## SAMPLE SIZE CALCULATIONS

### FOR HYPOTHESIS TESTS:

The following five things affect the sample size you need:

#### 1. Which hypothesis test you plan to use

Hypothesis test based on categorical outcomes (as opposed to numerical outcomes)

Hypothesis test uses independent groups (as opposed to repeated measures)



### 2. Size of the difference you are looking for

Most hypothesis tests concern the differences between means or percentages. The difference you would like to see is often called:

- Clinically significant difference
- Practically significant difference

Choosing how big this difference is requires KNOWLEDGE OF YOUR AREA OF RESEARCH.



### 3. Variability of the results

HIGH VARIABILITY means many options for what could happen in a sample of a particular size

eg: for the CHI-SQUARED TEST

very high or very low expected percentage  $\rightarrow$  low variability medium expected percentage  $\rightarrow$  high variability

#### eg: for t-tests or ANOVA

large standard deviation  $\rightarrow$  high variability



You usually get this information from previous research or a pilot study.



# The Right Questions about Statistics

# 4. Significance level

The cut-off for saying when a p-value is significant. Usually 5%. Also known as  $\alpha$  (alpha) or the "Type I Error rate".



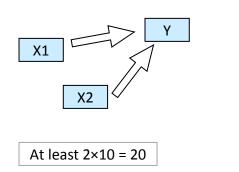
### 5. Power

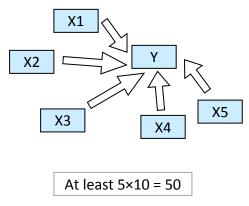
The probability of getting a significant result if in fact there IS a difference in the population. Usually you set this at 80%.

The opposite of Type II Error rate (also known as  $\beta$  (beta)).



[Note that a high dropout rate also increases sample size ]


# FOR CONFIDENCE INTERVALS:


Confidence intervals are related to hypothesis tests, so the considerations above are used for confidence intervals too.

NOTE: Significance level = 100% - Confidence Level (so for a 95% confidence interval, the significance level is 5%)NOTE: The "difference you are looking for" is half the width of the confidence interval. Also known as the "margin of error".

# FOR REGRESSION:

Rule of thumb: at least 10 times as many subjects as there are explanatory variables. Proper calculations are based on the t-tests involved to see if slope is significant.





# The Right Questions about Statistics

# Maths Learning Centre

# SOME TERMINOLOGY:

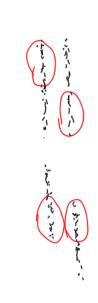
Type I Error:NO difference in the populationBUT there IS a difference in the sample(also known as significance level or alpha α or the false positive rate)

# Type II Error:

There IS a difference in the population BUT there is NO difference in the sample (also known as beta  $\beta$  or the opposite of power or the false negative rate)

# **PERFORMING THE CALCULATIONS :**

Russ Lenth's has created a comprehensive suite of online calculators: <u>http://homepage.stat.uiowa.edu/~rlenth/Power</u> You need all the information mentioned above in order to use the calculators.


There is also a simple rough formula for the t-tests and chi-squared tests in Chapter 36 of "Medical Statistics at a Glance" by Aviva Petrie and Caroline Sabin

## Lehr's Formula

For 80% power at the 5% significance level:

Here "D" is the "standardised difference" which is calculated like this for three common tests:

| Unpaired t-test                                                              | Paired t-test                                                                                        | Chi-squared test                                                                                                 |
|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| $D = \frac{d}{\sigma}$                                                       | $D = \frac{2d}{\sigma}$                                                                              | $D = \frac{d}{\sqrt{p(1-p)}}$                                                                                    |
| d = difference in means you want<br>to find<br>$\sigma$ = standard deviation | d = mean of the difference you<br>want to find<br>$\sigma$ = standard deviation of the<br>difference | <ul> <li>d = difference in proportions you<br/>want to find</li> <li>p = estimated average proportion</li> </ul> |



# The Right Questions about Statistics

## Examples of Calculations With Lehr's Formula

### **Unpaired t-test**

Suppose the difference we are looking for is d = 1°C and the standard deviation is  $\sigma = 1$ °C.

Stad diff: 
$$D = \frac{d}{D} = \frac{1}{1^2} = 1$$
  
Sample size =  $\frac{16}{D^2} = \frac{16}{1^2} = 16$  per group.

Suppose the difference we are looking for is d = 1°C and the standard deviation is  $\sigma = 0.5$ °C.

Std diff: 
$$D = \frac{d}{\sigma} = \frac{1}{0.5} = 2$$
  
Sample size =  $\frac{16}{D^2} = \frac{16}{2^2} = 4$  per group

Suppose the difference we are looking for is d = 1°C and the standard deviation is  $\sigma = 2$ °C.

Std diff: 
$$D = \frac{d}{d} = \frac{1}{2} = 0.5$$
  
Sample size =  $\frac{16}{D^2} = \frac{16}{(0.5)^2} = 64$  per group

### Chi-squared test

Suppose the difference we are looking for is d = 3% = 0.03 and the average percentage is p = 20% = 0.20.

$$\begin{aligned} \int P(1-p) &= \int 0.2 \times 0.8 = 0.4 \\ \text{Std diff } D &= \frac{d}{\sqrt{p(1-p)}} = \frac{0.03}{0.4} = 0.075 \\ \text{Sample size} &= \frac{16}{D^2} = \frac{16}{(0.075)^2} = 2843 \text{ per group} \end{aligned}$$

By Dr David Butler © 2014 The University of Adelaide