Vectors

\[(5, -1, 2/3) \in \mathbb{R}^3 \]

Represented as:
* point
* arrow
* column matrix

\[
\begin{bmatrix}
5 \\
-1 \\
2/3
\end{bmatrix}
\]

Adding vectors

\[
\begin{array}{c}
\text{Start point} \\
(1, 5)
\end{array} +
\begin{array}{c}
\text{Direction} \\
(3, 2)
\end{array} =
\begin{array}{c}
\text{New point} \\
(4, 7)
\end{array}
\]

\[
(x, y) = (1, 5) + t(3, 2)
\]

(new point) (start point) (direction)
SETS

RULE for being in/out

4 WAYS TO MAKE SETS

1. List all of the vectors
 RULE: In the list ⇒ In the set
 Not in list ⇒ Not in the set

 \[S = \{ (1,0,3), (0,0,1), (1,1,2) \} \]

 • \((1,0,3) \in S\) since it is in the list
 • \((1,1,1) \notin S\) since not in the list.

2. Show how to make the vectors
 RULE: If you can make it this way ⇒ In the set
 If you cannot ⇒ Not in the set

 \[S = \{ \frac{1}{2} \cdot (1,2,3) + \epsilon (1,0,1) \mid \epsilon \in \mathbb{R} \} \]

 • \((2,2,4) \in S\) because \((2,2,4) = (1,2,3) + 1\cdot(1,0,1)\)
1. Is \((2, 2, 3) \in S\)?

 If it was, then
 \[
 (2, 2, 3) = (1, 2, 5) + 6(1, 0, 1)
 \]

 1st coord: \(2 = 1 + 6 \Rightarrow \varepsilon = 1\)
 2nd coord: \(2 = 2 + 0 \varepsilon\)
 3rd coord: \(3 = 3 + \varepsilon \Rightarrow \varepsilon = 0\)

 No solution for \(\varepsilon\)

 \[\therefore \quad (2, 2, 3) \notin S\]

3. Have an equation to satisfy

 \[\text{eg} \quad S = \{ (x, y, z) \in \mathbb{R}^3 \mid x + 2y - z = 15 \}\]

 RULE
 If point satisfies equation \(\Rightarrow\) in the set
 If point doesn't satisfy \(\Rightarrow\) not in the set.

 • Is \((1, 1, 3) \in S\)?

 \[1 + 2 \times 1 - 3 = 1 + 2 - 3 = 0 \checkmark \quad \text{NO}\]

 • Is \((1, 1, 2) \in S\)?

 \[1 + 2 \times 1 - 2 = 1 \checkmark \quad \text{YES}\]
• Find a point in S.

 Pick $x = 0$

 $y = 0$

 Then $0 + 2x0 - z = 1$

 $z = -1$

 $\therefore (0, 0, -1) \in S$.

 Pick $x = 1$

 $y = 2$

 Then $1 + 2x2 - z = 1$

 $5 - z = 1$

 $z = 4$

 $\therefore (1, 2, 4) \in S$

4. Construct from other sets

S is a set, T is a set

New set $S \cup T$ "intersection"

Rule: if in both $S \cup T \Rightarrow \in$ set

not in both $\Rightarrow \not\in$ set
New set $S U T$ "union"

Rule: $\begin{align*}
 & \text{If in } S \text{ or } T \text{ or both} \Rightarrow \text{in set} \\
 & \text{If in neither} \Rightarrow \text{not in set}.
\end{align*}$

- $S U T$

New set $S \setminus T$ "without"

Rule: $\begin{align*}
 & \text{If in } S \text{ but not in } T \Rightarrow \text{in new set} \\
 & \text{If not in } S \text{ or in } T \Rightarrow \text{not in set}.
\end{align*}$
With vectors I can make
linear combinations

if \(\mathbf{y} = a_1 \mathbf{v}_1 + a_2 \mathbf{v}_2 + \ldots + a_k \mathbf{v}_k \)

then \(\mathbf{y} \) is a lin. comb. of \(\mathbf{v}_1, \ldots, \mathbf{v}_k \).

About some vectors I can say
if they are linearly independent

DEFINITION \(\mathbf{v}_1, \ldots, \mathbf{v}_k \) are lin. indep.

when \(a_1 \mathbf{v}_1 + \ldots + a_k \mathbf{v}_k = \mathbf{0} \)

is only possible if \(\begin{cases}
\text{or has only trivial soln} \end{cases} \)

\(a_1 = 0, \ldots, a_k = 0 \).

