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This Topic . . .

Many practical problems in economics, engineering, biology, electronics, communi-
cation, etc can be reduced to solving a system of linear equations. These equations
may contain thousands of variables, so it is important to solve them as efficiently as
possible.

The Gauss-Jordan method is the most efficient way for solving large linear systems
on a computer, and is used in specialist mathematical software packages such as
MATLAB. The Gauss-Jordan method can also be used to find the complete solution
of a system of equations when there infinitely many solutions.

This topic introduces the Gauss and Gauss-Jordan methods. For convenience, the
examples and exercises in this module use small systems of equations, however the
methods are applicable to systems of any size.

The topic has 3 chapters:

Chapter 1 introduces systems of linear equations and elementary row operations.
It begins by showing how solving a pair of simultaneous equations in two
variables using algebra is related to Gauss’s method for solving a large system
of linear equations, and then explains the difference between the Gauss and
the Gauss-Jordan methods.

After reading this chapter, you will have a good understanding of how to solve
a large system of linear equations using elementary row transformations.

Chapter 2 examines systems of linear equations that do not have a unique solu-
tion1. The chapter shows how to recognise when systems have no solutions or
have infinitely many solutions, and how to describe the solutions when there
are infinitely many.

Chapter 3 explains how to use Gauss-Jordan elimination to find the inverse of a
matrix.

Auhor: Dr Paul Andrew Printed: February 24, 2013

1A system of linear equations can have one solution, no solutions or infinitely many solutions.
When it has exactly one solution, it is said to have a unique solution.
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Chapter 1

Systems of Linear Equations

1.1 Linear Equations

If a, b, c are numbers, the graph of an equation of the form

ax + by = c

is a straight line. Accordingly this equation is called a linear equation in the variables
x and y.

When an equation has only 2 or 3 variables, we usually denote the variables by the
letters x, y and z, but when there are more it is often convenient to denote the
variables by x1, x2, . . . , xn.

In general, a linear equation in variables x1, x2, . . . , xn is one that can be put in
the form

(1.1) a1x1 + a2x2 + · · ·+ anxn = b ,

where a1, a2, . . . , an are the coefficients of the variables. Notice that the variables
occur only to the first power in the equation, that they do not appear in the ar-
guement of any function such as a logarithm or exponential or any other sort of
function, and that the variables are not multiplied together.

Example
linear &

nonlinear
equations

The equations

2x + y = 7 z = 2x− 6y 3x1 − 2x2 + 5x3 + x4 = 4

are all linear equations as they can be put in the form (1.1) above, whereas

2x2 +
√
y = 7 z = 2 ln x− 6 exp y 3x1 − 2x2 + 5x3x4 = 4

are not linear equations.

1



2 CHAPTER 1. SYSTEMS OF LINEAR EQUATIONS

A solution of an equation is a set of numerical values for the variable which satisfies
the equation.

Example
solution
of linear
equation

• Two solutions of 2x + y = 7 are x = 3, y = 1 and x = 1, y = 5.

• One solution of 3x1 − 2x2 + 5x3 + x4 = 4 is (x1, x2, x3, x4) = (1, 1, 1, 1).

We often need to solve a number of linear equations at the same time. A collection
of linear equations is called a system of linear equations or a linear system. The
linear system below has n variables (or unknowns) x1, x2, . . . , xn in m equations.

(1.2)

a11x1 + a12x2 + . . . a1nxn = b1n
a21x1 + a22x2 + . . . a2nxn = b2n

...
...

am1x1 + am2x2 + . . . amnxn = bmn

A solution of a linear system is a set of numbers which satisfies each of the equations
simultaneously. A linear system has either one solution, no solutions, or infinitely
many solutions.1

Example
solution
of linear

system

• The only solution of the system of equations

2x + y = 7
x − y = 2

is (x, y) = (3, 1). [Check by substitution.]

• The system of equations

2x + y = 7
2x + y = 6

has no solution as the left sides are equal but the right sides are not.

