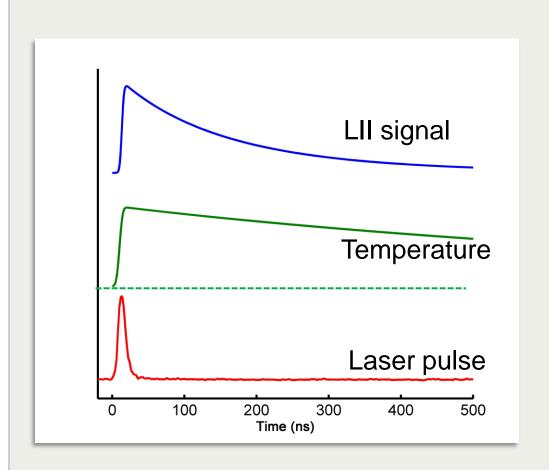
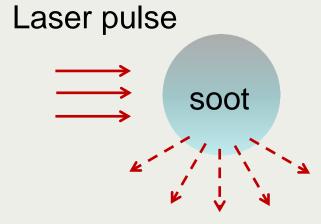


Single-shot, time-resolved planar laser-induced incandescence (TiRe-LII) for soot primary particle sizing in flames

Aim:

Measure soot primary particles diameters (d_p) in *turbulent* flames, with *temporal* and *spatial* resolution.

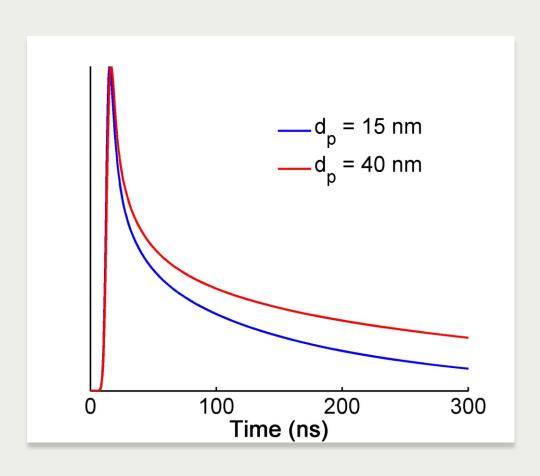

The heat conduction:


$$\dot{Q}_{cond} \propto (d_p)^2$$

The radiation:

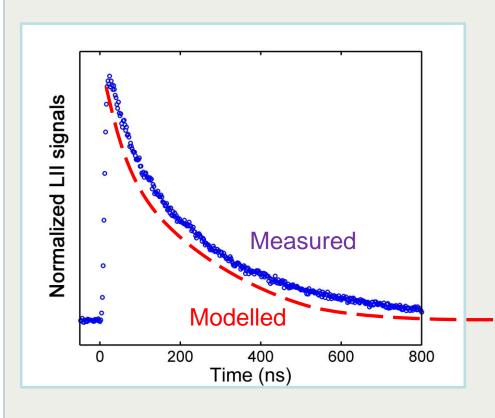
$$\dot{Q}_{rad} \propto (d_p)^3$$

Laser-induced incandescence (LII)



CET | The University of Adelaide

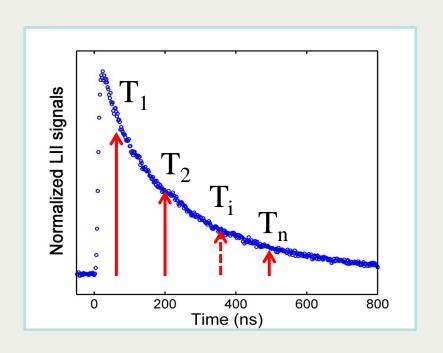
Incandescence (LII)


The decay time is a proxy of d_p

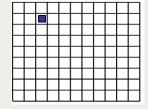
 $d_p \uparrow$, decay time \uparrow .

Measure d_p through the LII signal decays

However, most works are

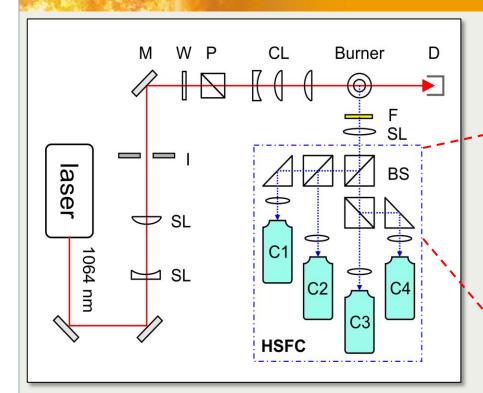

- Point-measurements
- Time-averaged measurements in steady laminar flames.

