of degree D for hypergraph H = (V,E).

1. Obtain auxiliary graph G(0) = (V,E(0)).
2. Initialize f (1) to a constant value.
3. For t = 1, 2, . . . , T

(a) From f (t), obtain clustering C(t) and corresponding graph G(t) = (V,E(t)).
(b) Repeat M times

i. For all e 2 E(t), turn off de with probability 1 � pe. This
divides each C(t)

k into a set of sub-clusters.

ii. Collect all sub-clusters from {C(t)
k }Kk=1 into CP .

iii. Remove from CP all components of size less than D � 1.
iv. Select a component Ps from CP with probability q(Ps|CP),

then randomly select a (D � 1)-subset s from Ps.
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v. Fit the model onto s and evaluate it against all data in V . Add the newly generated
hyperedges to the set of all hyperedges.

(c) Apply NCut on the current hypergraph H to obtain labels f (t+1).
(d) If the difference between f (t) and f (t+1) is smaller than ✏, terminate sampling.

CLUSTERING RESULT ON YALE FACE B DATASET
Experimental setup: we use Govindu’s [1] dense sample reuse approach. For our method (SWS fol-
lowed by NCut), we chose degree D = 20 with 300 samples.

K 2 3 4 5 6 7 8 9 10 time(s)

GPCA 0.0 49.5 0.0 26.6 9.9 25.2 28.5 30.6 19.8 ⇡ 106

SCC 0.0 0.0 0.0 1.1 2.7 2.1 2.2 5.7 6.6 4.93
SSC 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.4 4.6 6.12
SLBF 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.2 0.9 1.72
ALC 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1878.56
Ours 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.74

Table. 1 Mean percentage of misclassification on clustering Yale face B dataset.

MOTION SEGMENTATION WITH SPARSE TRAJECTORIES

The dataset we used the Hop-
kins 155 dataset.
Types of motions : checker-
board, traffic and articulated.

Experiment setup We used D
= 10 and 50 samples. We ob-
serve that on average 98.34%
the hyperedges generated are
clean.

Comparison against state-of-

the-arts Unlike our method,
the chosen state-of-the-art tech-
niques are dedicated to motion
segmentation.

Two Motions Three Motions

Method Chck.(78) Trfc.(31) Artc.(11) Chck.(26) Trfc.(7) Artc.(2) all(155)

MN MD MN MD MN MD MN MD MN MD MN MD MN MD
GPCA 6.09 1.03 1.41 0.00 2.88 0.00 31.95 32.93 19.83 19.55 16.85 16.85 10.34 2.54
LSA 2.57 0.27 5.43 1.48 4.10 1.22 5.80 1.77 25.07 23.79 7.25 7.25 4.94 0.90
ALC 1.55 0.29 1.59 1.17 10.70 0.95 5.20 0.67 7.75 0.49 21.08 21.08 3.56 0.50
SCC 1.31 0.06 1.02 0.26 3.21 0.76 6.31 1.97 3.31 3.31 9.58 9.58 2.42 NA
SSC 1.12 0.00 0.02 0.00 0.62 0.00 2.97 0.27 0.58 0.00 1.42 1.42 1.24 0.00
DCT 0.71 0.00 0.05 0.00 0.96 0.00 2.44 1.29 0.05 0.00 1.60 1.60 0.87 NA
Ours 1.86 0.00 0.08 0.00 1.13 0.00 2.72 0.00 0.00 0.00 1.06 1.06 1.50 0.00

MN: mean, MD: median, NA: not available

Table. 2 Mean percentage of misclassification error on Hopkins 155 dataset.

MOTION SEGMENTATION WITH DENSE TRAJECTORIES

The dataset Barkhley Motion
segmentation dataset [2]:
Comparison against state-of-

the-arts Brox and Malik [2]
follows conventional cluster-
ing approach which constructs
pairwise affinities, that restricts
the motions to be 2D transla-
tions.
Ochs and Brox (OB) [3] used 2D

similarity motion model p = 2.
The bottleneck is for a typical
car1 sequence with 4850 trajec-
tories 4850 ⇥ 4850 ⇥ (30 + 12)
(⇡ 109) hyperedges are used.
In our method, the hyperedges
of degree of D = 10 were
used. Based on SWS, we only
generated 1000 samples and for
each sample dense affinity is

computed for all overlapping
trajectories. Since SWS pro-
duces pure hyperedges accu-
rately, this relatively few sam-
ples were sufficient to approx-
imate the affinity matrix. This
reduces run time enormously
(10 seconds against 48 minutes
for car1 sequence).

Brox and Malik [2] Ochs and Brox [3] Our method Brox and Malik [2] Ochs and Brox [3] Our
method
Fig. 1: Segmentation results of sequences car5, marple8, marple13 and duck.

CONCLUSIONS
We have established theoretically and empirically
the benefits of using large hyperedges in hy-
pergraph clustering– this departs from previous
methods that have exclusively used the smallest
possible hyperedge.
Our message through this paper is for higher or-
der clustering use large size samples and use a
guided sampling technique to sample them.
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