• The system of equations

2x + y = 7
2x + y = 7

has infinitely many solutions - all number pairs (x, y) satisfying 2x + y = 7.

A system of equations with at least one solution is called consistent and a system
with no solutions is called inconsistent.

1If a linear system has two solutions then it must have infinitely many solutions.
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1.2 Elementary Row Operations

Appendix A revises how to solve pairs of simultaneous equations. These methods
are not easy to use on larger systems of equations so another method is needed.
This is called Gaussian elimination.2

Gauss’s method is to transform the original system of equations into another system
of equations which have the same solution but which is easier to solve. The method
is efficient, simple and easy to program on a computer.

Two systems of linear equations are called equivalent if they have the same solutions.

Example
equivalent

linear
system

The system of linear equations

x + 4y = 17

2x + 3y = 9

has the same solutions as the system

x + 4y = 17

y = 5 ,

so they are equivalent systems of equations. However, the second system is
much easier to solve. Using back-substitution:

y = 5

x = 17− 4y = 17− 4× 5 = −3 .

The first system of equations in this example can be written as a matrix equation

AX = B

where A is the coefficient matrix, i.e.[
1 4
2 3

] [
x
y

]
=

[
17
9

]
.

(Verify by matrix multiplication that this represents the same pair of equations.)

In Gauss’s method this matrix equation is represented in the form of a table

[A|B] =

[
1 4 17
2 3 9

]
2Carl Freidrich Gauss (1777-1855) is considered to be one of the three greatest mathematicians of

all time (the others being Archimedes and Newton). He is said to have been the last mathematician
to know everything in mathematics.
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which is called an augmented matrix.3

An augmented matrix is a shorthand way of writing a linear system without using
variables, and corresponds to the way information about the system is entered into a
computer. Augmented matrices are called equivalent when the corresponding linear
systems are equivalent.

Example
equivalent

augmented
matrix

The second linear system in the previous example

x + 4y = 17

y = 5

is represented by the equivalent augmented matrix[
1 4 17
0 1 5

]
.

The augmented matrix for the general linear system in (1.2) is

(1.3) [A|B] =


a11 a12 . . . a1n b1n
a21 a22 . . . a2n b2n
...

...
...

am1 am2 . . . amn bmn


In Gauss’s method we apply elementary row operations (see below) to rows of an
augmented matrix. Each row corresponds to an equation in a system of equations,
and the new system of equations formed after application of the elemenatry row
operations is equivalent to the original system.

Elementary Row Operations (EROs)

1. Interchange two rows (equations).

2. Add a multiple of one row (equation) to another.

3. Multiply a row (equation) by a nonzero number.

Example
The system of equations

2x + 3y = 9

x + 4y = 17

is solved below by using elementary row operations to transform it into a
simpler equivalent system.

3Augmented means enlarged.
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Step 1: Represent the system of equations as an augmented matrix.

[
2 3 9
1 4 17

] [
2x+ 3y = 9

x+ 4y = 17

]

Step 2: Interchange row 1 and row 2.

[
1 4 17
2 3 9

] [
x+ 4y = 17

2x+ 3y = 9

]

Step 3: Add −2× row 1 to row 2 to create a zero in the (1, 2) position.4

[
1 4 17
0 −5 −25

] [
x+ 4y = 17

−5y = −25

]

Step 4: Multiply row 2 by −1
5
.

[
1 4 17
0 1 5

] [
x+ 4y = 17

y = 5

]

The solution can now be found from the last equivalent system of equations
by using back substitution:

y = 5

x = 17− 4× y = −3

The most efficient way of solving a system of linear equations is to transform the
associated augmented matrix into an equivalent matrix having only zeros below the
leading diagonal. When an augmented matrix is in this form the corresponding
system of equations can be solved by back substitution. 1 4 1 3

0 1 0 0
0 0 1 1

4

p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p
The most systematic way of performing this transformation is to first obtain zeros in
the first column below the leading diagonal, then obtain zeros in the second column,
etc. If you are working by hand then it is best to avoid introducing fractions until
the final stages.