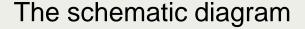

In turbulent flames, it needs


Single-shot, time-resolved planar laser-induced incandescence (TiRe-LII) for soot primary particle sizing in flames

Planar time-resolved LII

Size Image

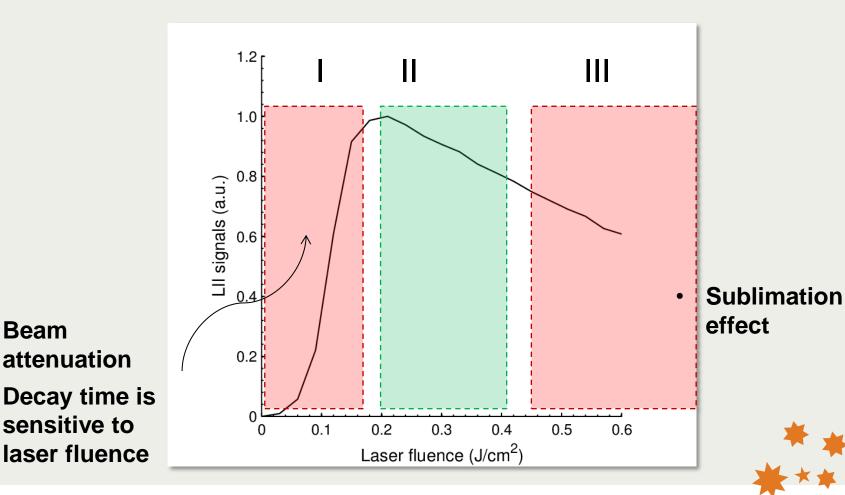

Does TiRe-LII work? Does it work well?



Outline

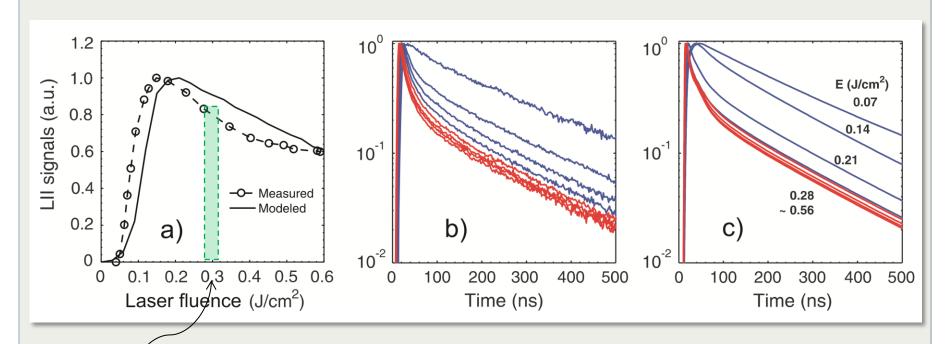
- ✓ The model of laser-induced incandescence
- ✓ Experimental setup
- ✓ Selection of the laser fluence
- ✓ Evaluation of soot particle size
- ✓ Results:
 - in a laminar flame
 - in an unsteady flame
- ✓ Conclusion and discussion

Experimental setup



- The detector (HSFC pro camera)
- The band-pass filter (510-590 nm)
- Negligible C₂ emission

Selection of the laser fluence (1)



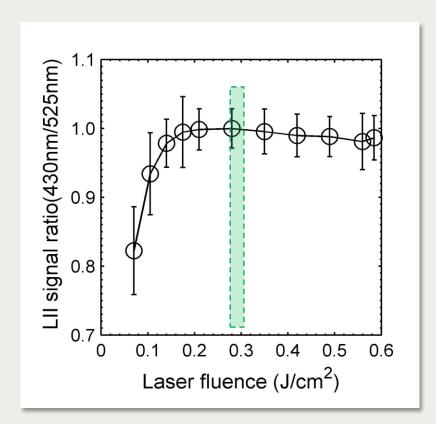
Slide 9

Beam

CET | The University of Adelaide

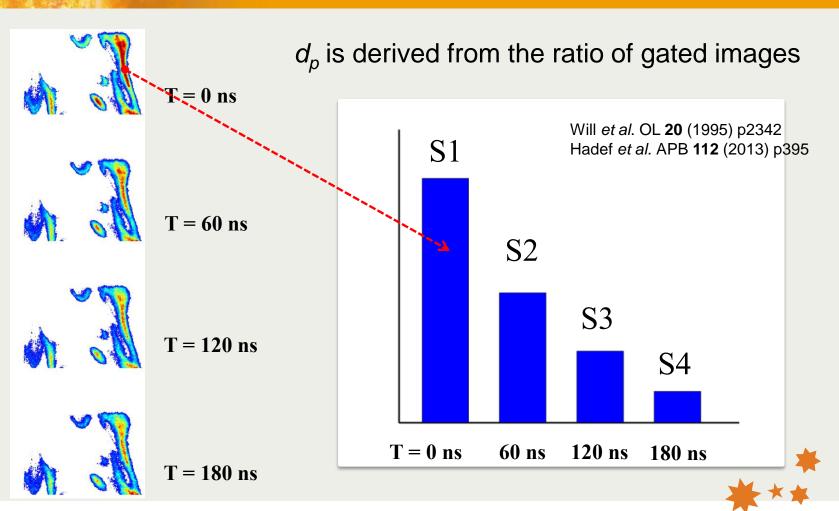
Selection of the laser fluence (2)

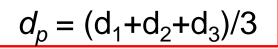
0.3 J/cm² was selected.

