Tests for Convergence

By the Maths Learning Centre, University of Adelaide

Order in which to try the tests:

1. Check if it's a known series
(including rewriting it to look like a geometric series)
2. Divergence test
(particularly useful for terms that are rational functions).
3. Alternating series test
(specifically for alternating series).
4. Ratio test
(particularly useful for terms involving n in the power or as a factorial).

Known series:

harmonic series	$\sum_{n=1}^{\infty} \frac{1}{n}$	DIVERGES
alternating harmonic series	$\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}$	CONVERGES
"power of harmonic"	$\sum_{n=1}^{\infty} \frac{1}{n^{p}}$	If $p \leq 1$, DIVERGES
If $p>1$, CONVERGES		
geometric series	$\sum_{n=0}^{\infty} x^{n}$	If $\|x\| \geq 1$, DIVERGES

Test for divergence (check limit of individual terms):

Given a series $\sum_{n=0}^{n} a_{n}$\begin{tabular}{lll|}
\hline \multirow{3}{*}{} \& If $\quad \lim _{n \rightarrow \infty} a_{n} \neq 0$ \& then the series DIVERGES.

\& $\lim _{n \rightarrow \infty} a_{n}=0$ \& | then you don't know if the |
| :---: |
| series converges or diverges. |

\hline
\end{tabular}

Alternating series test:

Ratio test:

Given a series $\sum_{n=1}^{\infty} a_{n}$

1. Calculate $\left|\frac{a_{n+1}}{a_{n}}\right| \square$ If $L<1$, then the series CONVERGES
2. Find $\quad L=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|$

If $L>1$, then the series DIVERGES
If $L=1$, then you don't know if the series converges or diverges

Intervals of convergence for power series:

Given a series $\sum_{n=1}^{\infty} a_{n}$. It is a power series when $\quad a_{n}=b_{n}(x-a)^{n}, \quad$ where b_{n} is an expression in n.
(Note there may be a coefficient next to the x inside the bracket and so you may need to rewrite it so that this coefficient becomes part of the b_{n}.)

The interval of convergence is the set of x-values which produce a series that converges.

To find the interval of convergence of a power series, do the ratio test. The working will look like this:

Calculate

$$
\begin{aligned}
\left|\frac{a_{n+1}}{a_{n}}\right| & =\left|\frac{b_{n+1}(x-a)^{n+1}}{b_{n}(x-a)^{n}}\right| \\
& =\cdots
\end{aligned}
$$

Find

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| & =\cdots \\
& =\cdots \\
& =L|x-a|
\end{aligned}
$$

In order to converge, we need

$$
\begin{gathered}
L|x-a|<1 \\
|x-a|<R \longleftarrow \\
-R<x-a<R \\
b<x<c
\end{gathered}
$$

Test endpoints:

$$
\text { If } x=b, \ldots \text {... which converges/diverges }
$$

If $x=c, \ldots \ldots$ which converges/diverges

So the interval of convergence is

$$
[b, c] \text { or }(b, c] \text { or }[b, c) \text { or }(b, c) .
$$