Note. It is good practice to record each row operation so you can retrace your steps
if there is a mistake.

4This is an example of the second ERO. It just means that we subtract 2×row 1 from row 2
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Example
Solve

x1 + 4x2 + x3 = 3

2x1 − 3x2 − 2x3 = 5

2x1 + 4x2 + 2x3 = 6

Answer

Step 1: Represent linear system as an augmented matrix.

(*)

 1 4 1 3
2 −3 −2 5
2 4 2 6


Step 2: Add −2× row 1 to row 2, then add −2× row 1 to row 3. 1 4 1 3

0 −11 −4 −1
0 −4 0 0

 R2 = R2 − 2×R15

R3 = R3 − 2×R1

If we next divide row 2 by −11, then we will introduce the fractions 4
11

and
1
11

. It is better to interchange rows 2 and 3.

Step 3: Interchange rows 2 and 3, then divide the new row 2 by −4.6 1 4 1 3
0 1 0 0
0 −11 −4 −1

 R2, R3 = R3, R2
R2 = R2 ÷(−4)

Step 4: Multiply row 2 by 11 and add it to row 3. 1 4 1 3
0 1 0 0
0 0 −4 −1

 R3 = R3 + 11 × R2

Step 5: Divide row 3 by (−4). 1 4 1 3
0 1 0 0
0 0 1 1

4

 R3 = R3 ÷ (−4)

Step 6: Solve by back substitution

x3 = 1/4

x2 = 0

x1 = 3− 4x2 − x3 = −5

5This records that the new row 2 is obtained from (*) by subtracting 2×row 1 from row 2.
6This is an ERO as it is the same as multiplying by − 1

4 .
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Exercise 1.2

1. Represent the following systems of equations as augmented matrices.

(a) 2x− 3y + 2z = 4

x + 5y + 4z = 1

7x + 2y − 3z = 3

(b) 3x2 + 2x3 = 7

x1 + 4x2 = 3

3x1 + 3x2 + 8x3 = 1

2. Write down the system of equations in unknowns p, q which has augmented
matrix [

3 −2 8
2 5 1

]
.

3. (a) Which of the following operations are elementary row operations?

i. Multiply row 2 by 2.

ii. Multply row 1 by 3 and add it to row 2.

iii. Multply row 2 by -3 and add it to row 1.

iv. Replace row 2 by the sum of row 1 and row 2.

v. Subtract row 2 from row 1.

vi. Add 5 to each element in row 1.

vii. Interchange column 1 and column 2.

(b) Perform operations i-v on the augmented matrix[
3 −2 8
2 5 1

]
.

4. Use back-substitution to solve

x1 + 4x2 − x3 = 3

x2 + 2x3 = −1

x3 = 4 .

5. Solve each of the linear systems below by using EROs.

(a) x− 2y = 1

2x + y = 7

(b) 2r − 3s = 6

r − 7s = 25

(c) x1 − 2x2 − 3x3 = 7

2x1 + 3x2 − 5x3 = −13

3x1 − 4x2 − 7x3 = 15

(d) 2x + y + 3z = 11

4x + 3y − 2z = −1

6x + 5y − 4z = −4
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1.3 Echelon Form

It is useful to have a standard method for solving to all linear systems. This will
allow us to systematically describe and solve systems of equations, and interpret the
solutions. A standard procedure is also better for computer computation.

There are two standard methods for solving linear systems: Gaussian elimination
and Gauss-Jordan7 elimination. In each method it is the final augmented matrix
that is important rather than the sequence of EROs leading to it.

Gaussian elimination consists of transforming an augmented matrix into row-echelon
form, and Gauss-Jordan elimination consists of transforming an augmented matrix
into reduced row-echelon form.