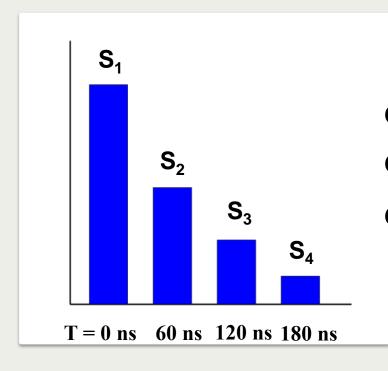

Measured LII decays

Modelled LII decays

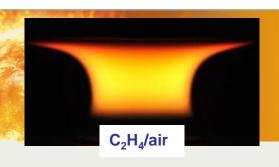
Selection of the laser fluence (3)


At the selected fluence 0.3 J/cm², soot has its 'maximum' temperature.

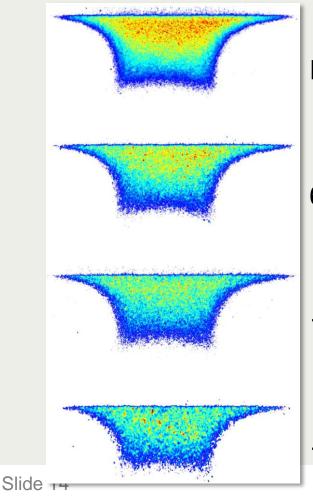

Ratio of two-colour prompt-LII signals: at 430 nm and 525 nm



Evaluation of soot particle size (1)



Evaluation of soot particle size (2)



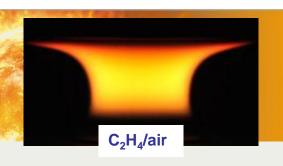
	d_p	S ₂ /S ₁	S ₃ /S ₁	S ₄ /S ₁
₃ [₁	6.0000000e+000 7.000000e+000 8.0000000e+000 9.0000000e+001 1.1000000e+001 1.2000000e+001 1.300000e+001 1.5000000e+001 1.700000e+001 1.800000e+001 1.900000e+001 2.000000e+001 2.1000000e+001 2.3000000e+001 2.300000e+001 2.500000e+001 2.500000e+001 2.500000e+001 2.500000e+001 2.500000e+001 3.00000e+001 3.000000e+001 3.000000e+001 3.000000e+001 3.000000e+001	2.8082006e-001 3.1523523e-001 3.4360674e-001 3.6657006e-001 3.8555878e-001 4.0151869e-001 4.1541072e-001 4.2744753e-001 4.3781744e-001 4.4693350e-001 4.5481476e-001 4.6838231e-001 4.7424353e-001 4.7424353e-001 4.7930729e-001 4.8826761e-001 4.8826761e-001 4.9226843e-001 4.9919294e-001 5.0223426e-001 5.0763225e-001 5.1025315e-001 5.11267825e-001 5.1267825e-001 5.1469613e-001	1.0656315e-001 1.3437152e-001 1.6029323e-001 1.8333922e-001 2.0392213e-001 2.3915994e-001 2.5430028e-001 2.7981918e-001 2.9047927e-001 2.9999039e-001 3.0928294e-001 3.1759376e-001 3.2485531e-001 3.3796701e-001 3.3796701e-001 3.4388091e-001 3.4388091e-001 3.5432236e-001 3.5898365e-001 3.6722674e-001 3.7125603e-001 3.7496538e-001 3.7496538e-001 3.7496538e-001	4.4256627e-002 6.1437892e-002 7.9304531e-002 9.6610010e-002 1.1321340e-001 1.2901835e-001 1.4423468e-001 1.7164593e-001 1.8386540e-001 1.9489641e-001 2.0494542e-001 2.1500271e-001 2.2416064e-001 2.2416064e-001 2.3227100e-001 2.4035219e-001 2.4722080e-001 2.5407630e-001 2.5407630e-001 2.6033376e-001 2.7192254e-001 2.7700808e-001 2.8181575e-001 2.8187578e-001 2.9497951e-001
	3.200000e+001 3.300000e+001 3.400000e+001 3.5000000e+001 3.6000000e+001 3.7000000e+001 3.8000000e+001 4.000000e+001 4.2000000e+001	5.1700518e-001 5.1898241e-001 5.2089814e-001 5.2264973e-001 5.2437600e-001 5.2606516e-001 5.2753233e-001 5.2896037e-001 5.3044313e-001 5.3178715e-001 5.3301932e-001	3.8146562e-001 3.8448998e-001 3.9003816e-001 3.9263766e-001 3.9518890e-001 3.9740788e-001 3.9957777e-001 4.0179596e-001 4.0385743e-001 4.0571313e-001	2.9912215e-001 3.0283759e-001 3.0646197e-001 3.0966518e-001 3.1287654e-001 3.1603506e-001 3.2148703e-001 3.2424191e-001 3.2682170e-001 3.2913925e-001

