Tests for Convergence

By the Maths Learning Centre, University of Adelaide

Order in which to try the tests:

- 1. Check if it's a known series
 - (including rewriting it to look like a geometric series)
- Divergence test (particularly useful for terms that are rational functions).
- Alternating series test (specifically for alternating series).
- 4. Ratio test

(particularly useful for terms involving n in the power or as a factorial).

Known series:

harmonic series	$\sum_{n=1}^{\infty} \frac{1}{n}$	DIVERGES	
alternating harmonic series	$\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$	CONVERGES	
p-series "power of harmonic"	$\sum_{n=1}^{\infty} \frac{1}{n^p}$	If $p \leq 1$, DIVERGES	
		If $p > 1$, CONVERGES	
geometric series	$\sum_{n=0}^{\infty} x^n$	If $ x \ge 1$, DIVERGES	and converges to
		If $ x < 1$, CONVERGES	$\frac{1}{1-x}$
MacLaurin series for e^x	$\sum_{n=0}^{\infty} \frac{x^n}{n!}$	For any <i>x</i> , CONVERGES	and converges to e^x

Test for divergence (check limit of individual terms):

Given a series $\sum_{n=0}^{\infty} a_n$	$\sum_{n=1}^{\infty} a_{n}$	lf	$\lim_{n\to\infty}a_n\neq 0$	then the series DIVERGES.
	$\sum_{n=0}^{d} a_n$	If	$\lim_{n\to\infty}a_n=0$	then you don't know if the series converges or diverges.

Ratio test:

Intervals of convergence for power series:

Given a series	$\sum_{n=1}^{\infty} a_n.$	It is a power series when	$a_n = b_n (x - a)^n,$	where b_n is an expression in n .		
(Note there may be a coefficient next to the x inside the bracket and so you may need to rewrite it so that this coefficient becomes part of the b_n .)						
The interval of convergence is the set of x -values which produce a series that converges.						

To find the interval of convergence of a power series, do the ratio test. The working will look like this:

Calculate

$$\left|\frac{a_{n+1}}{a_n}\right| = \left|\frac{b_{n+1}(x-a)^{n+1}}{b_n(x-a)^n}\right| = \cdots$$

Find

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \cdots$$
$$= \cdots$$
$$= L|x-a|$$

In order to converge, we need

$$L|x - a| < 1$$

$$|x - a| < R \leftarrow R$$

Radius of convergence

$$-R < x - a < R$$

$$b < x < c$$

Test endpoints:

If x = b, ... which converges/diverges If x = c, ... which converges/diverges

So the interval of convergence is

[*b*, *c*] or (*b*, *c*] or [*b*, *c*) or (*b*, *c*).