Definition 1.3.1
A matrix is said to have row-echelon form8 if

1. All rows that contain only zeros (called zero rows) are at the bottom of the
matrix.

2. The first nonzero element in each nonzero row is a 1 (called the leading 1 or
pivot).

3. The leading 1 in any nonzero row is to the right of the leading 1 in any row
above it.

Row-echelon matrices have a ’staircase’ appearance, e.g.
0 1 ∗ ∗ ∗ ∗ ∗
0 0 0 1 ∗ ∗ ∗
0 0 0 0 1 ∗ ∗
0 0 0 0 0 0 1
0 0 0 0 0 0 0


Here the astrisks stand for numbers, the leading 1’s proceed downward and to the
right, and all elements below and to the left of the leading ones are zero.

Example
row-echelon

form
(a) The following matrices are in row-echelon form:[

1 3 7
0 1 2

]  1 2 3
0 0 1
0 0 0

  1 3 1 4
0 0 1 3
0 0 0 0


(b) The matrices below are not in row-echelon form:[

1 1 5
0 2 4

] [
0 1 1
1 0 2

] [
0 0 0
0 1 0

]
7Camille Jordan (1838-1922) was an eminent French mathematician
8Echelon comes from the French word echelle meaning ladder. Solving a set of equations by

back-substitution is like climbing up a ladder.
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Definition 1.3.2
An augmented matrix has reduced row-echelon form if it has row-echelon form
and if

4. Each leading 1 is the only nonzero entry in its column.

Example
reduced

row-echelon
form

(a) The following matrices are in reduced row-echelon form:[
1 0 1
0 1 2

]  1 2 0
0 0 1
0 0 0

  1 3 0 1
0 0 1 3
0 0 0 0


(b) The matrices below are not in reduced row-echelon form:[

1 1 5
0 1 2

] [
0 1 1
1 0 2

] [
0 0 0
0 1 0

]
Gaussian and Gauss-Jordan elimination are both important and you will need to
know understand each method. One difference between the two methods is that
when an augmented matrix is transformed into row-echelon form, it is possible to
arrive at different row-echelon forms by choosing different sequences of EROs, in
other words the row-echelon form is not unique. In contrast, when an augmented
matrix is transformed into reduced row-echelon form, the final matrix is always
the same no matter what sequence of EROs was used, in other words the reduced
row-echelon form of a matrix is unique.

Every row-echelon matrix can be transformed into a reduced row-echelon matrix
by applying more EROs. In pen and paper calculations it is best to transform
matrices into row-echelon form first and then, if required, into reduced row-echelon
form by eliminating the zeros above the leading ones in a column-by-column fashion.
Appendix C describes further refinements.

Exercise 1.3

1. Which of the following matrices are in (i) row-echelon form (but not reduced
row-echelon form), (ii) reduced row-echelon form, or (iii) neither?

(a)

 1 2 0
0 1 0
0 0 1

 (b)

 1 0 0
0 2 0
0 0 3

 (c)

 1 0 0 0
0 1 1 0
0 0 0 0



(d)

 1 0 0 0
0 0 1 0
0 0 0 1

 (e)

 0 1 0 0
1 0 0 0
0 0 0 0

 (f)

[
1 0 0 0
0 1 2 3

]

(g)

 1 2
0 1
0 0

 (h)

 1 0 0
0 0 0
0 0 1

 (i)

 1 0 0 2
0 1 0 3
0 1 1 4


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2. Use elementary row operations to reduce the following matrices to row-echelon
form and reduced row-echelon form.

(a)

[
0 1 1
1 0 2

]
(b)

[
1 2 3
0 1 2

]
(c)

 0 1 1 4
1 1 0 2
0 1 0 3


3. Use Gaussian elimination to solve

(a) 2x− 3y = 1

x− 2y = 2

(b) 2x1 − x2 − x3 = 2

x1 + x2 − x3 = 3

x1 + x2 + x3 = 1

4. Use Gauss-Jordan elimination to solve

(a) 2p + 3q = 3

p + 2q = 3

(b) x1 − x2 − x3 = 1

x1 + x2 − x3 = 3

x1 + x2 + x3 = 1



Chapter 2

Consistent and Inconsistent
systems

2.1 The Geometry of Linear Systems

Systems of linear equations can have one solution, no solutions or infinitely many
solutions. It is important to understand the reason for this.