Things that tell you they are lin. indep.

- None is a lin. comb. of any others
- Matrix with vectors as cols \([\mathbf{v}_1 \ldots \mathbf{v}_k] \)
 row reduces to get a pivot in every column.
Things that tell you they are NOT lin indep

- It's possible to write

 \[a_1v_1 + \ldots + a_kv_k = 0 \]

 with at least one \(a_i \neq 0 \).

- Any one vector is a lin. comb. of any others.

- matrix with vectors as cols \([v_1 \ldots v_k]\)
 row reduces to get a col with no pivot

- one of the vectors is \(\mathbf{0} \)

- More vectors than \# coords
Subspaces

Definition:
A subspace of \(\mathbb{R}^n \) is a set of vectors \(S \subseteq \mathbb{R}^n \) where:
1. \(\mathbf{0} \in S \)
2. If \(\mathbf{v} \in S \) and \(k \in \mathbb{R} \) then \(k\mathbf{v} \in S \)
3. If \(\mathbf{u}, \mathbf{v} \in S \) then \(\mathbf{u} + \mathbf{v} \in S \)

Things that are:
- \(\mathbb{R}^n \)
- Line thru origin
- Plane thru origin
- \(\mathbb{R}^n \)

Things that aren't:
- Things with gaps

- \(\mathbb{R}^n \)
- \(\mathbb{R}^n \) with \((1,2,3) \) and \((4,0,1) \)
- Plane
- Span \(\mathbb{R} \) \((1,2,3) \)
- Span \(\mathbb{R} \) \((1,2,3), (4,0,1) \)
THINGS THAT ARE

- Span of any vectors is a subspace.
- \(\exists \) vectors \(\text{linear eqns } = 0 \) is a subspace.
- Solutions to \(Ax = 0 \)

 \[\begin{align*}
 & \exists (x, y) \in \mathbb{R}^2 | x + y = 0 \\
 & \exists (x, y) \in \mathbb{R}^2 | 2x + y = 0, x = 0
 \end{align*} \]

 \[\begin{align*}
 & \exists \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2 | \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}
 \end{align*} \]

 \[\exists (x, y) \in \mathbb{R}^2 | x^2 + y = 0 \]

 because only solution is \((x, y) = (0, 0) \)

THINGS THAT AREN'T

- Lines not thru origin
- Plane not thru origin

- \(\exists \) \((1, 2, 3) + (1, 1, 0) \) \(\not\in \mathbb{R}^3 \)
 - Not all combos

- \(\exists \) \((1, 2) + 5(1, 1) \) \(\not\in \mathbb{R}^2 \)
 - Not all combos

- \(\exists \) \((x, y) | x^2 + y = 0 \)
 - Not linear

- \(\exists \) \((x, y) | ay + y = 0 \)
 - Not linear

- \(\exists \) \((x, y) | x + 3y = 1 \)
 - Not \(= 0 \).
\[E \cap \{(r, r+5, t-35) \mid r, s \in \mathbb{R}^3 \} = \exists \ r(1,1,0) \]
\[+ s(0,1,-3) \]
\[+ t(0,0,1) \mid r,s,t \in \mathbb{R}^3 \]
\[= \pm \exists (1,1,0), (0,1,-3), (0,0,1) \mathbb{R}^3 \]
So it's a subspace of \(\mathbb{R}^3 \)

\[f(\mathbb{R}^3) \mid \varphi(x-y) = 0 \]
\[5^{-5} = 5 \]
\[(0,1) \in S \]
\[\text{since } 0 \times (0-1) = 0 \checkmark \]
\[(1,1) \in S \]
\[\text{since } 1 \times (1-1) = 0 \checkmark \]
but \((0,1) + (1,1) = (1,2) \notin S \)
\[\text{since } 1 \times (1-2) = -1 \neq 0 \]
\[\Rightarrow S \text{ not a subspace.} \]
\[x^2 + y = 0 \]

For \(x, y \in \mathbb{R} \)

\[(1,-1) \in S \]

since \(1^2 + (-1) = 0 \)

but

\[(2, -1/2) \notin S \]

since \(2^2 + (-1/2) = 2 \neq 0 \)

\[\therefore \text{S not a subspace.} \]

\(\exists (x, y, z) = (1, 1, 1) \in \mathbb{R}^3 \)

\[(1, 1, 1) \in S \]

since \(1, 1, 1 \in \mathbb{Z} \)

but

\[\frac{1}{2}, \frac{1}{2}, \frac{1}{2} \notin S \]

\[\therefore \text{S not a subspace} \]

"(Come back to proofs later)"
Basis

- Info about a subspace.
- Idea is to write subspace as span. (most efficiently)

 If S is subspace
 write $S = \text{span } \{ \text{vectors } \}$

- Coord. Axes
Definition: Given a subspace \(S \), a basis for \(S \) is a list of vectors in \(S \) which
1. span \(S \)
2. are lin. indep.