Results: in a laminar flame (1)

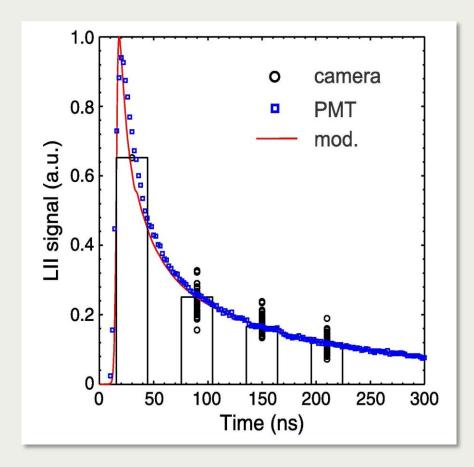
Prompt-

60 ns

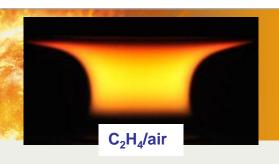
120 ns


180 ns

Four successive LII images:

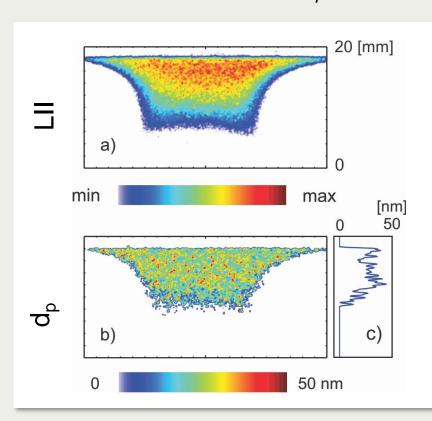

- gate width = **30** ns.
- a photomultiplier tube was also used to record the LII signals at a single-point (HAB = 14 mm).

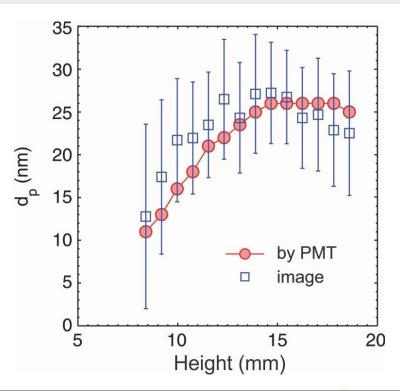
CET | The University of Adelaide



Results: in a laminar flame (2)

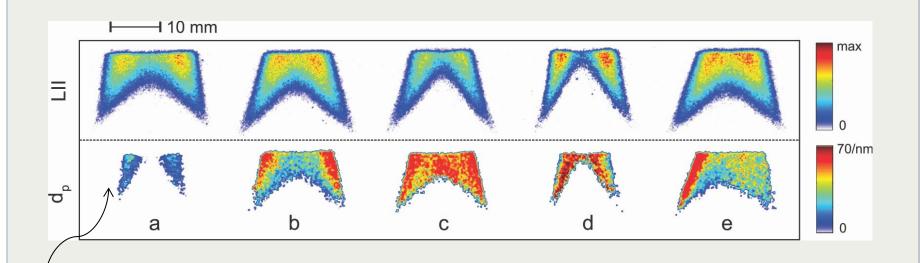
Three LII signals comparison





Results: in a laminar flame (3)

prompt LII and d_p


results and comparison

Results: in an unsteady flame

Instantaneous prompt-LII images and the corresponding d_p images

Weak signals in the delayed LII images

Conclusion and discussion

- The planar measurements of d_p using single-shot TiRe-LII are demonstrated.
- The results agree with that of single-point TiRe-LII.
- To improve the measurement accuracy, efforts must be made to:
 - √ flame temperature (currently assumed 1700K)
 - ✓ to use future more refined LII models
 - ✓ soot aggregate must be determined (using 2D scattering)
 - \checkmark to use the full the distribution profile of d_{ρ} (i.e., σ) (currently only the mono dispersed was used)