The system of two linear equations in two unknowns in (2.1) can be thought of
geometrically as a pair of straight lines. This helps us interpret the solutions.

(2.1)
a1x + b1y = c1

a2x + b2y = c2 ,

There are three ways in which two lines can meet (or not meet).

(i) The lines could intersect in a single point.

Example

system
with a
unique

solution
. . . the simultaneous equations

x− y = 1

x + y = 3
have the unique solution (x, y) = (2, 1).

11
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(ii) The lines could be parallel.

Example

system
with no

solutions
. . . the system of equations

x + y = 4

x + y = 2
has no solutions as the lines never meet.

(iii) The lines could coincide.

Example

infinitely
many

solutions
. . . the pair of equations

2x− y = 1

−4x + 2y = −1
has infinitely many solutions - every
point on the line gives a solution.

The geometric interpretations above allow us to understand why some systems can
have no solutions and others have infinitely many solutions.

Systems of linear equations in three variables are more complex:

(2.2)

a11x1 + a12x2 + a13x3 = b1

a21x1 + a22x2 + a23x3 = b2

a31x1 + a32x2 + a33x3 = b3 .

We can think of a linear equation in three variables as the equation of a plane in
three dimensional geometry (each variable representing a co-ordinate).

Example
The plane x1 + x2 + x3 = 3 is shown below. Each variable represents a co-
ordinate. The plane extends in all directions (this is diffcult to represent in a
diagram).
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If we just consider the first two linear equations in (2.2)

(2.3)
a11x1 + a12x2 + a13x3 = b1

a21x1 + a22x2 + a23x3 = b2 ,

then the corresponding planes may:

(i) intersect in a line,

(ii) be parallel,

or (iii) coincide.
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Each of the equations in (2.3) is a constraint on the values that (x1, x2, x3) can
take. When the planes meet in a straight line in (i), the values of (x1, x2, x3) that
satisfy both constraints correspond to the points on the line of intersection, and
when the planes are parallel in (ii), there are no values of (x1, x2, x3) that satisfy
both constraints.

If a third constraint is added, as in (2.2), then the linear system may have (a)
a unique solution, (b) no solutions or (c) infinitely many solutions, according to
whether the three planes (a) intersect in a point, (b) don’t intersect at all or (c)
either intersect in a line or coincide.

The diagrams below show some of these possibilities.

(a) Three planes meeting in a single point.

(b) Three planes without a common point. (This can happen in multiple ways.)

(c) Three planes meeting in a line.
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A system of linear equations has either a unique solution, no solutions
or infinitely many solutions

Exercise 2.1

1. The linear system below has a unique solution. Interpret this geometrically.

2x− 3y = 1

x + y = 3

x + 6y = 8

2. For any numbers a, b 6= 0, the line

a(2x− 3y − 1) + b(x + y − 3) = 0

passes through the intersection of the lines

2x− 3y − 1 = 0 and x + y − 3 = 0.

Find the values of a, b that give the third equation in exercise 1.

3. Sketch all the ways three planes can be arranged so that:

i. the planes have no point that is common to all.

ii. the planes have at least two points common to all.



16 CHAPTER 2. CONSISTENT AND INCONSISTENT SYSTEMS

2.2 Systems Without Unique Solutions

A system of linear equations is said to be consistent if it has at least one solution
and inconsistent if it has no solutions. We can tell if a system of linear equations
is consistent or inconsistent by transforming its augmented matrix into either row
elechon or reduced-row form.

A system is inconsistent if any row has a leading one in the last column: . . . 0 1


This is because this row is equivalent to the equation

0x1 + · · ·+ 0xn = 1

which has no solution. Note that when doing row operations, it is possible to tell if
the system is inconsistent before getting to row echelon form. In particular, if the
final row contains all zeros except for the final entry, then this final entry does not
have to be a 1 in order for the system to be inconsistent – it could be any nonzero
number.