Def of Dimension
3. Vectors in basis = dimension of \(S \)

Any two of 1, 2, 3 make it a basis

Advice: To find basis, first rewrite as span.

eg \(S = \text{span} \{ (1, 1, 2), (0, 1, 3), (1, 2, 5) \} \)

1st method
\[(1, 2, 5) = (1, 1, 2) + (0, 1, 3)\]
so lin. comb. of others
so \(S = \text{span} \{ (1, 1, 2), (0, 1, 3) \} \)

End method

Find if vectors lin. indep

\[
\begin{array}{cc}
1 & 0 & 1 \\
1 & 1 & 2 \\
2 & 3 & 5 \\
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 3 & 3 \\
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & 0 \\
\end{array}
\]

\[\begin{align*}
R_2 &= R_2 - R_1 \\
R_3 &= R_3 - 2R_1 \\
R_3 &= R_3 - 3R_2
\end{align*}\]

No pivot in 3rd col.
Choose cols with pivots

so \(E(1,1,2) \), \((0,1,3)\) is a basis for \(S \).

\[
E(S) = \{(x,y,z,w) | x + z = 0, 2z - w = 0\}
\]

Find all points in \(S \).
So solve \[
\begin{align*}
x + z &= 0 \\
2z - w &= 0
\end{align*}\]
\[x
 y
 z \\
1
0
1
0 \\
0
0
2
-1 \\
0
0
-2
1 \\
\hline
1
0
1
0 \\
0
0
-1
1 \]

\[\mathbf{y}, \mathbf{z} \text{ are free.} \]

so let \[y = s \]
\[z = t \]

1st row: \[x = -t \]
2nd row: \[w = 2t \]

\[
\begin{pmatrix}
x \\
y \\
z \\
w
\end{pmatrix} =
\begin{pmatrix}
-t \\
s \\
t \\
2t
\end{pmatrix} =
t \begin{pmatrix}
-1 \\
0 \\
0 \\
0
\end{pmatrix} +
s \begin{pmatrix}
0 \\
1 \\
0 \\
0
\end{pmatrix}
\]

\[S = \mathbb{E} \begin{pmatrix}
(-1, 0, 1, 2) \\
(0, 1, 0, 0)
\end{pmatrix} \mathbf{t}, \mathbf{s} \in \mathbb{R}^2 \]

\[= \mathbb{E} \begin{pmatrix}
(-1, 0, 1, 2) \\
(0, 1, 0, 0)
\end{pmatrix} \]

\[\therefore \mathbb{E} \begin{pmatrix}
(-1, 0, 1, 2) \\
(0, 1, 0, 0)
\end{pmatrix} \text{ is a basis for } S. \]
\[e \in S \implies (x, y, z) = (x, y, 2) \]
\[= 2(1, 0, 1) + y(0, 1, 0) \]
\[\therefore S = \text{Span } \{ (1, 0, 1), (0, 1, 0) \} \]
\[\{ (1, 0, 1), (0, 1, 0) \} \text{ is a basis for } S. \]

Approach 1:

Find all points in S.

Solve equation.

$x - e = 0$

$x = e$

$(x, y, z) = (e, y, 2)$

$= e(1, 0, 1) + y(0, 1, 0)$

$\therefore S = \text{Span } \{ (1, 0, 1), (0, 1, 0) \}$

$\{ (1, 0, 1), (0, 1, 0) \}$ is a basis for S.

Approach 2:

Find all points in S.

Solve equation.

