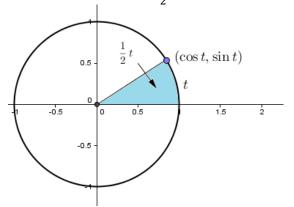
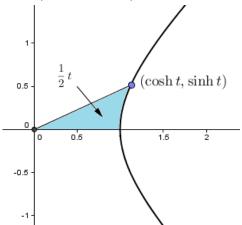
Comparing Trig and Hyperbolic Trig Functions

By the Maths Learning Centre, University of Adelaide


Trigonometric Functions

Hyperbolic Trigonometric Functions

Definition using unit circle:


If a point is an arc length of t anticlockwise around the unit circle from (1,0), then that point is $(\cos t, \sin t)$.

(Note the line segment from the origin to the unit circle sweeps out an area of $\frac{1}{2}t$.)

Definition using unit hyperbola:

If a line segment from the origin to the unit hyperbola sweeps out an area of $\frac{1}{2}t$ between (1,0) and a particular point as it moves upwards, then that point is $(\cosh t, \sinh t)$.

Parameterising a curve:

If we use all values of t, the points $(\cos t, \sin t)$ form the circle with equation $x^2 + y^2 = 1$.

Parameterising a curve:

If we use all values of t, the points $(\cosh t, \sinh t)$ form the right-hand branch of the hyperbola with equation $x^2 - y^2 = 1$.

Defining other functions:

$$\tan x = \frac{\sin x}{\cos x} \qquad \qquad \csc x = \frac{1}{\sin x}$$

$$\sec x = \frac{1}{\cos x} \qquad \qquad \cot x = \frac{1}{\tan x}$$

Defining other functions:

$$tanh x = \frac{\sinh x}{\cosh x}$$
 $cosech x = \frac{1}{\sinh x}$
 $sech x = \frac{1}{\cosh x}$
 $coth x = \frac{1}{\tanh x}$

Basic identities

$$(\cos x)^{2} + (\sin x)^{2} = 1$$

$$1 + (\tan x)^{2} = (\sec x)^{2}$$

$$(\cot x)^{2} + 1 = (\csc x)^{2}$$

Basic identities

$$(\cosh x)^2 - (\sinh x)^2 = 1$$
$$1 - (\tanh x)^2 = (\operatorname{sech} x)^2$$
$$(\coth x)^2 - 1 = (\operatorname{cosech} x)^2$$

Double angle identities

$$\sin(2x) = 2\sin x \cos x$$

$$\cos(2x) = (\cos x)^2 - (\sin x)^2$$

$$= 2(\cos x)^2 - 1$$

$$= 1 - 2(\sin x)^2$$

Double area identities

$$\sinh(2x) = 2 \sinh x \cosh x$$

$$\cosh(2x) = (\cosh x)^2 + (\sinh x)^2$$

$$= 2(\cosh x)^2 - 1$$

$$= 1 + 2(\sinh x)^2$$

Comparing Trig and Hyperbolic Trig Functions

By the Maths Learning Centre, University of Adelaide

Trigonometric Functions	Hyperbolic Trigonometric Functions
Odd and even properties	Odd and even properties
$\cos x$ is an even function	$\cosh x$ is an even function
$\sin x$ is an odd function	$\sinh x$ is an odd function
tan x is an odd function	tanh x is an odd function
Values at zero	Values at zero
cos(0) = 1 sin(0) = 0 tan(0) = 0	cosh(0) = 1 sinh(0) = 0 tanh(0) = 0
Derivatives	Derivatives
$\frac{d}{dx}\cos x = -\sin x$ $\frac{d}{dx}\sin x = \cos x$	$\frac{d}{dx}\cosh x = \sinh x$ $\frac{d}{dx}\sinh x = \cosh x$
$\frac{d}{dx}\sin x = \cos x$ $\frac{d}{dx}\tan x = (\sec x)^2$	$\frac{d}{dx}\sinh x = \cosh x$ $\frac{d}{dx}\tanh x = (\operatorname{sech} x)^2$
Derivatives of inverse functions	Derivatives of inverse functions
$\frac{d}{dx}\arccos x = \frac{-1}{\sqrt{1 - x^2}}$ $\frac{d}{dx}\arcsin x = \frac{1}{\sqrt{1 - x^2}}$ $\frac{d}{dx}\arctan x = \frac{1}{1 + x^2}$	$\frac{d}{dx} \operatorname{acosh} x = \frac{1}{\sqrt{x^2 - 1}}$ $\frac{d}{dx} \operatorname{asinh} x = \frac{1}{\sqrt{1 + x^2}}$ $\frac{d}{dx} \operatorname{atanh} x = \frac{1}{1 - x^2}$
Maclaurin Series	Maclaurin Series
$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$	$\sinh x = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \frac{x^7}{7!} + \cdots$
$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots$	$\cosh x = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \frac{x^6}{6!} + \cdots$
Relationship to e^x	Relationship to e^x
$e^{ix} = \cos x + i \sin x$	$e^x = \cosh x + \sinh x$
$\cos x = \frac{e^{ix} + e^{-ix}}{2}$	$\cosh x = \frac{e^x + e^{-x}}{2}$
$\sin x = \frac{e^{ix} - e^{-ix}}{2i}$	$\sinh x = \frac{e^x - e^{-x}}{2}$