Example
inconsistent

system
The linear system

x1 + x2 − x3 = 2

x1 − x2 + x3 = 2

−x1 − x2 + x3 = 4

has augmented matrix  1 1 −1 2
1 −1 1 2
−1 −1 1 4

 ,

and this can be transformed into row echelon form 1 1 −1 2
0 1 −1 0
0 0 0 1

 .

As there is a leading 1 in the last column, the system is inconsistent.

Note. A system is consistent when it is not inconsistent.

Example
consistent

or
inconsistent?
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For what value of k is the following linear system consistent?

x1 + x2 − x3 = 2

x1 − x2 + x3 = 2

−x1 − x2 + kx3 = 4

Answer. The system has augmented matrix 1 1 −1 2
1 −1 1 2
−1 −1 k 4

 ,

and this can be transformed into echelon form 1 1 −1 2
0 1 −1 0
0 0 k − 1 6

 .

The system is inconsistent when k = 1, and is consistent when k 6= 1.

If a linear system is consistent, then it may have a unique solution or may have
infinitely may solutions.

Definition 2.2.1
In a linear system, the variables that correspond to columns with leading 1’s are
called basic variables. Any remaining variables are called free variables.

If a linear system is consistent, and:

• if every variable is a basic variable, for example
1 ∗ ∗ ∗ ∗ ∗
0 1 ∗ ∗ ∗ ∗
0 0 1 ∗ ∗ ∗
0 0 0 1 ∗ ∗
0 0 0 0 1 ∗

 ,

then the system has a one unique solution and this can be found by back-
substitution.

• if there is at least one free variable, for example
1 ∗ ∗ ∗ ∗ ∗
0 1 ∗ ∗ ∗ ∗
0 0 0 1 ∗ ∗
0 0 0 0 1 ∗
0 0 0 0 0 0

 ,

then the system has infinitely many solutions.
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Example
inconsistent

system
The system of linear equations

x1 − x2 + x3 = 3

2x1 − x2 + 4x3 = 7

3x1 − 5x2 − x3 = 7

has augmented matrix  1 −1 1 3
2 −1 4 7
3 −5 −1 7

 ,

and this can be transformed into reduced echelon form 1 0 3 4
0 1 2 1
0 0 0 0

 .

This shows that:

i. the system is consistent as there is no leading 1 in the last column.

ii. there are infinitely many solutions as x3 is a free variable.

The original linear system has the same solutions as

x1 + 3x3 = 4

x2 + 2x3 = 1 ,

. . . and solutions can be found by giving values to the free variable x3 then
evaluating the basic variables x1 and x2.

To describe the general solution, assign the arbitrary value t to x3. Back-
substitution now shows that

x2 = 1− 2x3 = −2t + 1 and x1 = 4− 3x3 = −3t + 4 .

So the general solution to this system of equations is

(x1, x2, x3) = (−2t + 1,−3t + 4, t)

where t ∈ R1 can have any value, and the set of all solutions is

{(−2t + 1,−3t + 4, t) | t ∈ R}

In this example the arbitary value t ∈ R is called a parameter, and the general
solution (−2t + 1,−3t + 4, t) is called a parametric solution.

1R is the set of all real numbers
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Exercise 2.2

1. Find all solutions (x, y, z) of the linear systems that have been transformed
into the row echelon forms below.

(a)

 1 1 1 −1
0 0 1 3
0 0 0 0

 (b)

 1 2 1 4
0 1 1 2
0 0 0 1



(c)

 1 −1 3 5
0 1 2 4
0 0 1 0

 (d)

 1 5 2 8
0 1 4 3
0 0 0 0


2. The two planes

x + y + z = 1

x− y + 3z = 7

intersect in a straight line.

(a) Find the points on this line.

(b) Where does the line meet the the xy-plane (z = 0).

3. For what value of k does the linear system

x1 + 2x2 + x3 = 4

5x1 + 2x2 − 3x3 = k

−x1 + 2x2 + 3x3 = 4

have a solution. Find all solutions for this value of k.