$x - e = 0$

$\begin{bmatrix}
2 & 0 & 1 \\
0 & -1 & 0 \\
1 & 0 & -1
\end{bmatrix}$

y, z are free

$y = 5$

$z = 6 \implies x = 6$
\[
\begin{pmatrix}
2 \\
3 \\
4
\end{pmatrix} = \begin{pmatrix}
1 \\
0 \\
-1
\end{pmatrix} + s \begin{pmatrix}
1 \\
2 \\
0
\end{pmatrix}
\]

\[
\therefore \exists (1,0,1), (0,1,0) \text{ is a basis for } S.
\]

Approach 3:

S is a plane (1 linear eqn in \(\mathbb{R}^3 \)).

\[\therefore S \text{ has dim 2.}\]

\[(1,0,1) \in S \text{ since } 1-1=0\]

\[(1,1,1) \in S \text{ since } 1-1=0\]

These vectors are lin indep and \# vectors = dim(S).

\[\therefore \exists (1,0,1), (1,1,1) \text{ is a basis for } S.\]
PROVING WITH SUBSPACES

Def of subspace:

1. \(0 \in S \)
2. If \(x \in S \) then \(x + \mathbb{R} \in S \)
3. If \(y, z \in S \) then \(y + z \in S \)

Ex: Prove that \(S = \{ (x, y, z) \mid x + y = 0, x - 2y + 3z = 0 \} \) is a subspace of \(\mathbb{R}^3 \).

Rule for being in \(S \)
is \((x, y, z)\) must satisfy

\[x + y = 0 \quad \text{and} \quad x - 2y + 3z = 0 \]

1. \(0 + 0 = 0 \) \(\checkmark \)
2. \(0 - 2 \cdot 0 + 3 \cdot 0 = 0 \) \(\checkmark \)

\(\therefore 0 \in S \)
2. Suppose \(\mathbf{v}, \mathbf{w} \in \mathbb{R}^3 \)

Let \(\mathbf{v} = (a, b, c) \).

Know that \(a + b = 0 \) & \(a - 2b + 3c = 0 \).

Now \(\mathbf{k v} = (ka, kb, kc) \)

\[
(ka) + (kb) = k(a+b) \quad \frac{(ka) - (kb) - 3(kc)}{kx0} = 0 \\
= kx0 \\
= kx0 \\
= 0
\]

\(\therefore k \mathbf{v} \in \mathbb{S} \)

3. Suppose \(\mathbf{u}, \mathbf{v} \in \mathbb{S} \)

Let \(\mathbf{u} = (a, b, c) \) & \(\mathbf{v} = (d, e, f) \)

\(a + b = 0, \quad a - 2b + 3c = 0 \) & \(d + e = 0, \quad d - 2e + 3f = 0 \)

Now \(\mathbf{u} + \mathbf{v} = (a + d, b + e, c + f) \)

\[
(a+d) + (b+e) \quad \frac{(a+d) - 2(b+e) + 3(c+f)}{0 + 0} = 0 \\
= a + b + d + e \quad = a - 2b + 3c + d - 2e + 3f \\
= 0 + 0 \quad = 0 + 0 \\
= 0 \\
= 0
\]

\(\therefore \mathbf{u} + \mathbf{v} \in \mathbb{S} \).

Since all conditions satisfied,

\(\mathbb{S} \) is a subspace \(\mathbb{R}^3 \).
Prove $S = \left\{ (r+s, -r, s+r) \mid s, r \in \mathbb{R} \right\}$ is a subspace of \mathbb{R}^3

$S = \left\{ r(1, -1, 1) + s(1, 0, 1) \mid s, r \in \mathbb{R} \right\}$

1. $0 = 0(1, -1, 1) + 0(1, 0, 1)$

$i.e. 0 \in S$

2. Suppose $v \in S$, $k \in \mathbb{R}$

So $v = a(1, -1, 1) + b(1, 0, 1)$ for some $a, b \in \mathbb{R}$

$k v = k(a(1, -1, 1) + b(1, 0, 1))$

$= (ka)(1, -1, 1) + (kb)(1, 0, 1)$

$i.e. k v \in S$

3. Suppose $u, v \in S$

So $u = a(1, -1, 1) + b(1, 0, 1)$

$v = c(1, -1, 1) + d(1, 0, 1)$

$u + v = (a+c)(1, -1, 1) + (b+d)(1, 0, 1)$

$i.e. u + v \in S$
Let A be an $m \times n$ matrix and let $S = \{ x \in \mathbb{R}^n \mid Ax = 0 \}$.

Prove S is a subspace of \mathbb{R}^n.

1. $A0 = 0 \checkmark$

 $\therefore 0 \in S$

2. Suppose $v \in S$, $k \in \mathbb{R}$

 So $Av = 0$

 $A(kv) = kAv = k0 = 0$

 $\therefore kv \in S$

3. Suppose $u, v \in S$

 So $Au = 0$ and $Av = 0$

 $A(u + v) = Au + Av$

 $= 0 + 0 = 0$

 $\therefore u + v \in S$

So S is a subspace of \mathbb{R}^n.