4. Show that the system of linear equations

2x + 3y + 4z = 3

x + y − 8z = 1

5x + 6y − 20z = u

can be solved if and only if u = 6. Intepret this fact geometrically.

5. Find a condition on b1, b2 and b3 for system of equations

u + 2v + 3w = b1

2u + v − w = b2

4u + 5v + 5w = b3

to have a solution in u, v and w.
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6. Consider the system of linear equations

x1 − 2x2 + 3x3 = 1

x1 + kx2 + 2x3 = 2

−2x1 + k2x2 − 4x3 = 3k − 4

where k is a real constant.

(a) Write the system of equations in augmented matrix form.

(b) Use row operations to transform the augmented matrix into the form 1 −2 3 1
0 k + 2 −1 1
0 0 k 2k


(c) State the value of k for which the system has an infinite number of so-
lutions. Represent these solutions in parametric form and give a geometric
interpretation.

(d) State the values of k for which the system has no solution.

(e) For what values of k does the system have a unique solution?



Chapter 3

Matrix Inverses

Gauss-Jordan elimination can be used to find the inverse of a square matrix.

If A is a square matrix of order n and In is the identity matrix of order n, then:

1. form the augmented matrix [A | In],

2. use EROs to transform [A | In] to reduced row echelon form.

If the transformed matrix has the form [In | B], then B = A−1. If the first n × n
submatrix is not In, then A does not have an inverse.

Example
invertible

3× 3
matrix

Find the inverse of

A =

 2 1 0
−4 −1 −3

3 1 2

 .

Answer. The augmented matrix is

[A | In] =

 2 1 0 1 0 0
−4 −1 −3 0 1 0

3 1 2 0 0 1

 .

Transformation to reduced row echelon form gives 1 0 0 1 −2 −3
0 1 0 −1 4 6
0 0 1 −1 1 2

 = [In | B] ,

where B is the inverse of A.

21
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Example
uninvertible

matrix
Is the matrix

H =

[
1 2
2 4

]
.

invertible?

Answer. The augmented matrix is

[H | I] =

[
1 2 1 0
2 4 0 1

]
.

This is equivalent to [
1 2 1 0
0 0 1 −1

2

]
,

so H does not have an inverse.

Note. The 2× 2 matrix

A =

[
a b
c d

]
has inverse matrix

A−1 =
1

|A|

[
d −b
−c a

]
if and only if its determinant

|A| =
∣∣∣∣ a b
c d

∣∣∣∣ = ad− bc

is not zero.

There are similar formulas for the inverse of a general n× n matrix, but its usually
more efficient to use Gauss-Jordan elimination.

Exercise 3

1. Use Gauss-Jordan elimination to calculate the inverses of the following matri-
ces (if possible).

(a)

[
2 4
1 3

]
(b)

[
1 2
−2 −4

]

(c)

 1 2 −3
1 −2 1
5 −2 −3

 (d)

 1 1 1
1 2 3
0 1 1


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2. Find the values of u for which

A =

[
u 2
1 u− 1

]
is invertible.



Appendix A

Simultaneous Equations in Two
Unknowns

A pair of linear quations in two unknowns is usually solved by (i) eliminating one
of the unknowns from an equation, then (ii) solving for the other unknown.

Example
substitution

method
Solve the simultaneous equations

2x + y = 7 . . . (1)

x− y = 2 . . . (2)

Answer. Equation (2) shows that

x = 2 + y . . . (3)

. . . we can use this to eliminate x from equation (1).

Substitute x = 2 + y into (1):

2x + y = 7

2(2 + y) + y = 7

4 + 2y + y = 7

3y = 3

y = 1

To find x, substitute y = −1 into equation (3):

x = 2 + y

= 2 + 1

= 3

24
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A second method for solving pairs of equations is to combine the left and right sides
of the equations.

Example
elimination

method
Solve the simultaneous equations

2x + y = 7 . . . (1)

x− y = 2 . . . (2)

Answer. The unknown y can be eliminated by adding the left and right sides
of the equations together.

2x + y = 7 . . . (1)

x− y = 2 . . . (2)

(1) + (2)⇒ (2x + y) + (x− y) = 7 + 2

3x = 9

x = 3

To find y, we can substitute x = 3 into equation (1).

2x + y = 7

6 + y = 7

y = 1

Alternatively, we could have eliminated the unknown x first by subtracting
twice equation (2) from equation (1).

2x + y = 7 . . . (1)

x− y = 2 . . . (2)

(1)− 2× (2)⇒ (2x + y)− 2× (x− y) = 7− 2× 2

3y = 3

y = 1

. . . and then find x by substituting y = 1 into equation (2).

x− y = 2

x− 1 = 2

x = 3

These methods are not very efficient for solving larger systems of equations.
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Answers

Exercise 1.2

1(a)

 2 −3 2 4
1 5 4 1
7 2 −3 3

 1(b)

 0 3 2 7
1 4 0 3
3 3 8 1


2.

3p− 2q = 8
2p + 5q = 1

3(a) The elementary row operations are i, ii, iii, iv and v.

3(b) i.

[
3 −2 8
2 5 1

]
=⇒

[
3 −2 8
4 10 2

]
ii.

[
3 −2 8
2 5 1

]
=⇒

[
3 −2 8

11 −1 25

]
iii.

[
3 −2 8
2 5 1

]
=⇒

[
−3 −17 5

2 5 1

]
iv.

[
3 −2 8
2 5 1

]
=⇒

[
3 −2 8
5 3 9

]
v.

[
3 −2 8
2 5 1

]
=⇒

[
−1 −12 6

2 5 1

]
4. (43,−9, 4)

5(a) (3, 1) 5(b) (−3,−4) 5(c) (2,−4, 1) 5(d) (1
2
, 1, 3)

Exercise 1.3

1(i) row-echelon: a, g 1(ii) row-reduced: c, d, f 1(iii) neither: b, e, h, i

2(a)1
[

1 0 2
0 1 1

]
2(b)

[
1 0 −1
0 1 2

]
2(c)

 1 0 0 −1
0 1 0 3
0 0 1 1


1Only the reduced row echelon form answer is given as it is unique.
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3(a) (−4,−3) 3(b) (1, 1,−1)

4(a) (−3, 3) 4(b) (1, 1,−1)

Exercise 2.1

1. The three lines all pass through the point (2, 1).

2. a = −1, b = 3

Exercise 2.2

1(a) {(−t− 4, t, 3) | t ∈ R} 1(b) no solution 1(c) (9, 4, 0)

1(d) {(18s− 7,−4s + 3, s) | s ∈ R}

2(a) {(−2r + 4, r − 3, r) | r ∈ R} 2(b) (4,−3, 0)

3 k = 4, {(t,−t + 2, t) | t ∈ R}

4. The plane 5x + 6y − 20z = u is parallel to the line of intersection of the other
two planes when u 6= 6, and meets the other two planes in this line when u = 6

5. 2b1 + b2 − b3 = 0

6(c) The system has infinitely many solutions when k = 0. The parametric form of
the solutions is (2− 2t, 1

2
+ 1

2
t, t), t ∈ R. The three planes intersect in a straight line

and the solutions correspond to the points on this line.

6(d) The system has no solutions if k = −2.

6(e) The system has a unique solution when k 6= 0 and k 6= −2.

Exercise 3

1(a)

[
3/2 −2
−1/2 1

]
1(b)

[
1 2 1 0
0 0 2 1

]
⇒ not invertible

1(c)

 1 2 −3 1 0 0
0 −4 4 −1 1 0
0 0 0 −2 −3 1

⇒ not invertible
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1(d)

 1 0 −1
1 −1 2
−1 1 −1


2. A is invertible if and only if detA = u(u − 1) − 2 = u2 − u − 2 6= 0, i.e. if and
only if u 6= −1, 2.


